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Abstract:

The existing end-to-end TCP congestion control algorithm is
well suited for applications that are not sensitive to delay jitter
and abrupt changes of the transmission rate, such as FTP data
transfer, but it is not recommended for delivering video data,
whose perceived quality is sensitive to delay jitter and changes
in the sending rate. In particular, the window-based control of
Reno TCP congestion control causes burstiness in data trans-
mission, which not only requires large buffers at the client
side to provide a smooth playout but also may provoke bursts
of lost packets difficult to recover via forward error correction
techniques. This paper proposes an adaptive rate-based control
(ARC) algorithm that striclty mimics the real-time dynamics
of TCP and is based on an end-to-end mechanism to estimate
the connection available bandwidth. Computer simulations us-
ing ns-2 have been developed to compare the ARC with the
Reno TCP and with the TCP-Friendly Rate Control (TFRC)
algorithm. Single- and multibottleneck scenarios in the pres-
ence of homogeneous and heterogeneous traffic sources have
been considered. Simulations have shown that the ARC al-
gorithm improves fairness and is friendly toward Reno. On
the other hand, TFRC revealed itself not to be friendly toward
Reno since it mimics only the long term behaviour of Reno
TCP. Finally, simulations have shown that ARC remarkably
improves the goodput with respect to TFRC and Reno in the
presence of lossy links.
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1 Introduction

The use of the Internet for carrying potentially high-quality
video is continuously growing [34]. Integration of quality
adaptive encoding schemes, forward error correction tech-
niques, and congestion control algorithms is crucial to provid-
ing an effective video delivery system [28]. Encoding drasti-
cally reduces the number of bits used to transmit the video,
error correction techniques ensure loss resilience by adding
redundancy data [28,31], and congestion control algorithms
allow senders to match the network available bandwidth [28].

This paper focuses on the design of an end-to-end rate-
based congestion control algorithm for streaming flows over
the Internet.

The proposed adaptive rate control (ARC) algorithm is
based on a mechanism to estimate both the used bandwidth
and the queue backlog in an end-to-end fashion and has been
designed starting from the control theoretic analysis developed
in [21].

ARC has been tested over many scenarios and compared
with the TCP-Friendly Rate Control (TFRC), which is cur-
rently considered by the IETF for applications such as video
streaming or telephony where a relative smooth sending rate
is of importance [5,12,16]. In particular, single- and multi-
bottleneck scenarios with and without lossy links and in the
presence of homogeneous and heterogeneous traffic sources
have been considered. Simulations have shown that (i) ARC
exhibits a higher degree of fairness with respect to TCP and
TFRC, (ii) ARC and Reno TCP are friendly toward each other,
(iii) TFRC is not friendly toward Reno, (iv) ARC exhibits a
less oscillating rate dynamics with respect to Reno TCP and
TFRC in the presence of stationary network load, and (v)ARC
remarkably improves the goodput with respect to TFRC and
Reno in the presence of lossy links.

The paper is organized as follows. Section 2 provides an
overview of related works, Sect. 3 summarizes the control the-
oretical results that are used as starting points for designing the
control law, Sect. 4 describes the proposed algorithm, Sect. 5
shows simulation results, and, finally, the last section draws
conclusions.
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2 Related work

During the last decade, research on congestion control algo-
rithms has been quite active and has been essentially focused
on congestion control for “best effort” reliable data traffic.
The current version of TCP congestion control is still largely
based on the cornerstone paper [17] and its modifications [2,
11]. TCP congestion control architecture assumes that the net-
work is a “black box” that does not supply any explicit feed-
back to sources. Therefore, it is designed following the end-
to-end principle that is one of the mayor keys to the success of
the Internet [10]. In particular, a TCP source follows an addi-
tive increase mechanism to grab all available bandwidth and
a multiplicative decrease mechanism to drastically decrease
the window when congestion is revealed by a timeout or re-
ception of three duplicate acknowledgements (DUPACKs). A
consequence of using this additive increase/multiplicative de-
crease (AIMD) mechanism is that the congestion window size
oscillates around its equilibrium point because packet losses
are intentionally provoked to probe network capacity [10,23].

TCP Vegas proposes an alternative to the TCP AIMD
mechanism in order to get a smoothed window dynamics [7].
In particular, a Vegas source tries to anticipate the reaction to
congestion by monitoring the difference between the expected
input rate and the actual input rate and adjusts the sender rate
in an attempt to keep a small number of packets buffered in
the routers along the network. A drawback of TCP Vegas is
that it is not able to obtain its own share of bandwidth when
competing with Reno sources or in the presence of reverse
traffic [9,15,25].

Westwood TCP [23] and its variant [9,14] are recent modi-
fications of Reno that exploit a new additive increase/adaptive
decrease paradigm. The key idea of TCP Westwood is to ex-
ploit the stream of returning acknowledgement packets to es-
timate the bandwidth that is available for the TCP connec-
tion. When a congestion episode happens at the end of the
TCP probing phase, the used bandwidth corresponds to the
definition of best effort available bandwidth in a connection-
less packet network. This bandwidth estimate is then used to
adaptively decrease the congestion window and the slow-start
threshold after a timeout or three duplicate ACKs.

Classic Reno TCP congestion control has been quite suc-
cessful in preventing network collapse, but it cannot ensure
fair sharing of network resources [14,17]. Other known draw-
backs of Reno are (i) the window-based control causes bursti-
ness in data transmission [6,29] and (ii) bursty data sources
not only require large playout buffers at the client side to pro-
vide a smooth playout but also experience bursty packet losses
that makes difficult the recovery via forward error correction
techniques [1]. Hence, while TCP congestion control is well
suited for applications not sensitive to delay jitter and abrupt
changes of the transmission rate, such as FTP data transfer,
it is not recommended to deliver video data, whose perceived
quality is sensitive to delay jitter, changes in the sending rate,
and bursty losses [30,34].

