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SUMMARY

Interference among different wireless hosts is becoming a serious issue due to the growing number of
Wireless LANs based on the popular IEEE 802.11 standard. Thus, an accurate modeling of error paths
at the data link layer is indispensable for evaluating system performance and for tuning and optimizing
protocols at higher layers. Error paths are usually described looking at sequences of consecutive correct
or erroneous frames and at the distributions of their sizes. In recent years, a number of Markov-
based stochastic models have been proposed in order to statistically characterize these distributions.
Nevertheless, when applied to analyze the data traces we collected, they exhibit several flaws.

In this paper, to overcome these model limitations, we propose a new algorithm based on a semi-
Markov process, where each state characterizes a different error pattern. The model has been validated
by using measures from a real environment. Moreover, we have compared our method with other
promising models already available in literature. Numerical results show that our proposal performs
better than the other models in capturing the long-term temporal correlation of real measured traces.
At the same time, it is able to estimate first order statistics with the same accuracy of the other
models, but with a minor computational complexity. Copyright c© 2008 John Wiley & Sons, Ltd.
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1. Introduction

Nowadays, as we can seen in a lot of communication applications, the popularity of 802.11-
based Wireless LANs (WLANs) is growing. As a consequence, the ever increasing interference
level among transmitting systems could impair their overall performance. Together with the
strict requirements of real-time applications (e.g., audio and video streams), this will stress
the capability of the current WLANs.

It is well known that wireless links are much more error prone, than the traditional wired
ones, either with respect to bit and frame error rates. However, the most challenging problem
is that errors occur in a bursty fashion, i.e., there are long periods of correct transmissions
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spaced with short periods during which the communication is strongly affected by bit errors
and, then, by losses/corruption of frames and/or packets. This is mainly due to the fading
mechanism, intersymbol interference, multipath propagation, and interference phenomena [1].

On the other hand, since communication protocols at the higher layer operate on the basic
unit of a frame or a packet, the modeling of error paths at the data link layer is of particular
interest. This also simplifies the study of the effect of errors on the higher layers. However,
the channel coding in a transmission system greatly affects the error distribution properties,
and, at the same time, code performances are limited by error distribution. Therefore, we are
interested not only in the average number of errors, but rather in the whole error distribution
(or at least in the knowledge of some statistical moments) and in its temporal correlation
structure.

The characterization of errors at the frame-level is not a trivial issue and many research
efforts were addressed in this direction in recent years (e.g., [2]-[5]). In fact, the accurate
wireless channel modeling at the link layer is indispensable for evaluating system performance
and for tuning and optimizing communication protocols interaction at higher layers [6]-[8].

As extensively reported in Section 2, even though several approaches are possible to
model wireless channels, in this paper we focus on measurement based stochastic models.
In particular, we consider the important subclass of Markov-based models, due to their ability
to fit various error behaviors and to keep low computational complexity.

Starting from measures collected in a 802.11 WLAN, performance of several Markov-based
models have been analyzed. We considered some promising Markov models for describing
frame-level errors in wireless channels, that is, the Extended ON/OFF model [3], the MTA [6]
and the M3 [9], and the well-known k-order Finite State Markov Chains (FSMCs). We studied
the validity of such models for the considered real data traces, referring, in particular, to their
capability in capturing the long-term autocorrelation structure of frame error traces which
importance has been highlighted in [3].

We found that such models do not perform well in fitting the autocorrelation function of
the error distributions. To overcome this shortcoming, we propose a new scheme, henceforth
referred to as k-state threshold model, which is the generalization of the ON/OFF logarithmic
model [10], already successfully applied to analyze the frame error trace on a GSM wireless
channel. The k-state threshold model is a semi-Markov [11] model, where in each state different
error paths are generated by using different distributions for both error and error-free burst
lengths. Its parameters are estimated from data traces by using the Maximum Likelihood
method [12]. This model was developed with the aim to keep low the computational complexity;
in fact, it requires the estimation of only few distribution parameters.

The rest of the paper is organized as follows. A comprehensive discussion of related works is
reported in Sec. 2. The test bed and the data analysis are described in Sec. 3. In Sec. 4, models
considered for the comparison with our approach are illustrated. Sec. 5 shows our proposal.
Model validation and performance are discussed in Section 6. Finally, in Sec. 7 conclusions
and future work are outlined.

2. Related Works

To analyze wireless channel error, several approaches are possible: there are deterministic and
stochastic models. Theoretically, it is possible to achieve a detailed deterministic description
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of a communication channel at the physical layer by means of, as an example, the ray
tracing techniques [13]. In this case, it requires a large amount of rays, the knowledge of
the electromagnetic behavior of the environment (reflectivity, absorption), and so on. But
such descriptive models are unsuitable to represent channel behavior in computer simulations
when also higher layers are considered, due to the wasteful computational overhead. Moreover,
some of the error sources in wireless communication are intrinsically stochastic (e.g., thermal
noise). Thus, in general, all the relevant error models are stochastic.

Stochastic models consider the analysis of the bit (frame) error trace [3], which is a binary
sequence of 0’s and 1’s: every bit of the trace represents the state of a received bit (frame). In
particular, a bit is 0 if the bit (frame) has been correctly received, otherwise it is 1. An error
burst is defined as a run of consecutive 1’s, as well as an error-free burst is a run of consecutive
0’s. Given that in this paper we are interested in the data-link layer behavior, in the following,
unless stated otherwise, we will refer to frame error traces.

As Markov systems are very well known and have many useful proprieties, they have been
widely applied to describe various channel characteristics. In this large family of models, there
are approaches that try to represent some physical characteristics as well as approaches that
disregard any physical meaning.

