
A scheduling Algorithm for Interactive Video
Streaming in UMTS Networks

R. Laraspata, D. Striccoli, P. Camarda
DEE–Politecnico di Bari

v. Orabona, 4 – 70125, Bari, Italy
Email:{r.laraspata, d.striccoli, p.camarda}@poliba.it;

Abstract—The importance of a Variable Bit Rate (VBR) video
transmission on UMTS networks is increasing in time. The
bursty nature of VBR traffic complicates the design of efficient
mechanisms for video retrieval, transport, and provisioning to
achieve a high bandwidth utilization and reduce the negative
effects of bandwidth fluctuations in wireless channels. To this aim,
several scheduling algorithms can be successfully implemented.
They regulate data transmission to reduce the rate variability
peculiar of VBR streams. At client side, scheduled data are
temporarily stored in the client buffer before being decoded on
the terminal. In this work, a novel scheduling algorithm, the
Scheduling Algorithm for Interactive Video (SAIV) is presented
and analyzed. It is an algorithm thought for VBR stream
transmission in UMTS networks that takes into account the user
interactivity. Scheduling is performed ”online”, over relatively
small video segments to reduce delays. SAIV dynamically varies
the sampling frequency of the Real Time Control Protocol
(RTCP) feedbacks that carry information on the client buffer
status. The sampling frequency is modulated according to the
difference between the calculated buffer fill level at server side
and the real buffer fill level at client side. The latter is exploited to
reschedule data with the updated information. Numerical results
testify the SAIV effectiveness compared to the classical SLWIN
online algorithm already known by literature, in some simulation
scenarios of real interest.

Keywords: Adaptive Scheduling, UMTS, VBR video,
RTCP feedback, User interactivity.

I. I NTRODUCTION

For several years mobile and fixed networks, as Internet,
were not communicating each other. Nowadays, services to
end users provide a diversified and personalized range of
applications to anyone, anywhere, anytime. Users can combine
telecommunications, information technology and entertain-
ment services that various operators offer. The main aim of
the Universal Mobile Telecommunication System (UMTS) is
to combine the most important trend of telecommunications
market and allow customers to access efficiently to a wide
range of data and applications. In this way, the standard meets
the growing needs of mobility, flexibility and opportunity
of choice. UMTS standard [1] provides to mobile users the
same several multimedia applications, typically used in wired
networks. UMTS network supports both pre-existing services
and offers quite new revolutionary services including broad-
band Internet access. It implements interactive and multimedia
services in addition to voice, text, picture and audio/video
contents that the Global System for Mobile Communications
(GSM) standard already provided. All of these services were

independent applications until now. Traditionally telecom-
munication environments have been integrated with vertical
business and technology segmentation. In 3G communication
system a horizontally seamless layer service network integrates
the Internet transport Protocol (IP) into a mobile service envi-
ronment, making new opportunities for IP-based mobile appli-
cations [2]. The 3G system provides many different services
with different Quality of Service (QoS) guarantees. UMTS
service classes require end-to-end QoS support. For this reason
the Third Generation Partnership Project (3GPP) labels four
main QoS classes to data bearer. One of this is the streaming
class [3]. Thanks to the increasing transmission capacities of
wireless communication networks, video streaming becomes
an interesting and feasible application. End users can click on
a link using web browser on their mobile devices and play
the selected video clip. The client can start playing the video
few seconds after the first part of the multimedia contents
have received and before the download from the streaming
server is completed [4]. Both the highly fluctuating conditions
of wireless links and the limited amount of buffering on
mobile terminals strongly influence the correct delivery of
audio and video contents to the terminals. Despite the highly
variable bandwidth conditions of wireless channel and the
relatively high data bit rates, UMTS systems should ensure
continuous and lossless data delivery. 3GPP standardized the
mobile packet-switched streaming service, commonly referred
to as the 3G-PSS standard [5]. Figure 1 shows a simplified
UMTS architecture for packet-switched operations [6][7].