A congestion control algorithm well suited for video de-
livery should provide smooth rate dynamics in order to reduce
playout buffering at the receiver [8]. Moreover, it should be
friendly toward Reno sources in order to fairly allocate band-
width to flows carrying multimedia and bulk data [16]. In
order to provide friendliness, many control algorithms with a

slower responsive dynamics have been designed by trying to
emulate the “long-term” behavior of the Reno algorithm [5].
The TEAR (TCP emulation at receivers) rate control algo-
rithm computes the input rate at the receiver and then feeds it
back to the sender [30]. The rate is computed by emulating the
average long-term throughput of one hypothetic Reno connec-
tion traversing the same path of the rate-based connection. It
has been shown that TEAR does not employ the classic self-
clocking mechanism [17], is not friendly toward Reno TCP
at high loss rate, and does not reduce its sending rate under
persistent congestion [35].

To obtain a Reno conformant behavior with a smoothed
rate dynamics, linear increase multiplicative decrease algo-
rithms have been proposed. The rate adaptation protocol
(RAP) additively increases the transmission rate until a net-
work congestion is detected and, upon a congestion episode,
it multiplicatively decreases the transmission rate. RAP does
not enforce the self-clocking principle [29].

A linear increase multiplicative decrease algorithm with
history (LIMD/H) has been proposed in [19]. The algorithm
proposes a linear increasing rate during the probing phase and
an adaptive multiplicative rate reduction after congestion that
takes into account the loss rate. This algorithm also does not
implement the self-clocking mechanism. It has been shown
that a simple AIMD rate control algorithm cannot guaran-
tee friendliness toward Reno connections since an AIMD rate
mechanism does not match an AIMD window mechanism [5,
6].

A new control algorithm that has been proposed to em-
ulate the long-term behavior of the Reno throughput is the
TCP-Friendly Rate Control (TFRC) [12,31]. TFRC aims at
obtaining a smooth transmission rate dynamics along with
friendliness toward Reno TCP [12]. To provide friendliness,
a TFRC sender emulates the long-term behavior of a Reno
connection using the equation model of the Reno throughput
developed in [27]. In particular, the TFRC sender computes
the transmission rate as a function of the average loss rate,
which is sent by the receiver to the sender as a feedback report.
This approach has the following drawbacks: (i) even though
the equation model developed in [27] is a useful tool for car-
rying out analytical evaluations of Reno TCP throughput, it
may exhibit up to 30% of error [27]; (ii) it has been shown
that the behavior of equation-based congestion control is in-
fluenced by the throughput model employed, the variability of
loss events, and the correlation structure of the loss process
[33]. Another equation-based rate control algorithm has been
proposed in [31] that mainly differs from the TFRC in that
the employed throughput equation model is the simpler one
proposed in [24].

In [5] the rate-based algorithms proposed in [12,29] and
the window-based algorithms proposed in [2,4] have been
tested in the presence of dynamic network conditions to show
that algorithms that do not employ the self-clocking principle
[12,29] may exhibit a huge settling time, that is, they may
require many RTTs to adapt the input rate to the bandwidth
available in the network. To overcome the disastrous effects
due to the violation of the self-clocking principle, an enhanced
version of the TFRC algorithm that emulates the self-clocking
mechanism has been proposed in [5]. The enhanced TFRC ex-
hibits good dynamic performance.
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It is important to point out that the self-clocking mech-
anism implemented by the TFRC is different from the self-
clocking of the TCP [17]. In fact, the TFRC self-clocking acts
only after a packet loss by limiting the sending rate at the data
rate that has been received during the previous RTT [5]. On the
other hand, the TCP self-clocking mechanism is always active
because the number of outstanding packets is limited. Thus,
from a dynamic point of view, TFRC is not Reno conformant.
In other words, a new joining TCP flow has an immediate ef-
fect on the self-clocking mechanism of existing TCP flows,
whereas it affects TFRC flows only after packet loss. This can
severely affect the friendliness between TFRC and Reno TCP.

The implementation of the self-clocking principle in a rate-
based environment has been theoretically discussed in [21]. In
particular, it has been shown that it is possible to design a sta-
ble and efficient congestion controller by taking into account
the number of outstanding packets when computing the trans-
mission rate. An implementation of this algorithm has been
developed in the context of the TCP/IP protocol by proposing
the concept of Generalized Advertised Window, which has to
be supplied by network routers [13].

3 A control law based on the Smith predictor:
background results

This section summarizes some control theoretical results de-
rived in [21] that will be used as starting points in designing
theARC algorithm proposed in this paper. In [21] it was shown
that a data connection can be modelled as a time delay system
that can be efficiently controlled by following the Smith prin-
ciple. In particular, to provide bottleneck queue stability and
high utilization of the bottleneck link depicted in Fig. 1, the
following rate-based control equation has been proposed:

r(t) = k[w(t) − q(t − Tfb) −
∫ t

t−RTTmin

r(τ)dτ ]+, (1)

where:

• [x]+ = max{0, x};
• r(t) is the transmission rate;
• w(t) represents a threshold for the queue length q(t);
• q(t) is the bottleneck queue backlog;
• RTTmin = Tfw + Tfb is the minimum round trip time,

where Tfw is the forward delay that models the propaga-
tion time from the sender to the bottleneck and Tfb is the
backward delay that models the propagation time from the
bottleneck to the destination and then back to the sender;

• ∫ t

t−RTTmin
r(τ)dτ + q(t − Tfb) represents the in-pipe

packets plus the queued packets, that is, they are the out-
standing packets;

• b(t) is the bandwidth used by the flow;
• k is the proportional gain that relates the transmis-

sion rate r(t) to the quantity [w(t) − q(t − Tfb) −∫ t

t−RTTmin
r(τ)dτ ].