Further distinguishing, some Markov-based models relay on some physical channel
description (e.g, Amplitude-based Finite State Markov Chains, AFSMCs) whereas many others
refer to experimental data. In AFSMCs, a finite number of states is used either to represent
the amplitude envelope of the received signal or to characterize SNR variations. They are
employed to generate successive events (fade levels) that, in general, may be correlated. In [14]
and [15], a first-order Markov chain has been considered with the assumption of a Rayleigh
fading channel. Instead, in [16] higher order Markov chains are used to model correlated Rician-
fading channels. In [17], AFSMCs have been found to be appropriate for characterizing the
SNR variations in slow fading channels. In [18], such an approach has been extended also
for modeling frame losses. However, no validation of this model against experimental data
coming from WLANs has been performed. Furthermore, these and other studies have assumed
that the underlying communications channel is not frequency selective (assumption valid only
for narrowband channels), and that fairly simple modulation schemes are being used. These
assumptions are not valid for wideband channels like those ones used by 802.11 devices.

Focusing on Markov models for digital channels, a traditional approach to link-layer error
modeling is the use of Finite State Markov Chains (FSMCs). Since the states are observable,
the great advantage of these models is that we can obtain the state probability vector and
the transition probability matrix by computing directly the frequency of transitions occurring
in the frame-error trace. Moreover, it is possible to derive closed form solutions for most
performance metrics. The simplest FSMCs, referred to as Gilbert [19, 20] and Gilbert-Elliot
models [19] (i.e., two-state discrete time Markov processes), have been used to study the error
behavior in wired links, but they do not produce accurate results in wireless environment [5].
Therefore, the Improved Two-State model was developed [20], but results obtained with this
simple Markov model has been proved to be not suitable to represent even GSM cellular error
traces.

In Hidden Markov Models (HMMs), a proper probability function is built over the state
space embedding the observable stochastic process. Although the use of HMMs improves model
capability to emulate the statistical properties of a real system, it leads to a dramatic increase
of computational complexity, due to the estimation of model parameters using algorithms such
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as the Baum-Welch one [21], [22]. Moreover, in [7] and [23], it has been proved that high order
HMMs are unsuitable even for a WLAN environment. In spite of the increasing complexity,
there is not a consistent improvement of all the performance metrics.

Recently, several new models have been proposed to overcome these limitations. The GAP
model [19] adopts a time-inhomogeneous Markov chain to fit distributions of error and error-
free burst lengths. The Bipartite model [24], instead, gives better approximation of the packet
error correlation over longer timescales than other models, but such an algorithm is quite
complex because it requires the estimation of a huge number of parameters. Another interesting
approach is the one that used Chaotic Map models [25]; they are particularly suitable for
matching error/error-free burst distributions with extremely long-tails. For this reason, they
have been exploited only to study errors at bit level rather than at frame level when error
traces do not show such a long tail behavior.

Finally, in the data preconditioning framework for GSM wireless systems [6, 9], two new
models, referred to as Markov-based Trace Analysis (MTA) [6] and M3 model [9], have been
proposed. Recently the ability of such models in capturing some important second order trace
statistics has been brought into question in [3], where authors propose the Extended ON/OFF
model to explicitly address this issue.

Since the latter two approaches seem to be the most promising ones and have been already
fruitfully applied in modeling wireless links, they are considered for the comparison with our
new proposal. Thus, further details about both these approaches are given in Sec. 4.

Note that the Bipartite model is complex and requires the estimation of a very huge number
of parameters (even hundreds) to achieve an acceptable level of accuracy. For this reason,
such a model is not considered in our comparison section. Moreover, also the comparison with
Chaotic Map is not reported because it has been conceived for modeling errors at bit level, but
we are interested in errors at frame level, and because in this paper our attention is devoted to
Markovian models. However, as discussed in the conclusions, in future work we will consider
a comparison of our scheme with Chaotic Maps applied to error traces at frame level.

3. Data Collection and Analysis

Wireless LANs are generally plug-and-play in nature and are being purchased not just
by network administrators, but also by families to share internet broadband access, by
shop owners, and so on. As a consequence, unlike cellular systems where base-stations
are strategically placed, WLAN Access Points (APs) are deployed blindly. This causes, in
complex WLAN environment, that coverage areas of different APs overlap, generating mutual
interference; i.e., we can have in the same area more WLANs using the same (or close)
frequencies with high interference.

In order to get an insight into the frame error process for such a scenario, we settled down,
in a typical indoor environment, the test bed shown in Fig. 1. The idea was to realize sniffing
session of controlled transmissions from a Traffic Generator (TG) software, in presence of
induced radio interference on the transmission channel. Two different WLAN are realized with
two different APs; the laptop computers are equipped with a wireless network interface card.

The laptop computer associated to AP 1 and the workstation in Fig. 1 realize the useful
communication, from which the frame traces are obtained by using another laptop computer
with a wireless traffic sniffer.
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Figure 1. Experimental scenario for obtaining measurements.

A workstation acting as a FTP server and a laptop computer acting as client (equipped
with a wireless network interface card and associated to the AP 2) realize the interference
transmission. We considered an FTP traffic because as it tries to use the maximum available
bandwidth, it maximizes the interference level in the considered area.

While collecting frame error traces, we have considered different measurement scenarios. A
different traffic flow for the useful transmission and a different radio channel for the interference
transmission have been exploited. In particular, we have generated a G-729A coded [26] voice
stream (henceforth referred to as VoIP traffic) and an UDP traffic with constant size datagrams
(512 bytes) at three Constant Bit Rates: 128, 256, and 512 kbps. For what concerns the radio
channels for the interference transmission, we used channels 1, 2, and 3 (i.e., according to
802.11 standard [27], the radio channels with a bandwidth of 22 MHz and carriers at 2.412
GHz, 2.417 GHz, and 2.422 GHz, respectively). The useful transmission is always realized on
the radio channel 6 (i.e., with carrier at 2.437 GHz).

We highlight that changing the interference channel we consider different WLAN scenarios.
In fact, when the interference is on channel 1, the scenario is realistic and it corresponds to
a well planned WLAN with a proper frequency reuse, that is with a gap of five frequencies
between adjacent channels (e.g., channels 1-6-11). Instead, when the interference is on channel
2 or 3, we are considering in any case a realistic scenario with several WLANs sharing the
same area without coordination. Such a scenario is getting more and more realistic in an
urban environment.