It is easy to give an intuitive interpretation of Eq. 1: the
transmission rate r(t) is proportional, via the constant k, to
the difference between the threshold w(t) and the sum of
the backlog q(t − Tfb) with the number of in-pipe packets∫ t

t−RTTmin
r(τ)dτ [21]. From Eq. 1 it turns out that when the

Sender Tfw 

Tfb 
q(t)q(t−Tfb)

w(t) r(t) r(t−Tfw)
Receiver

Available 
Bandwidth 

b(t)
q(t)

Fig. 1. Schematic of a connection

number of outstanding packets q(t−Tfb)+
∫ t

t−RTTmin
r(τ)dτ

is greater than or equal to w, then the computed transmission
rate is zero. This implies that the number of outstanding pack-
ets can never exceed w. It is also interesting to observe that
Eq. 1 can be viewed as the rate-based version of the classic
sliding window control. In fact, dividing both sides of Eq. 1
by k, the sliding window control equation

∆W = r/k = (w(t) − q(t − Tfb) −
∫ t

t−RTTmin

r(τ)dτ)

is easily obtained. Notice that if q(t) is the receiver buffer
queue length, then w(t) − q(t − Tfb) is the TCP advertised
window and Eq. 1 reduces to the standard TCP flow control
[21,22]. If q(t−Tfb)+

∫ t

t−RTTmin
r(τ)dτ represents the out-

standing packets and w(t) the congestion window cwnd, then
Eq. 1 represents the TCP congestion control. The latter is an
important result that will be exploited later when we design a
dynamic setting for w(t) that mimics the real-time dynamics
of the TCP in order to provide friendliness.

In [21], it was shown that Eq. 1 ensures both network sta-
bility and bounded queue lengths at the routers. Moreover, by
considering the control Eq. 1 in steady state condition, i.e.,
when the sending rate r(t) is constant and matches the avail-
able bandwidth b(t) = B, and by assuming that the backlog
queue length q(t − Tfb) is zero, so that the round trip time
RTT reduces to the minimum round trip delay RTTmin, one
has that r = k · (w − B · RTTmin) = B, from which the
following relation turns out:

w = B · (RTTmin +
1
k

). (2)

Equation 2 is important since it provides the window w(t)
that ensures there will be no queue backlog when in the pres-
ence of the available bandwidth B. It should be noted that,
since Eq. 2 clears out all buffers along the connection path, it
improves statistical multiplexing of flows going through FIFO
buffers and increases fairness in bandwidth allocation.

The constant gain k in Eq. 1 affects the time constant of the
system dynamics. In fact, in [21] it was shown that the transfer
function from the threshold w(t) to the queue backlog q(t) is

Q(s)
W (s)

=
k

s + k
e−s·Tfw . (3)

This means that the closed-loop dynamics is that of a first-
order system, with time constant τ = 1/k, delayed by Tfw. To
get a further insight into the dynamic behavior of the transfer
function Eq. 3, it is worth reporting the response to the step
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function w0 · 1(t),1 which is

q(t) = w0(1 − e−k(t−Tfw))1(t − Tfw). (4)

In principle, the transient mode e−k(t−Tfw) in Eq. 4 can be
made faster and faster by choosing a larger and larger gain k.
However, an upper bound must be considered when choos-
ing k. In fact, in packet networks the feedback information is
delivered through packets, which implies that the controlled
system is a sampled controlled system [3]. By assuming that
a feedback report is generated every RTT and that the maxi-
mum RTT is 500 ms, which corresponds to the “worst case”
of a GEO satellite connection, the system is sampled every
500 ms. The Nyquist-Shannon sampling theorem requires that
the system time constant be at least twice as large as the sam-
pling period Ts = 500ms. To be conservative, we choose a
constant time that is four times the sampling period, that is,
we assume τ = 1/k = 4Ts = 2 s, i.e., k = 0.5/s = 0.5 s−1.

4 The Adaptive Rate Control algorithm

When proposing a new congestion control algorithm two fun-
damental requirements must be satisfied: (i) the algorithm
must provide a degree of fairness in bandwidth allocation at
least equal to that provided by the Reno algorithm; (ii) the
algorithm must exhibit a friendly behavior toward TCP flows,
so that coexisting connections controlled by TCP Reno can
get their fair bandwidth share.

To provide both fairness and friendliness, we exploit the
results summarized in Sect. 3 for which Eq. 1 is the rate-based
form of the classic sliding window control employed by Reno
TCP for flow and congestion control [2,17]. Thus, similarly
to the TCP, the ARC algorithm proposed in this paper is made
of two phases: (i) a probing phase, which aims at utilizing
the network available bandwidth, and (ii) a shrinking phase,
which reduces the input rate in the presence of congestion.

4.1 The probing phase

To be friendly toward Reno, we design the probing phase fol-
lowing the results reported in Sect. 3 for which Eq. 1 is the rate-
based form of the TCP flow and congestion control. Therefore,
we propose a quick probing phase, which corresponds to the
TCP slow start, and a gentle probing phase, which corresponds
to the TCP congestion avoidance phase. The quick probing
phase is obtained by setting

w(t) = w(t0) · 2
t−t0

α , (5)

where t0 is the time of the last window update and α is a multi-
plicative constant. The setting (Eq. 5) mimics the exponential
increasing of the TCP slow start. The gentle probing phase is
obtained by linearly increasing the control window w(t) as
follows:

w(t) = w(t0) +
t − t0

α
, (6)

1 The step function is defined as 1(t) =
{

1 t ≥ 0
0 t < 0 ; w0 is a real

constant.

where t0 is the time of the last window update and α is a
multiplicative constant. We choose α = 0.3 s; this increases
w by one packet every 300ms during the gentle probing phase
and doubles w every 300ms during the quick probing phase.

It is important to observe that the ARC linear increasing
phase mimics the linear phase used by Reno during the con-
gestion avoidance phase. On the other hand, the additive rate
increase proposed in [19,29,32] is not equivalent to the Reno
linear increasing phase (see also [5,6]).

4.2 The shrinking phase

When a congestion episode happens, it is necessary to trig-
ger the shrinking phase in order to reduce the input rate. It is
important to realize that end-to-end congestion control algo-
rithms do not explicitly know the congestion status of network
nodes, but they must infer it using implicit notifications such
as timeouts or duplicated ACKs in TCP.

We consider two events as implicit indications of conges-
tion:

1. A packet is lost and the sequence of received packets con-
tains a hole.

2. The sender does not receive any report from the receiver
for a long time so that a timeout expires.

ARC reacts to congestion events by setting w(t) according
to Eq. 2, which ensures that all the buffers along the path are
cleared out.

To implement Eq. 2, it is necessary to estimate the avail-
able bandwidth. For that purpose, it should be noted that the
bandwidth used at the time of a congestion episode is, by defi-
nition, the end-to-end “best effort” bandwidth available at the
end of the probing phase.

To estimate the bandwidth used by a connection, the re-
ceiver counts and filters the received packets. In particular,
every smoothed round trip time (SRTT), which is computed
using the Van Jacobson algorithm [17], a sample of used band-
width is computed at the receiver as follows:

B(k) =
D(k)
T (k)

, (7)

where D(k) is the amount of data received during the last
SRTT = T (k) (Fig. 2). Since network congestion is due to
the low-frequency components of the used bandwidth [14,20,
23], we average theB(k) samples using the following discrete-
time filter:

B̂(k) =
2τ − T (k)
2τ + T (k)

·B̂(k−1)+
T (k)

2τ + T (k)
·(B(k)+B(k−1)),

(8)
where τ is the time constant of the filter (we assume τ =
0.5 s). This filter is time varying to counteract the fact that the
sampling interval T (k) is not constant [23]. It is important
to note that the filter in Eq. 7 works well if the Shannon-
Nyquist theorem is satisfied, that is, if T (k) < τ/2, in order to
avoid aliasing effects [3,23]. To be conservative, we assume
T (k) < τ/4 and, when T (k) ≥ τ/4, we interpolate and
resample using N = integer(4T (k)/τ) virtual samples B(k)
arriving with interarrival time τ/4 and one more virtual sample
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Fig. 2. Bandwidth sample computation

B(k) B(k)B(k)
B(k-1) B(k)

)(kT

4/τ T∆4/τ
t

Fig. 3. Resampling algorithm when T (k) > τ
4

B(k) arriving after the interarrival time ∆T = T (k)−Nτ/4.
The resampling algorithm is depicted in Fig. 3.

Finally, to implement the control Eq. 1 it is necessary
to estimate the backlog q(t − Tfb) and the in-pipe packets∫ t

t−RTTmin
r(τ)dτ . To estimate the backlog plus the in-pipe

packets, ARC uses the outstanding packets.

5 Performance evaluation

The ARC algorithm is here investigated via computer simula-
tion using ns-2 [26]. A comparison with the enhanced version
of the TFRC proposed in [5] and with the Reno TCP is also
carried out. TFRC parameters have been set as suggested in
the ns-2 package. The ARC parameters have been chosen as
follows: k = 0.5 s−1, α = 0.3 s. Both single- and multibottle-
neck topologies have been simulated. In all considered scenar-
ios, TCP sinks implement the delayed ACK option. Packets
are 1500 bytes long and connections are greedy. Unless oth-
erwise specified, bottleneck queues are set equal to the bottle-
neck bandwidth times the maximum round trip time, which is
equal to 250 ms. We will focus on throughput, packet losses,
intraprotocol long-term and short-term fairness in bandwidth
sharing, interprotocol friendliness, and burstiness of the send-
ing rate.

5.1 Single-bottleneck scenario

We consider the single-bottleneck topology depicted in Fig. 4,
which consists of a single-bottleneck link shared by N Reno
TCP sources, one UDP source, and M rate-based sources.
Ten Reno TCP sources send data in the opposite direction,

N Reno 

sources

UDP

source

M Rate 

sources

10 Reno 

Sinks

R1 R2

N Reno 

Sinks

UDP

Sink

M Rate 

Sinks

10 Reno 

sources

Forward Traffic 

Backward Traffic 

Fig. 4. Single-bottleneck scenario

i.e., they generate congestion on the backward path. RTTs of
the N Reno connections (M rate-based connections) going
along the forward path are uniformly spread in the interval
[(250/N)ms,250ms] ([(250/M)ms,250ms]). RTTs of the
ten Reno TCP connections feeding the backward traffic are
uniformly spaced in the interval [25 ms, 250 ms]. All TCP
sources start data transmission at time t = 0 s, whereas the
rate-based sources start data transmission at t = 10 s. Simu-
lations last 1000 s unless otherwise specified.

5.1.1 One rate-based or one Reno TCP source
in the presence of constant available bandwidth

This section evaluates the behaviors of a single TFRC or a
single ARC or a single Reno TCP in the scenario depicted in
Fig. 4. The bottleneck link capacity is 1 Mbps, and the RTT of
the connection on the forward path is 250 ms. The ten Reno
TCP sources, which generate traffic along the backward path,
are first turned off and then on to simulate a more realistic
scenario where the backward path from the destination to the
source is congested. This scenario aims at evaluating the be-
havior of the considered control algorithms in the presence of
a constant available bandwidth. In this condition, we would
like to obtain a constant transmission that matches the constant
network capacity.

Figure 5 shows the sending rate of a single Reno TCP
connection in the above-described scenario. The transmission
rate has been computed as cwnd/RTT . In particular, it is
worth noting that Reno TCP exhibits a highly variable bit rate,
which is due to the oscillations of the congestion window that
are exacerbated by the phenomenon of ACK compression due
to backward traffic (Fig. 5b). It is worth pointing out that while
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Fig. 5. One Reno TCP source over a 1-Mbps bottleneck. (a) Reverse
traffic is off. (b) Reverse traffic is on
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Fig. 6. One TFRC source over a 1-Mbps bottleneck. (a) Reverse
traffic is off. (b) Reverse traffic is on
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Fig. 7. One ARC source over a 1-Mbps bottleneck. (a) Reverse traffic
is off. (b) Reverse traffic is on

rate fluctuations over short time scales, such as those observed
in Fig. 5a, do not affect network utilization, rate oscillations
over large time scales can lead to network underutilization. In
fact, the bottleneck utilization of Reno TCP, which is defined
as
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U =
goodput

bottleneck link capacity
,

diminishes from 98% obtained in Fig. 5a to 57% obtained in
Fig. 5b when the reverse traffic is turned on.