Using the described measurement test bed, ten frame-error traces were collected for each
traffic flow and interference channel, obtaining overall 120 different traces, each one 4 minutes
long.

3.1. Analysis and Characterization of Frame Error Traces

Let Zi be the sequence of random variables corresponding to the frame error trace, i.e., Zi = 1
in presence of an error frame, Zi = 0 otherwise. Let XR and XF be the random variables of
the lengths of error and error-free bursts, respectively. Let xR, xF , and σXR , σXF , be their
means and standard deviations, respectively. To characterize the collected frame error traces
we consider:

• the Frame Error Rate (FER):

FER = Z = xR/(xR + xF ) ; (1)
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• the Complementary Cumulative Distribution Functions (CCDFs) of XR and XF :

Ψ(xR) = P (XR > xR), Φ(xF ) = P (XF > xF ); (2)

• the mean length, the standard deviation, and the coefficient of variation (i.e., the ratio
between standard deviation and mean) of Error and Error-free bursts;

• the autocorrelation coefficient calculated by the well known estimator [12]:

ρZ(h) =

(
1

n− h

n−h∑

i=1

(Zi+h − Z)(Zi − Z)

)/(
1
n

n∑

i=1

(Zi − Z)2
)

, (3)

where n is the number of samples and h is the lag expressed in frames.

Considering the correlation coefficient as metric is important because a key point of this
work is the analysis of the correlation structure of error and error-free bursts. In fact, as
already mentioned and as stated in other papers (e.g.,[3, 10]), it is important to capture how
error and error-free bursts succeed one to each other in the time.

In Fig. 2, measured mean FERs for each interference scenario and traffic flow are reported.
Results are not surprising: the mean FER increases with the interference level. There is the
same trend as the transmission rate of traffic flows increases. In particular, we can see that
channel separation has more influence on FER than flow data rate.
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 Figure 2. Mean FER in different interference and transmission conditions.

From Fig. 3, it can be noticed that the mean length of error bursts rises with the interference
level and the transmission rate. On the other hand, the mean length of the error-free burst (i.e.,
the duration of error-free transmissions) becomes shorter as the interference level becomes non
negligible (see Fig. 4). Nevertheless, the mean error-free burst length shows great variation, as
the transmission rate varies, only when the interference level is negligible (i.e., interference on
channel 1), but the same does not happen in presence of higher interference levels.

Figs. 5 and 6 show the mean value of the Coefficient of Variation (CoV), for the length
of error and error-free bursts, as a function of the interference channel and the transmission
rate. The CoV for error burst length is always smaller than 1 (i.e., the CoV of an exponential
distribution), whereas the CoV for length of error-free bursts is always greater than 1 and
sometimes close to 2, which means that there is a great error-free burst length variability.

Such a variability justifies the need for an analysis of second order statistics. To this aim,
as already highlighted in [3], it is important to consider the measure of the autocorrelation
coefficient. The analysis of the autocorrelation for measured data points out some important
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Figure 3. Mean length of Error burst.
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Figure 4. Mean length of Error-free burst.
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Figure 5. Mean variation coefficient of
error burst length.
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Figure 6. Mean variation coefficient of
error-free burst length.

peculiarities concerning randomness of errors in frame traces. As an example, in Fig. 7 the
autocorrelation coefficients of three VoIP transmissions (obtained under changing interference
conditions) and the confidence bound at the significance level† α = 0.01 (shown as dashed line)
have been depicted. This allows us to assess the time scale over which temporal correlation
assumes values significantly different from zero. The use of confidence bound is important
because we cannot arbitrarily establish when correlation is small, but we can state that
correlation is negligible if it is under the confidence bound.

From Fig.7, it is evident that an increase of interference leads to a higher correlation
level. Specifically, for traces collected when the interfering signal was on channel 1, the
autocorrelation decays to zero into ten frames. On the other hand, when interference was
on channels 2 and 3, samples are significantly correlated over longer time scale (i.e., in the
range of 102 ÷ 103 frames). A similar behavior has been noticed for transmissions obtained in
the same interference conditions, but changing the source transmission rate (i.e., from 128 kbps
to 512 kbps). In these cases, the correlation rises as the transmission rate increases; moreover,
the time scale over which dependence decays to zero tends to increase. This behavior could

†For details about calculations of confidence bounds, see [28].
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be easily explained considering that, increasing the transmission rate, neighboring samples are
affected by similar fading conditions, so that the erroneousness or the correctness of received
frames are closely correlated.

10
0

10
1

10
2

10
3

10
-2

10
-1

10
0

Lag [Frame]

A
u

to
co

rr
el

at
io

n
 C

o
ef

fic
ie

nt
  ρ

Z
(h

) 0.99% Confidence bound
Channel 1
Channel 2
Channel 3

 

Figure 7. Autocorrelation coefficient of VoIP transmissions in presence of
different interference conditions.

This analysis of frame error traces confirms that indoor wireless channels cannot be easily
characterized. Therefore, our measurements can be useful in developing more accurate models.
Finally, the analysis points out the needing of models which accurately capture not only the
FER of traces and the error/error-free burst distributions, but also the long term temporal
autocorrelation structure of the error paths. In fact, as both higher speed traffic sources and
higher interference level are expected for WLANs, the long term temporal correlation structure
of error paths will be further stressed.

4. Markov Models for Frame Loss Process

As known, some recent papers proposed and evaluated models for frame-level errors [3, 9] (in
particular, in GSM channels). Herein, we want to assess their performance in modeling the
collected 802.11 error traces. In this section the k-th-order FSMC models, the two models
based on the data preconditioning technique [9], referred to as the MTA and the M 3 models,
and the Extended On/Off Model [3] have been reviewed. In particular, we show how to apply
such models to fit our measured error traces.