Figure 6 shows the sending rate of one TFRC connection
in the same scenario. Also, in this case the presence of reverse
traffic provokes burstiness in the sending rate. In particular,
the bottleneck utilization provided by TFRC drops from 99%
to 88% when the reverse traffic is turned on.

Finally, Fig. 7 shows the sending rate of one ARC connec-
tion in the same scenario. In this case, the ARC algorithm is
not affected by congestion on the backward path and provides
a smooth transmission rate, both with and without reverse traf-
fic, reaching a 99% bottleneck utilization.

Figure 8 summarizes simulation results and provides syn-
thetic performance indices for the scenarios considered above.
In particular, it reports the goodput, the packet loss ratio, and
the burstiness of the sending rate. The burstiness is measured
as in [35] using the coefficient of variation, which is
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Burstiness =
σ(r)
E[r]

,

where σ(r) is the standard deviation of the transmission rate
and E[r] is the average value. Both σ(r) and E[r] have been
evaluated over the last 900 s of simulation to eliminate the ini-
tial transient. Figure 8 shows that ARC is not sensitive with
respect to reverse traffic. On the other hand, both Reno TCP
and TFRC experience increased packet loss ratio and bursti-
ness in the presence of reverse traffic. From now on, sources
of reverse traffic will always be turned on to reproduce the
conditions of a real packet switching network.

5.1.2 One rate-based or one Reno TCP with one ON-OFF
Constant Bit Rate (CBR) source

This section evaluates the behaviors of a single TFRC or a sin-
gle ARC or a single Reno TCP connection sharing the single-
bottleneck scenario in Fig. 4 with one ON-OFF constant bit
rate UDP source. The bottleneck link capacity is 1 Mbps. The
CBR source transmits at 0.7 Mbps during the 200-s ON pe-
riod and is silent during the OFF period, which also lasts 200 s.
The CBR source provokes 1:3 available bandwidth variations
such as in the scenario considered in [5]. The ON-OFF CBR
connection provides a piecewise constant best-effort available
bandwidth that is useful to test the algorithm reactivity under
strenuous conditions. This scenario is particularly interesting
since it reproduces the case of bandwidth oscillation that is
present in 2.5G/3G wireless systems [18].

Figure 9 shows that the sending rate of one Reno TCP
source is bursty and oscillating. Figure 10 shows that TFRC
exhibits large fluctuations of the sending rate even though the
available bandwidth on the forward path is piecewise constant.
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Fig. 9. One Reno TCP source sharing a 1-Mbps bottleneck with one
ON-OFF CBR source

Figure 11 reports analogous results obtained using the
ARC algorithm. In this case, ARC provides a piecewise con-
stant sending rate that nicely matches the available bandwidth
left unused by the ON-OFF CBR source.

It is interesting to investigate how fast the input rate
matches the network available bandwidth. For that purpose we
zoom in on Figs. 9, 10, and 11 during the transients, i.e., after
the CBR is turned on and off. In particular, Fig. 12a shows the
dynamic behavior of the sending rates when the CBR source
is turned off and new bandwidth becomes available. ARC and
TFRC are smooth and exhibit similar rise times, which are
equal to 200 RTTs, whereas Reno TCP produces an oscillat-
ing transmission rate. Figure 12b shows the behavior of the

0

50000

100000

150000

200000

250000

300000

0 200 400 600 800 1000

s

T
ra

ns
m

is
si

on
 r

at
e 

(B
yt

es
/s

)

Fig. 10. One TFRC source sharing a 1-Mbps bottleneck with one
ON-OFF CBR source
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Fig. 11. One ARC source sharing a 1-Mbps bottleneck with one ON-
OFF CBR source
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Fig. 12. Transient behaviors of one Reno TCP, one TFRC, and one
ARC sending rates in the presence of (a) sudden increase of the avail-
able bandwidth when the CBR source is turned off and (b) sudden
decrease of the available bandwidth when the CBR source is turned
on

sending rates in response to the sudden reduction of available
bandwidth that happens when the CBR source is turned on.
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Fig. 13. One Reno TCP or one TFRC or one ARC source sharing
a 1-Mbps bottleneck with an ON-OFF CBR source. (a) Goodputs.
(b) Packet loss ratios. (c) Burstiness

Also in this case, the transmission rates ofARC and TFRC take
the same time (40 RTTs) to match the available bandwidth,
whereas Reno TCP exhibits a larger oscillating transmission
rate.

Figure 13 reports the goodput, the packet loss ratio, and the
burstiness of the sending rate. For this scenario the burstiness
has been evaluated over the last 100 s of simulation during
which the available bandwidth is constant in order to discard
the rate variability due to the interacting ON-OFF CBR source.
ARC and TFRC basically achieve similar goodput and packet
loss ratios, which are slightly larger than those obtained by
Reno TCP. Moreover, ARC provides the smallest burstiness
index.

5.1.3 Twenty rate-based or twenty TCP connections
and one ON-OFF CBR source

This section investigates the behavior of 20 Reno TCP or 20
ARC or 20 TFRC flows sharing a 10-Mbps bottleneck (Fig. 4)
in the presence of abrupt changes of the available bandwidth
caused by an ON-OFF CBR source. The ON-OFF CBR source
transmits at 7 Mbps during the ON period, which lasts 200 s,
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Fig. 14. Transmission rates of 20 connections when the CBR source
is suddenly turned off. (a) The 20 connections are ARC. (b) The 20
connections are TFRC. (c) The 20 connections are Reno TCP

and is silent during the OFF period, which also lasts 200 s.
Also, in this case the UDP source provokes 1:3 available band-
width variations such as in the scenario considered in [5].