4.1. K-th-order FSMC models

We start by reviewing the well known k-th-order FSMC models, already fruitfully exploited
in characterizing packet losses in wired links. These models are also the starting point for the
data preconditioning techniques.

Let {Sn, On}∞n=1 be a stochastic process, where {Sn} is the sequence of states associated
with a k-th order finite state discrete time Markov chain, with transition probability matrix
A = [aij ] and asymptotic probability state vector Π = [πj ]; {On} is the sequence of outputs
generated by the Markov chain.

In our context, the state space is S = {0, 1}k and the generic state Sn is a chunk of k
elements taken from the frame error trace; that is, there are 2k possible states and we can find
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the sequence Sn = (s1,n, s2,n, . . . sk,n), with each si,n ∈ {0, 1}, in the frame error trace. Each
output On represents the k-th element of the sequence Sn in the error trace and, therefore,
can assume only the following values: 0 or 1.

Let P [On = 1|Sn] = bi and P [On = 0|Sn] = (1 − bi) be the probabilities that the output
of the Markov process is 1 or 0, respectively, when in the state Sn. Obviously, it follows that
bi = sk,n, i.e., we have the output On equal to 1 with probability 1, if the last frame of the
sequence Sn in the error trace is 1, otherwise the output On = 1 occurs with probability 0.

Considering the two states Sn = (s1,n, s2,n, . . . sk,n) and Sm = (s1,m, s2,m, . . . sk,m) of the
k-th-order Markov chain, the transition from Sn to Sm may occurs only if si,m = si+1,n, for
each i = 1, . . . , k − 1. Thus, it is possible to derive the transition matrix A from a given error
trace simply counting the number of transitions from sequence Sn to Sm. In the same way, the
state probability vector Π is obtained counting how frequently each sequence appears in the
trace. Obviously, the computational complexity of such a procedure increases with the order
k of the Markov model, which also defines the memory length of the FMSC.

In [8], the choice of k is based on the autocorrelation analysis; whereas in [29], it is based
on the concept of conditional entropy. Other approaches based on entropy have been already
fruitfully exploited in [4] and [18].

Herein, considering [29], we propose the following technique that, in our opinion, gives a
more objective methodology. Let [z1, z2, . . . , zn] be a sequence taken from the frame error
trace; we can consider it as a realization of the stochastic process related to the set of random
variables Z1, Z2, . . . , Zn. From a source-coding perspective, the joint entropy H(Z1, Z2, . . . , Zn)
provides the measure of the minimum number of bits necessary to uniquely represent all the
possible outcomes of the sequence. Moreover, if the random variable W represents the next
element of the trace, the conditional entropy of order n, H(W |Z1, Z2, . . . , Zn), is an indication
of the randomness of the next element in the trace, given n steps of the past history. From
the information theory, it is known that H(W |Z1, Z2, . . . , Zn) is decreasing with n. Thus,
a measure of the goodness of trace approximation by a k-th-order Markov model, could be
expressed by:

min
k

(
H(W |Z1, Z2, . . . , Zk)

H(Z1, Z2, . . . , Zk)
< ε

)
(4)

where ε is a suitable value smaller than 1.
That is, the best choice for k is obtained considering the minimum value which ensures a

ratio between conditional and joint entropy below a given threshold ε, i.e., when the amount of
further information carried by the (k+1)-th element, given k past elements, becomes negligible.
Obviously, lower values for ε results in higher values for k. Considering our measured traces,
we found that ε = 0.2 is a suitable choice for maintaining reasonably low the order k of the
Markov models; in particular, with this choice we obtained for k values in the range 4 ÷ 5,
(i.e., models with 16÷ 32 states).

4.2. Data preconditioning models

In [9], the authors propose a technique which consists of analysis and preconditioning of data
before they are fed into traditional Markov models. Using pattern recognition, datasets are
divided in subtraces which experience stationarity behavior. Each frame-error trace is divided
into lossy and lossy-free periods. The lossy periods are concatenated to form the lossy subtraces,
while the error-free periods are concatenated to form the error-free subtraces.
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Therefore, the MTA (Markov-based Trace Analysis) algorithm proceeds identifying two
states, one for each subtrace, and modeling the lengths of lossy and lossy-free frame sequences
by two geometric distributions. Finally, the lossy subtrace is modeled by using a k-th-order
FSMC (as shown above in Sec. 4.1), as well as the error-free state is modeled by a process
which always outputs 0.

Unlike the MTA, the M3 (Modified hidden Markov Model) algorithm is capable of modeling
traces with non-exponential state length distributions. Similarly to a HMM, the M3 considers
each data subset as coming out from a hidden state. It models not only states, but also
transitions among states, with high order FSMCs. That is, using the M3 algorithm for our
goal, we model the lossy subtrace by a FSMC of order klt (again with the technique described in
Sec. 4.1), the lossy-free subtrace by a process which always outputs 0, and transitions between
an error-free subtrace and a lossy subtrace by another FSMC of order khs, which states are
referred to as hidden states.

4.3. The Extended ON/OFF model

In [13], Ji et alt. show that a GSM frame-level error process can be described by a discrete time
two states (ON/OFF) semi-Markov model with the holding time of each state characterized
by a mixture of geometric distributions.

The procedure provides a scheme for obtaining the parameters of geometric distributions
and their relative weights in the mixture, by fitting the CCDFs of error and error-free burst
lengths. Nevertheless, to improve model performance, the Expectation Maximization (EM)
procedures is applied following the Baum-Welch algorithm [21]. The drawback is that this
iterative optimization technique heavily increases the computational cost of the Extended
ON/OFF model, as it involves a number of computations (for each iteration step) in the
order of O(k2N) [21], where k is the total number of geometric distributions and N is the
training sequence length (that is, the frame error trace length). Since the Extended ON/OFF
method supplies a starting guess point for the EM optimization procedure, either the number
of iterations and the computational cost cannot be easily foreseen. Thus, the computational
cost of the Extended ON/OFF model may dramatically grow with the number of model states
or the training sequence length.

We have applied such a model to describe the collected 802.11 error traces. In order to make
a comparison with the other models and to keep low computational costs, we have chosen a
suitable number of geometric distributions for each state. In particular, for modeling the OFF
state always one geometric distribution has been used, whereas for the ON state a mixture
of two or three geometric distributions have been used. These choices are motivated by the
discussion about error and error-free burst length distributions that we have reported in Sec.
3. In fact, as the error burst lengths show small values for mean and variance, one geometric
phase is a suitable choice for the OFF state; whereas, to model error-free burst lengths, which
show greater variance, more geometric phases are needed.

5. The k-state Threshold Model

A comprehensive performance comparison of the models described above will be reported in
Sec. 6. It will be shown that such models are not satisfactory in capturing the long-term
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autocorrelation structure of 802.11 frame error traces. This task is not trivial and it is the goal
of our model which will be described in this section. It is referred to as k-state threshold model
(k-TM).

Note that it is not simple to capture second order statistics of frame error traces, whereas it
is possible to estimate first order statistics (e.g., FER and CCDF) with good accuracy using
simple models. As an example, we can consider a simple two-state (ON/OFF) semi-Markov
model for analyzing our data. An error burst is generated when the system is in the OFF
state, whereas an error-free burst is generated when in the ON state. Let XR and XF be
the two random variables representing error and error-free burst lengths, respectively. We can
estimate their CCDFs, Φ(XR) and Ψ(XF ), (i.e., the empirical stepwise distribution functions
for error and error-free burst lengths) directly from the frame traces (see eq. 2). Now, using
Φ(XR) and Ψ(XF ), we can generate a synthetic trace with the same first order statistics of
the data. Nevertheless, comparing the autocorrelation coefficient of such a synthetic trace with
the one of the data trace (see Fig. 8), results are very different. This show that the simple
ON/OFF model is not able to preserve the temporal structure of the trace: that is, how error
and error-free bursts follow one another.
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 Figure 8. Comparison of the autocorrelation obtained by measured data and
by considering a simple ON/OFF model.

As intuition suggests, when long error-free burst occurs (i.e., the quality of the received
signal is quite good), it is likely that error frames occur either sporadically or in very short
bursts. On the other hand, when the transmission channel conditions get worst, error-free
bursts will be shorter and error frames will occur often and clustered in longer bursts. To
capture such a temporal structure, we propose our new k-TM scheme based on a semi-Markov
chain with k states (k > 1) as defined below. Since, the analysis of the error-free burst length
in Sec. 3 pointed out the great variability of such a value (i.e., it ranges from one frame up
to thousands of frames), our idea was to characterize model states with respect to the size of
error-free bursts.

Let T (k) be a set of k − 1 thresholds ϑi in the range of the error-free burst lengths:

T (k) = {ϑi | 1 ≤ ϑi ≤ MEF ; ϑi < ϑj , i < j; 1 ≤ i, j ≤ k − 1}; (5)

where MEF is the maximum value for the lengths of error-free bursts.
Let Ω = {Fn, Rn}∞n=1 be the ordered sequence of error-free bursts, Fn, and error bursts, Rn,

as they appear in the data trace.
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Given the k−1 thresholds, we are in the state Si if we observe in the data trace error bursts
{Rn} and error-free bursts {Fn} that satisfy the following conditions:

Fn ∈ Si if





xFn ≤ ϑ1, i = 1;
ϑi−1 < xFn ≤ ϑi, 1 < i ≤ k − 1;
xFn

> ϑk−1, i = k

Rn ∈ Si if Fn−1 ∈ Sj , j ≥ i; (6)

with xFn
and xRn

lengths of the burst Fn and Rn in state Si, respectively; Fn−1 is the error-free
burst which immediately precedes the error burst Rn.

In other words, an error-free burst belongs to the state 1 if its length is less than ϑ1, or to
the state i if its length is in the range (ϑi− 1;ϑi], or to the state k if its length is greater than
ϑk−1. On the other hand, an error burst belongs to a generic state i if it follows an error-free
burst either of the same state i, or of a state j but with j ≥ i.

Hence, when an error-free burst occurs in state Si, the model is in the ON phase of Si.
Similarly, when an error burst occurs in state Si, the model is in the OFF phase of Si. The
above equations state that (see Fig. 9): from an ON phase Si, system can switch only in the
OFF phase of the same state or of a previous state; from an OFF phase in Si, system can
switch only in the ON phase of the same state or of a successive state.

 

ON OFFONON OFFOFF ON OFFONON OFFOFF ON OFFONON OFFOFF ON OFFONON OFFOFF………

State iState 2 State 3 State kState 1 …. ….

Figure 9. State diagram of k-TM model.

In the model, Ψi (xR) and Φi (xF ) are the CCDFs of the lengths of error and error-free
bursts in Si, respectively.

The sojourn time in Si (i.e., the sum of the time spent in both the ON and OFF phases of
state i) is characterized by the CCDF Υi(ni

b) of the discrete random variable N i
b which counts

how many error and error-free bursts occur when in the given state.
Transitions among states are governed by and by the k × k transition probability matrix

P, which each element pij = p(Si|Sj) is the probability to transit from Si to Sj . Note that
pii = p(Si|Si) = 0 because, once the sojourn time in Si expires, the system must jump to
another state.

Moreover, the state probability vector Π = {π1, . . . , πk} defines the occurrence probabilities
of each state.

5.1. Estimation of model parameters from data traces

The threshold model defines a general framework, since the distribution functions have to be
characterized in order to fit real data. In the following, we will show how to apply the proposed
approach to our measured data set, choosing the appropriate fitting distributions for Φi(xF ),
Ψi(xR), and Υi(ni

b) for each i. Moreover, we describe how to estimate P and Π.
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To keep low the model complexity and to make a fair comparison with the other Markov
models presented in this paper, we will consider only the simplest case of k = 2, i.e., only one
threshold. Also with this assumption, we will show that our model works well. However, the
effectiveness of the k-TM scheme can be further improved considering more states.