Figures 14a–c show the transmission rates ofARC, TFRC,
and Reno TCP during the time interval [350 s,450 s], when
there is a sudden increase of the available bandwidth left
unused by the CBR source. They show that both ARC and
TFRC track the available bandwidth within similar rise times,
whereas Reno TCP exhibits a bursty transmission rate. The
main difference between ARC and TFRC is that TFRC rates
are much more spread out than those provided by ARC, i.e.,
ARC is fairer than TFRC in bandwidth sharing.

Figures 15a–c show the transmission rates ofARC, TFRC,
and Reno TCP during the time interval [150 s,250 s], after a
sudden decrease of the available bandwidth. These figures con-
firm that Reno TCP exhibits a bursty behavior, whereas ARC
and TFRC gracefully adapt the transmission rate to the avail-
able bandwidth.
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Fig. 15. Transmission rates of 20 connections when the CBR source
is suddenly turned on. (a) The 20 connections are ARC. (b) The 20
connections are TFRC. (c) The 20 connections are Reno TCP
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Fig. 16. Fairness index of 20 Reno TCP orARC or TFRC connections
sharing a 10-Mbps bottleneck with an ON-OFF CBR source

To provide further insight into the fairness in band-
width allocation provided by Reno TCP, TFRC, and ARC, we

evaluate the Jain fairness index JFI(t) =
(
∑20

i=1 bi(t))2

20 · ∑20
i=1 b2

i (t)
,

where bi(t) is the goodput achieved by the i-
th connection during the time interval [0, t].
Moreover, we define the instantaneous Jain

fairness index IJFI(t) =
(
∑20

i=1 ri(t))2

20 · ∑20
i=1 r2

i (t)
, where ri(t) is the

transmission rate of the i-th connection at time t. The JFI(t)
index evaluates the long-term fairness, whereas the IJFI(t)
index evaluates the short-term fairness. Both indices belong
to the interval [0, 1]. An index equal to 1 indicates maximum
degree of fairness. Figure 16 shows the Jain fairness index
vs. time. During the first 20 s, Reno TCP and TFRC exhibit a
significant degree of unfairness. At the end of the simulation
their fairness indices reach the acceptable value of 0.9. On the
other hand, ARC reaches the maximum value of the Jain index
after 10 s.

Figure 17 shows that the instantaneous fairness indices
provided by ARC vary in the range [0.9,1] whereas those
of TFRC and Reno TCP oscillate in the range [0.7,0.95]. To
summarize these investigations, ARC reaches the steady state
fair bandwidth allocation faster than TFRC and Reno TCP
(Fig. 16) and provides a higher degree of fairness in band-
width sharing on shorter time scales (Fig. 17).

5.1.4 Many rate-based connections sharing a bottleneck

This section investigates the behavior of M ARC or M TFRC
or M Reno TCP connections sharing a 10-Mbps bottleneck,
with M ranging from 20 to 200. We focus on (a) bottleneck
utilization, which is the total goodput of the connections along
the forward path over the bottleneck link capacity; (b) intrapro-
tocol fairness in bandwidth sharing; and (c) packet loss ratio
for various degrees of statistical multiplexing. Moreover, the
impact of the bottleneck buffer size on these indices is also
investigated.

Figure 18 shows that ARC improves fairness in bandwidth
sharing with respect to Reno TCP and TFRC. This is mainly
due to the probing phase of ARC, which does not depend on
the connection RTT such as in the case of Reno TCP and
TFRC. Note that the fairness index of TFRC decreases when
the number of connections sharing the bottleneck is larger than
70. This means that the TFRC fairness degrades in the presence
of high loss ratios. This behavior has also been reported in [35]
and will be confirmed later when we investigate the impact of
the bottleneck buffer size.

Figure 19 reports the total goodput as a function of
the number of connections sharing the 10-Mbps bottleneck.
Again, Fig. 19 shows that both ARC and TFRC slightly im-
prove the goodput with respect to Reno TCP.

Figure 20 shows that ARC, TFRC, and Reno TCP achieve
similar loss ratios that grow with the number of connections
sharing the bottleneck. The reason for this behavior is that
many connections are more aggressive than few when probing
for available bandwidth.

Finally, we have investigated the sensitivity of ARC,
TFRC, and Reno TCP with respect to the bottleneck buffer
size. This investigation is important since TFRC computes the
transmission rate using the packet loss ratio, which is affected
by the buffer size. For that purpose, we have considered 40
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Fig. 17. Instantaneous fairness index of 20 connections sharing a 10-
Mbps bottleneck with an ON-OFF CBR source. (a) The sources are
ARC. (b) The sources are TFRC. (c) The sources are Reno TCP
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long-lived connections sending data over a 10-Mbps bottle-
neck. The buffer size has been varied from 0.1 to 1.5 times the
bandwidth delay product, which is equal to 200 packets.
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Fig. 19. Total goodput as a function of the number of coexisting
connections
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Fig. 20. Packet loss ratio as a function of the number of coexisting
connections

Figure 21 shows the total goodput achieved by the 40 con-
nections as a function of the bottleneck buffer size. Both TFRC
and ARC provide similar goodputs, which do not depend on
the buffer size. On the other hand, Reno TCP achieves the
smallest goodput when the buffer size is smaller that 0.3 times
the bandwidth delay product. The reason is that a small buffer
is not able to absorb packet bursts generated by the TCP Reno
connections.

For buffer size larger than 0.7 times the bandwidth delay
product, the total goodput of Reno TCP gracefully diminishes
due to the larger queueing delay that increases the RTT and
slows down both congestion avoidance and slow-start phases
[17].

Figure 22 shows the packet loss ratio as a function of the
buffer size. TFRC provokes a larger fraction of lost packets
with respect to both Reno and ARC when the buffer size is
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Fig. 21. Total goodput as a function of the buffer size when 40 con-
nections share a 10-Mbps bottleneck
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Fig. 22. Packet loss ratio as a function of the buffer size when 40
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Fig. 23. Fairness index as a function of the buffer size when 40
connections share a 10-Mbps bottleneck

smaller than 0.7 times the bandwidth delay product. Figure 23
shows that TFRC becomes unfair when the buffer capacity is
smaller than 0.7 times the bandwidth delay product. Moreover,
ARC provides the largest fairness index for any buffer size.