For sake of simplicity, we will refer to the two states of the model, S1 and S2, as Above
threshold and Below threshold states. Accordingly to model definition, in both the two states,
when the model is in the ON phase an error-free burst is generated, otherwise in the OFF
phase an error burst is generated.

Since the threshold model has been conceived with the aim of capturing the temporal
autocorrelation of frame error traces, the set T (k)k is chosen in order to minimize the mismatch
between data and model autocorrelation. When in the presence of only one threshold, the data
trace is split in two sub-traces by using Eq. (6). In Fig. 10 an example of the application of
the aforesaid procedure in the case of threshold ϑ1 = 5 is illustrated.

 

Fi Fi+1Ri Fi+2 Ri+2Ri+1 Fi+3 Fi+4 Ri+4 Fi+5 Ri+5 Fi+6Ri+3

ϑϑϑϑ1 = 5

Below threshold Above threshold Below threshold

......

...

Figure 10. Time diagram for the threshold model with two states.

It is worth noticing that system always reaches/leaves the above threshold state in the
ON phase (i.e., the first state starts and finishes with an error-free burst), whereas it always
reaches/leaves the below threshold state in the OFF phase (i.e., the second state starts and
finishes with an error burst).

Once T (k) has been set (i.e., the threshold ϑ has been selected), each element pij of the
probability transition matrix P can been obtained by simply counting the number of transitions
from the state Si to the state Sj , divided by the number of occurrences of the state Si in the
data trace. In the same way, the elements πi of the state vector Π are obtained by counting
the relative number of the occurrences of Si in the data trace.

Now, considering measured data we can estimate Φi(xF ), Ψi(xR), and Υi(ni
b) (in our

simplified case i = 1, 2). But for the model we need to establish their best fitting distributions.
From the analysis of the error-free length distributions in Sec. 3, we highlighted the great

variability of the mean, variance, and maximum of burst length. To take in account this
behavior, we found that the best choice for fitting error-free burst length was a weighted sum
of one logarithmic and one geometric probability mass functions (pmfs). The expression of the
considered pmf, for a discrete random variable X, is:

pX(n) = P (X = n) = αk
cx

x
+ (1− α)px−1(1− p), n ∈ N+; 0 < (c, p) < 1; (7)

where k = −1/ ln(1− c) and α < 1 is the mixture weight.
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The logarithmic pmf has been chosen because it shows a pronounced long-tail behavior, like
the burst length distribution of several data sets (i.e., it is well suited for fitting their tails).
Note that, as more the parameter c gets close to 0, more the logarithmic distribution shape
gets tight and sharp around its mean value. On the contrary, when c gets close to 1, the pmf
becomes flatter and shows a much marked long-tail behavior.

At the same time, with the geometric pmf we take into account the behavior of error-free
burst distribution for values closer to the origin, since it has a more pronounced decay slope.

By choosing an appropriate value for α, we can consider cases of distribution tails more or
less pronounced. From Fig. 11, it can be noticed that the considered distribution mix provides
a very good fitting for error-free burst lengths in several scenarios (i.e., mean and max values
which differs even of one order).
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Figure 11. CCDFs of the error-free burst length for traffic flows at 128 kbps

and 256 kbps (interference on ch. 1).

Since values of error burst length distributions show a very lower variability (i.e, in the range
from 3 up to about 15 frames), it is sufficient to use one logarithmic distribution to obtain a
good fitting for both the functions Ψ1(xR) and Ψ2(xR).

For what concerns the best fitting distributions for Nb1 and Nb2, the main difficulty is that
such distributions change as the threshold ϑ1 changes. After some analysis on our data set, we
found that the best pmf to account for this behavior and to fit both Υ1(n1

b) and Υ2(n2
b) was a

discretized version of the Inverse Gaussian distribution, also known as Wald distribution [30],
which pmf is:

pX(n) = P (xn−1 < X ≤ xn) =
∫ xn

xn−1

√
λ

2πτ3
eλ(τ−µ)2/(2τµ2)dτ, n ∈ N+, µ > 0, λ > 0

(8)
where µ is the mean and λ is the scaling parameter.

We point out that the distributions selected above are effective for the considered measured
data set. In fact, changing data sets requires a new characterization of distributions, but the
general k-TM framework remains still valid.

5.2. The Maximum Likelihood Estimators

To estimate the unknown parameters of the considered distributions, we used a general
parameter estimation technique: the Maximum Likelihood Method (MLM). It is well know
that the ML estimators are efficient for large samples and they are asymptotically normal,
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unbiased, and with minimum variance [12]. The technique works considering the joint density
function of n observation xi, from the random variable X, as dependent from the vector of
unknown parameters θ. Hence, the estimation problem it is reduced to the maximization of
the so called Log-likelihood function (see [12] for the details). Applying the MLM to (8), we
obtain the following closed form expression:

µ̂ = x̄, 1/λ̂ =
1
n

(
n∑

i=1

x−1
i − µ̂−1

)
; (9)

where n is the sample size, x is the sample mean, µ̂ and λ̂ are the ML parameter estimates of
the Wald distribution.

For both the logarithmic distributions, which fit the error burst length distributions in the
two states, we obtain:

xi =
ĉi

−(1− ĉi) ln(1− ĉi)
, i ∈ [1, 2]; (10)

where xi is the mean value of the error burst length and ĉi is the ML estimation of the
logarithmic parameter. Eq. (10) can be easily solved with any numerical method.

Finally, applying the MLM to the logarithmic-geometric mix in Eq.(7), we obtain a non-
linear system of three equations (each one from the partial derivative with respect to c, α
and p) that can be solved by using numerical tools such as those implementing the Reflective
Newton Methods [31].

6. Numerical Results

The performance of an error model can be valuated by means of two different procedures. In the
first one, statistics are calculated directly from the model by means of analytic expressions.
In the second one, artificial error traces are generated using the models and the statistics
are evaluated from these synthetic traces. In this paper, we follow the latter procedure since
analytical expressions cannot be easily obtained for all the considered models.

6.1. Trace generation from models

To obtain synthetic traces using the considered models, we follow a three step procedure: (i)
define the order of each model, (ii) establish the trace lengths, (iii) generate the artificial traces.

It is important to note that we are considering Markovian models. Thus, the order is directly
related to the computational complexity of the model as discussed in previous papers [6, 7, 14].
Therefore, the results reported below about the order of the considered models can be seen as
an indirect measure of their computational complexity.

To assess the order of each model, all the measured data traces have been considered. In
particular, for the models based on Markov chains (i.e., the k-th order FSMC, the MTA, and
the M3) the condition in eq. (4) has been used; for the Extended ON/OFF model, the number
of phases has been chosen to better fit error and error-free burst CCDFs as in [3]; finally, for
the threshold model, two states (i.e., four phases) have been always used.

Tab.I summarizes results for the considered models in all the transmission conditions and
interference scenarios. In particular, each value represents the average of the model orders
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obtained applying the considered model to all the data traces. For this reason, some values
are not integer as expected.

Table I. Average order of the considered models.

Type Interfering k-th M3 Extended 2-state
of Channel order MTA M3 ON/OFF threshold

Flow FMSC lossy hidden ON OFF # states
state state phases phases (# phases)

Ch. 1 5 1.90 1.90 2.50 1 2.75 2 (4)
128 kbps Ch. 2 5 3.70 3.70 4.00 1 2.30 2 (4)

Ch. 3 5 4.20 4.20 4.00 1 2.40 2 (4)
Ch. 1 5 2.20 2.20 3.70 1 2.70 2 (4)

256 kbps Ch. 2 5 3.90 3.90 4.00 1 2.10 2 (4)
Ch. 3 5 4.50 4.50 3.90 1 2.90 2 (4)
Ch. 1 5 2.50 2.50 4.00 1 2.80 2 (4)

512 kbps Ch. 2 5 4.20 4.20 4.00 1 2.10 2 (4)
Ch. 3 5 4.70 4.70 3.80 1 3.00 2 (4)
Ch. 1 5 2.50 2.50 3.60 1 2.70 2 (4)

VoIP Ch. 2 5 3.50 3.50 4.00 1 2.50 2 (4)
Ch. 3 5 5.00 5.00 4.00 1 3.00 2 (4)

It is interesting to notice that for the k-th order FSMC models the chain order is always
equal to 5 regardless to the interference level and to the sources transmission rate. Whereas,
in both the cases of M3 and MTA models, the order of the FSMCs, which they are based on,
increases with the interference level as well as with the transmission rate. Furthermore, the
average order of the FSMCs in the MTA model is less or equal to 5, that means it is cheaper
than the simpler 5-th order FSMC model. Nevertheless, in the M3 algorithm the use of FSMCs
for modeling transitions among hidden states quite double the overall model order. Finally,
only a smooth variation with both transmission rate and interference level can be noticed for
the number of OFF phases in the Extended ON/OFF model. It is important to stress that,
for a Markov model, the order is directly related to its computational complexity. Thus, the
complexity of the proposed new k-TM model can be kept low considering a few number of
states; numerical results will show that this does not reduce effectiveness of our approach.

The second step in synthetic trace generation is the choice of trace lengths. A good tradeoff
between time spent and reliability of results is to run the simulation for about 20 times the
experimental data set length. In this manner, synthetic traces of about half million of frames
have been obtained for each data set using all the considered models.

Traces generation for M3 and MTA models proceeds following the algorithm shown in
[9]. Besides, for both the k-th order FSMC and the Extended ON/OFF model, after having
randomly chosen the initial state accordingly to the asymptotic probability state vector, the
next chain states have been found following the transition probability matrix.

Finally, fixed the number N of synthetic trace frames and the threshold value, the Algorithm
1 (see below) has been used for the 2-state threshold model. Note that to generate the lengths
ta, tb, xF , and xR, we used the inverse transformation method [12].
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Set State using probability vector Π; while Number of synthetic frames generated ≤ N do
if in the Above threshold state then

Set Above threshold subtrace length, LA = 0; xR = xF = 0;
Generate ta (sojourn time expressed in frames) using the inverse CDF of r.v. N1

b ;

while LA < ta do
Generate an error-free burst of xF frames, using the inverse CDF of r.v. XF ;
LA = LA + xF + xR;
if LA < ta then

Generate an error burst of xR frames, using the inverse CDF of r.v. XR;
end

end
Set State = “Below threshold”

else if in the Below threshold state then
Set Below threshold subtrace length, LB = 0; xR = xF = 0;
Generate tb (sojourn time expressed in frames) using the inverse CDF of N2

b ;

while LB < tb do
Generate an error burst of xR frames, using the inverse CDF of XR;
LB = LB + xR + xF ;
if LB < tb then

Generate an error-free burst of xF frames, using the inverse CDF of XF ;
end

end
Set State = “Above threshold”

end
Link together the two subsequences;

end

Algorithm 1: Pseudo-code for generation of k-TM trace frame, with k = 2.

6.2. Performance metrics

Some metrics have been introduced in order to assess performance of the considered models
with reference to first and second order error statistics defined by eqs. (1)-(3). We consider:

• The FER estimation relative error:

REfer = |FERt − FERm|/FERt (11)

where FERt and FERm are the frame error rates estimated from measured data traces
and synthetic traces, respectively.