To summarize, Figs. 20–22 show that the performance of
the ARC algorithm is less sensitive than Reno TCP and TFRC
with respect to buffer size. In particular, in the presence of
small buffers TFRC exhibits a significative loss ratio and a
small fairness index.

5.1.5 One rate-based and one Reno TCP connection
with one ON-OFF CBR source

So far we have investigated intraprotocol behavior of ARC,
TFRC, and Reno TCP over a single-bottleneck scenario for
various degrees of statistical multiplexing. Now we investi-
gate also interprotocol friendliness of ARC and TFRC toward
Reno TCP, i.e., the interaction between one ARC or one TFRC
source with one Reno TCP source. For that purpose, the single-
bottleneck topology shown in Fig. 4 is considered where the
bottleneck is 1 Mbps. We consider an ON-OFF CBR source
that transmits at 0.7 Mbps during the 200-s ON period and is
silent during the 200-s OFF period.

Figure 24 shows the transmission rates of TFRC and ARC
and the fair share, which is 0.5 Mbps when the UDP is silent
and 0.15 Mbps when the UDP is on. TFRC exhibits many dips
in the transmission rate, whereas the oscillation range of the
ARC rate is smaller.

Figure 25 reports the goodput, the packet loss ratio, and the
burstiness measured in the scenarios considered above. They
show that (i) Reno TCP achieves the same goodput when it
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Fig. 24. One ARC or one TFRC sharing a 1-Mbps bottleneck with
one Reno source and one ON-OFF UDP source
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Fig. 25. One Reno TCP source share a 1-Mbps bottleneck with one
ON-OFF CBR source and one TFRC or one ARC source. (a) Good-
puts. (b) Packet loss ratios. (c) Burstiness

shares the bottleneck with ARC or with TFRC, (ii) the total
goodput, which is the sum of the Reno with the ARC or the
TFRC goodput, is roughly the same for both scenarios, and
(iii) ARC exhibits the lowest burstiness index.
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Fig. 26. N Reno TCP and (60 − N ) ARC or (60 − N ) TFRC long-
lived connections sharing a 10-Mbps bottleneck. (a) Total goodput
of Reno connections. (b) Total goodput of rate-based connections

5.1.6 Many rate-based connections mixed with many Reno
TCP connections (interprotocol friendliness)

To evaluate interprotocol friendliness between ARC and Reno
TCP and between TFRC and Reno TCP, we consider M rate-
based connections and N Reno TCP connections sharing a 10-
Mbps bottleneck, with N + M = 60 and M ranging from 10
to 50. For all mixes, we have measured a bottleneck utilization
larger than 99%. Figure 26a plots the total goodput of the N
Reno TCP connections, which is obtained by summing the
goodputs of the N Reno TCP connections. Also, the curve of
the fair share rate, which is equal to (Bottleneck Capacity ·
N)/60, is depicted. Figure 26a shows that when N Reno TCP
connections share the 10-Mbps bottleneck with (60−N )ARC
connections, they get more bandwidth share than in the case
of sharing the bottleneck with (60 − N ) TFRC connections.
This effect is more evident in the presence of a large number of
Reno TCP connections. The reason whyARC is friendlier than
TFRC toward Reno TCP is that ARC strictly mimics the real-
time dynamics of Reno TCP by using Eq. 1 and settings given
by Eqs. 5 and 6, whereas TFRC mimics only the long-term
behavior of the TCP. Figure 26b reports the goodput achieved
by the (60 − N ) rate-based connections.

5.2 Multihop scenario

To investigate the ARC algorithm in a more complex scenario,
we consider the multihop topology depicted in Fig. 27, which
is a more realistic model of the real Internet. It is charac-
terized by (i) N hops, (ii) one persistent connection C1 go-
ing through all the N hops, and (iii) 2N persistent sources
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Fig. 27. Multihop scenario

C2, C3, C4 . . . C2N+1 of cross traffic transmitting data over
every single hop.

The simulation lasts 1000 s during which the cross traffic
sources always send data. The connection C1 starts data trans-
mission at time t = 10 s when all the network bandwidth has
been grabbed by the cross traffic sources starting at t = 0 s.
The capacity of the entry/exit links is 100 Mbps, that of the
links between the routers is 1 Mbps, and link propagation de-
lays are equal to 10 ms. Queue sizes have been set equal to 12
packets, which correspond to the bandwidth delay product of
a typical RTT of 150 ms. Notice that the described scenario is
a “worst case” scenario for the source C1 since (i) C1 starts
data transmission when all the network bandwidth has been
grabbed by the cross traffic sources and (ii) C1 has the longest
RTT and experiences drops at each router it goes through.

We consider the following three scenarios:

Scenario 1. All traffic sources are controlled by the same con-
trol algorithm. This is a homogeneous scenario aiming at eval-
uating TFRC, ARC, and Reno in absolute terms. Figure 28a
shows that in the presence of homogeneous cross traffic, the
connectionC1 achieves the worst goodput when it is controlled
by TFRC, whereas ARC and Reno achieve similar goodputs.
Reno TCP andARC exhibit similar behaviors because they are
the rate-based and window-based versions of the same sliding
window algorithm (Sects. 3 and 4). On the other hand, the
connection C1 is not able to grab an acceptable share of the
network capacity when it is controlled by TFRC. For instance,
for N ≥ 5, TFRC provides goodputs that are two orders of
magnitude smaller than those provided by TCP or ARC. Fig-
ure 28b reports the average goodputs of the C2, C4 . . . C2N

connections. It shows that the sources of TFRC cross traffic
get almost all the network bandwidth so that the C1 TFRC
source is basically unable to send data when the number of
hops it goes through is larger than 5. This result suggests that
TFRC could lead to starvation of connections traversing many
hops. Figure 28c shows the total goodput computed as good-
put of C1 connection+average goodput of C2, C4 . . . C2N con-
nections. Again, both ARC and TFRC slightly improve the
goodput with respect to Reno TCP; however, TFRC is not
fair.