• The mean CCDF estimation relative error (for both error and error-free burst):

REccdf =
1
nc

nc∑

i=1

|F (c)
t (i)− F (c)

m (i)|/F
(c)
t (i), (12)

where F
(c)
t (·) and F

(c)
m (.) are the burst CCDFs estimated from measured data traces and

synthetic traces, respectively; and nc is the number of percentiles in the data trace.
• The mean autocorrelation coefficient relative error:

REρ =
1
nρ

nρ∑

i=1

|ρt(i)− ρm(i)|/ρt(i), (13)

where ρt(h) and ρm(i) are the autocorrelation coefficients estimated from measured data
traces and synthetic traces, respectively; nρ is the minimum between hmax and 1000; and
hmax = max{h|ρt(h) > cb} with cb equal to the confidence bound for the autocorrelation
at the significance level α = 0.01.
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The upper bound nρ in the sum (13) is chosen in order to assess autocorrelation fitting
performance at most up to 1000 lags, but in any case not above the limit given by the confidence
bound. The threshold value, ϑ1, in the 2-state threshold model has been chosen in order to
minimize autocorrelation coefficient relative error given by eq. (13), that is, to improve the
model capability to fit the trace autocorrelation structure.

Fig. 12 reports the mean FER estimation relative error for the five compared models, using
eq. (11). Results refer to all the interference scenarios and transmission rates. It can be noticed
that only the MTA model shows bad performance in capturing traces FER, especially for
transmissions in better interference conditions (i.e., when interference is on channel 1), where
REfer is about 16%. The other models, instead, show very good agreement with trace FERs;
indeed, REfer is always in the range = 2% ÷ 3%. In particular, for the k-TM model, REfer

is always less then 2%. Moreover, the FER estimation relative error does not depend on the
transmission rate and on the interference level. This proves the model capability in capturing
the FER in different operational conditions.
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Figure 12. Mean FER estimation relative error, by means of models and traces.

Concerning fitting performance for error-free burst, results obtained by eq. (12) have been
reported in Fig. 13. It is worth noticing that all the models, for the same source transmission
rate, get worst in fitting the long tail distributions when in the presence of interference on
channel 1. Furthermore, for the 2-state threshold model, REccdf is always about 3% (and
often about 1%); that is, it provides better performance. For the M3 it can be noticed that
its increased complexity is not always consistent with performance enhancements either in
comparison with the 5-th order FSMC and the MTA model. Finally, despite the Extended
ON/OFF model uses up to 3 or 4 phases to fit length distributions of error-free bursts, it
does not achieve the same performance of the 2-state threshold model which uses only a mix
of one geometric and one logarithmic distribution. In particular, this is true for interfering
transmission on channel 1 (see Fig. 13).

From Fig. 14, which reports the values of REccdf for the error burst length, it can be
noticed that all the models show a very good behavior referring to this metric. However, minor
performance has been obtained in fitting error burst length distribution of VoIP transmission
in low interference conditions (i.e., interference on channel 1), with the exception of the 2-state
threshold model which REccdf index is always about 0.2%. It is interesting to notice that the
5-th order FSMC performance is very close to the 2-state threshold model one, and in any
case it is better than the ones of the other models.
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Figure 13. Mean relative error for CCDF of
error-free burst length, estimated by means

of models and traces.
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Figure 14. Mean relative error for CCDF
of error burst length, estimated by means

of models and traces.

Finally, Fig. 15 shows the average values of the autocorrelation relative error REρ. It is
easy to understand why REρ shows an increasing trend both with interference level and
with the transmission rate, recalling the results reported in Sec. 3 on the relationship among
such parameters and the time scale extension of the autocorrelation coefficient. In fact,
the number of lags for which the autocorrelation is significantly different from zero rises
as either interference levels or transmission rates grow. Thus, the index REρ will account
for the autocorrelation mismatch over a longer time-scale. Moreover, it can be noticed that
M3 and MTA models perform bad and REρ assumes very similar values. Slightly better,
but not satisfactory, results have been obtained for both the 5-th order FSMC and for the
Extended ON/OFF model. For the 2-states threshold model, instead, better results have been
obtained since REρ values are almost halved in comparison with the corresponding ones of
any other model. Nevertheless, for the threshold model, further performance improvement
can be obtained by using much more states (i.e., more thresholds), and by accounting for a
larger number of error paths in the original sample traces. Although it comes with a major
complexity.
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Figure 15. Mean relative error of autocorrelation coefficients, estimated by means of models and traces.

From the afore discussion, it can be concluded that the proposed new k-TM model has
capabilities similar to the other models in capturing data traces FER, but it is significantly
better than the others in fitting both error and error-free burst length distributions. Moreover,
it makes a significant step further in the challenging issue of capture the autocorrelation
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structure of error traces. Finally, we point out that the 2-states threshold model is the only
one showing consistent performance for all the considered metrics.

7. Conclusions

In this paper a comprehensive measurements campaign in a 802.11 based wireless area network
has been performed, considering different transmission rates and simulating variable channel
interference levels. The obtained results were statistically analyzed highlighting FER, error and
error-free burst length CCDFs and the autocorrelation coefficient. Therefore, a new wireless
model for channel errors at link layer, referred to as k-TM (k-state threshold model), has been
introduced and its 2-state instance has been investigated in 802.11 channel modeling.

The proposed model has been compared with four models already in literature: the k-th
order FSMC, the M3, the MTA, and the Extended ON/OFF model. Results show that the
proposed new model captures extremely well (often better than the other ones) trace first order
statistics, such as FER and error and error-free burst length CCDFs, in all the interference
conditions and for all the transmission rates. Moreover, it performs better than the other in
capturing data traces autocorrelation; such a result can be further improved by increasing the
number of states.

Finally, the implementation cost of the proposed algorithm is appreciably lower than the
other ones since it requires few states and variables to be estimated. Nevertheless, it requires
some preliminary investigation to better fit the distributions of both the states sojourn time,
and the error/error-free burst length distributions.

In future works, we intend to investigate the performance of the proposed model considering
other 802.11 traces available in the scientific community. Hence, we will extend the analysis to
the errors at bit level. Moreover, we want to compare our approach with some promising non-
Markovian approaches; in particular, we will consider models based on Chaotic Maps, which
are particularly suitable for matching error/error-free burst distributions with extremely long-
tails.
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