Scenario 2. The C2, C3, C4 . . . C2N+1 sources of cross traf-
fic are controlled by Reno TCP, whereas the C1 connection
is controlled by TFRC, ARC, or Reno, respectively. This sce-
nario aims at comparing TFRC, ARC, and Reno behaviors
when going through an Internet dominated by Reno traffic. In
other words, this scenario allows us to investigate the ability
of TFRC and ARC to grab the network bandwidth when com-
peting with Reno cross traffic, i.e., the friendliness of Reno
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Fig. 28. Homogeneous N-hop scenario with N varying from 1
to 10. (a) Goodput of C1 connection. (b) Average goodput of
C2, C4 . . . C2N connections. (c) Total goodput

TCP toward ARC and TFRC. Figure 29a depicts the goodput
of the C1 connection when it is controlled by a TFRC, ARC,
or Reno algorithm. It shows that all the considered control
algorithms exhibit similar behaviors, which means that the
Reno TCP cross traffic sources allow the joining C1 connec-
tion to get an acceptable share of the network capacity. When
the number of traversed hops is larger than 5, ARC improves
the goodput with respect to Reno TCP and TFRC. This result
can be explained by noting that the RTT of the C1 connection
increases with N . Therefore, since the goodputs of TFRC or
Reno TCP are inversely proportional to RTT [27], the goodput
of C1 diminishes when TFRC or Reno TCP is employed.

Figures 29b and c show that the average goodput of the
C2, C4 . . . C2N connections and the total goodput are similar
using the three algorithms. This result is due to the fact that
the simulated scenarios differ only in the control algorithm
of C1, which has a negligible impact on the overall network
performance.
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Fig. 29. The C1 connection is controlled by Reno TCP or ARC or
TFRC and goes through multiple congested gateways in the presence
of Reno cross traffic. (a) Goodput of C1 connection. (b) Average
goodput of C2, C4 . . . C2N connections. (c) Total goodput

Scenario 3. The sources of cross traffic C2, C3, C4 . . . C2N+1
are controlled by TFRC, ARC, or Reno, whereas the C1 con-
nection is Reno. This scenario aims at evaluating the behaviors
of Reno when going through an Internet dominated by TFRC,
ARC, or Reno traffic, that is, it aims at investigating the friend-
liness toward Reno of TFRC and ARC cross traffic. In fact, in
the case of a wide deployment of TFRC or ARC or in the case
of a path where TFRC or ARC is heavily used, a joining Reno
TCP flow must get an acceptable share of network capacity.

Figure 30a reports the goodputs of the C1 Reno connection
in this scenario. Reno TCP achieves a very poor goodput in the
presence of TFRC cross traffic, that is, TFRC reveals itself not
to be friendly toward Reno in a multihop scenario. On the other
hand, Reno achieves similar goodput when the cross traffic is
of the ARC or Reno type. To summarize, the latter and the
former cases show not only that a connection controlled by
the ARC algorithm is able to grab its bandwidth share when
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Fig. 30. C1 is Reno TCP, whereas the cross traffic is ARC, TFRC, or
Reno TCP. (a) Goodput of C1 connection. (b) Average goodput of
C2, C4 . . . C2N connections. (c) Total goodput

competing with many Reno sources (Fig. 29a) but also that
ARC-type cross traffic is friendly toward Reno TCP (Fig. 30a).
The average goodputs of the cross traffic sources (Fig. 30b)
and the total goodputs (Fig. 30c) are similar to those observed
in the case of a homogeneous scenario (Fig. 28).

Scenario 4. We consider the N-hop scenario depicted in
Fig. 27, where N = 10, the last hop connecting the Sink1 is
a lossy wireless link, and the C2, C3, C4 . . . C2N+1 cross traf-
fic is Reno. This scenario represents a mixed wired/wireless
topology where a flow goes through many congested gateways
in the presence of concurrent Reno traffic and finally goes
through an unreliable wireless last hop. We assume that inde-
pendent uniformly distributed packet losses affect the wireless
link in both directions. We vary the packet loss probability of
the wireless link from 0.1% to 10%. Figure 31 shows the C1
goodputs obtained using Reno, ARC, and TFRC. In this case,
ARC provides a goodput improvement ranging from 300% up
to 2500% with respect to Reno and from 50% to 1000% with
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Fig. 31. Goodputs of the C1 connection when controlled by ARC,
TFRC, or Reno and going through ten multiple congested gateways
in the presence of Reno cross traffic. The last hop is a lossy wireless
link

respect to TFRC. The reason for such an improvement is that
ARC adaptively reduces the window w by taking into account
an estimate of the available bandwidth (Eq. 2). This mitigates
the impact of random losses not due to congestion. On the
other hand, Reno TCP and TFRC interpret packet losses as
a symptom of congestion and reduce the transmission rate
by following the multiplicative decrease mechanism and the
throughput equation model of Reno, respectively.

6 Conclusions

This paper has proposed an adaptive rate-based congestion
control algorithm for streaming flows over the Internet. The
algorithm has been designed by following a control theoretical
approach. Computer simulations using ns-2 have been devel-
oped to compare ARC with Reno TCP and with TCP-friendly
rate control (TFRC) algorithm. Single- and multibottleneck
scenarios with and without lossy links and in the presence
of homogeneous and heterogeneous traffic sources have been
considered. Simulations have shown that ARC improves fair-
ness and is friendly toward Reno. On the other hand, TFRC
revealed itself not to be friendly toward Reno. The reason why
ARC is friendlier than TFRC toward Reno TCP is that ARC
strictly mimics the real-time dynamics of Reno TCP, whereas
TFRC mimics only the long-term behavior of the TCP. Fi-
nally, simulations have shown that ARC remarkably improves
the goodput with respect to TFRC and Reno in the presence
of wireless lossy links.
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