Fig. 1. Packet-switched architecture in UMTS network

Carlo
Casella di testo
PRE-PRINT VERSION

The 3G-PSS standard integrates video, audio, images and
formatted text into mobile multimedia applications at the same
time. It defines both the protocols and the codecs for streaming
video. The streaming server sends Real-time Transport Pro-
tocol (RTP) packets to the client through IP network using
User Datagram Protocol (UDP) [8]. IP network is composed
by other three subnets: a public network (e.g. Internet), the
core network of the mobile operator and the wireless link
that often acts as a bottleneck. The streaming server is either
placed in a public network like the Internet or in the operator’s
network directly. A public network is present only if the server
is not physically located within the mobile operator’s network.
RTP/UDP are fully compliant with real time transmission of
multimedia applications. UDP is a protocol at transport layer
of the ISO-OSI stack while RTP is a upper-layer session proto-
col [8]. RTP packets are encapsulated in UDP datagram. The
sent packets are temporarily buffered at the Radio Network
Controller (RNC). At receiving side the client stores packets
in its buffer and passes them to the specific media application.
Two major problems regarding buffer occupancy can appear,
that must be solved to achieve a satisfactory QoS for wireless
streaming. The first one is the client buffer underflow at the
client side. This results to continuous rebufferings, because
there are no more available packets in the client buffer. The
application is forced to interrupt playout in order to wait for
new data. The second problem is the client buffer overflow.
Buffers on mobile terminals often have very limited size.
If the transmission rate is higher than the playout rate, the
buffer quickly fills. In this case the subsequent packets are
dropped. The PSS standard by 3GPP-SA4 working group
proposed an extension of RTP protocol: the Real Time Control
Protocol (RTCP) to overcome these problems [9]. RTCP was
introduced in order to control the transmission rate for wireless
multimedia streaming and the status of the streaming client
buffer. A further complication in video transmission is the
video compression, such as MPEG, that introduces a burstiness
that jeopardizes the high quality of compressed video streams
and the transmission efficiency. Variable Bit Rate (VBR)
traffic complicates the design of efficient real time storage,
retrieval, transport, and provisioning mechanism to achieve
high resource utilization [10]. VBR data, in combination with
bandwidth fluctuations of the wireless channel, could easily
bring to a higher error probability at transmission side [11].
For all these reasons, it is very important to reduce the bit
rate variability of VBR streams at the same time guaranteeing
a continuous and lossless playback at receiving side. To this
aim VBR media streams are scheduled for transmission at
server side [12]. Scheduled data are transmitted ahead of their
playback time. The transmission schedule is built in such a
way to avoid buffer overflow and underflow at client buffer
side for the whole playback duration, achieving a considerable
reduction in rate variability [13].

In this paper, we present a novel scheduling algorithm to
be implemented in UMTS systems for real-time interactive
multimedia applications. This algorithm takes into account
the user interactivity, that could cause buffer overflows and

underflows. It exploits RTCP feedbacks to avoid these events.
The algorithm is based on the idea to dynamically change the
RTCP sampling frequency according to user interactivity. In
this way the amount of scheduled data is modulated according
to the specific user actions.

II. RELATED WORK

In this section we describe scheduling principles and RTCP
feedback. RTCP reports are periodically exchanged between
the streaming server and the client to improve the QoS of
the video streaming. Their main function is to make available
at the streaming server a feedback about the bit distribution
in the client buffer. Since the transmission control adaptsthe
rate both to playout status and channel conditions, it can solve
these problems at best.

A. Principles of Scheduling

We consider a compressed VBR video stream that consists
of N frames and the generic framei is di bytes long,1 ≤
i ≤ N . The server schedules data transmission according to
the specific algorithm. Let

D(k) =

k
∑

i=1

di (1)

the amount of data consumed at the client up to thekth

discrete frame time. A frame time is the basic time unit,
defined as the time to decode a frame (1/25 s). Similarly, to
prevent buffer overflow, the client should not receive more
than

B(k) = b +
k

∑

i=1

di = D(k) + b (2)

where b is the client buffer size. The curves (1) and (2)
represent respectively the cumulative underflow and overflow
curves, both non decreasing in time. To avoid losses a feasible
cumulative transmission plan, that we callS(k), must verify
the following condition:

D(k) ≤ S(k) =

k
∑

i=1

si ≤ B(k) (3)

where si is the scheduled stream rate in theith frame
time. Eq. (3) holds in general for scheduling algorithms. In
the off-line case, scheduling is performed over the entire
stream length. For on-line algorithms, the transmission plan
is calculated at server side on consecutive temporal obser-
vation windows of N frame times partially overlapped in
time [10]. The algorithm in [10] computes the transmission
schedule with minimum peak rate and bit rate variability, and
significantly reduces effective bandwidth of variable-bit-rate
video streams. The calculated transmission plan is based on
the existing video frames. It is constrained by the limits in
(3) and is composed by longest Constant Bit Rate (CBR)
segments. As shown in [14] windows overlapping allows a
further schedule optimization in this sense. The scheduling

algorithm proposed in this work reduces the peak-rate and rate
variability in temporal windows of limited size, at the same
time performing an on-the-fly computation of transmission
plan. We illustrate an on-line schedule that takes into account
the user interactivity. The user actions can change the status
of the receiving terminal, in terms of decoded frames and
buffer occupancy level. The server reschedules data according
to the feedback RTCP information on the terminal status.
The RTCP packets give useful information about client buffer
occupancy with a constant periodicity. According to the PAL
standard, it periodicity is comprised between 1 second (25
frame times) and 5 seconds (125 frame times). Generally this
value is established at the beginning of the video transmission.
In the next subsection, RTCP main features will be explained
in detail.

B. RTCP Feedback

The aim of the transmission control is to achieve an efficient
client buffer management through several traffic parameters, ,
carried by the Receiver Report (RR) in RTCP protocol [14].
RTCP packets are generated at regular time intervals. So, the
client traffic parameters are sampled with a constant frequency
and sent back to the streaming server with the same constant
frequency. We can make use of the several fields in RTCP stan-
dard to know the status of client buffer. The Highest Received
Sequence Number (HRSN) is the sequence number of the last
packet arrived at the client buffer. The Highest Transmitted
Sequence Number (HTSN) is the sequence number of the
last packet sent by the server. The Oldest Buffered Sequence
Number (OBSN) is the sequence number of the next packet
to be played out at the time the RR is built. The Playout
Delay (PD) is the time interval before the OBSN packet is
played out. The NSN (Next Sequence Number) represents the
sequence number of the next packet to be decoded [15]. The
server can keep track of the HTSN to calculate the amount
of sent packets [14]. Therefore, RTCP protocol carries several
useful information as the playout delay, the sequence number
of received packets and, in consequence, the residual buffer
space (expressed in multiple of 64 bytes). Based on these
information, the streaming server regulates the bit rate of
transmitted data according to terminal status, like buffersize
and the user action (pause, fast forward, etc.), that strongly
influence the buffer fill level during stream running. The bit
rate regulation is performed with the same sampling frequency
given by RTCP information. Only in these time instants, in
fact, the server knows exactly the real status of the client
terminal, and can reschedule data accordingly. Fig. 2 shows
how the streaming server uses this information to adjust the
transmission rate whenever network congestion or losses at
receiving side occur.

The 3GPP standard considers the evolution of RTCP packet,
called the Next Application Data Unit (NADU) [6]. The
NADU packet carries several information, such as the number
of packets reached the client, the number of packets stored in
the client buffer and playout by the user. These parameters are
illustrated in Fig. 3.

�������� ��������	
���
��� �������� �������
��� ������������ ����
Fig. 2. RTCP protocol

Fig. 3. Parameter of NADU

If a packet has a sequence number less than NSN it has
already been decoded. If the streaming server knows the size
of each transmitted packets, HRSN and NSN trace the level of
the client buffer. The Free Buffer Space (FBS) fields describe
the client status. In the generickth frame time it holds:

NSN(k) = HRSN(k) + FBS(k) − b + 1 (4)

Whereb is the client buffer size. The quality of the delivered
data depends on the variable conditions of the wireless linkand
the user equipments limited amount of memory. RTCP can be
a good solution to enhance the wireless multimedia streaming
QoS over IP networks. In the next section we introduce a
modulated frequency for RTCP packets, dynamically variable
according to the real buffer fill level information carried by
RTCP packets. We exploit this information to dynamically
vary the frequency of the RTCP packets coming to the server.
We illustrate that this method improves the results in the
scenarios of practical interest.

III. T HE SCHEDULING ALGORITHM FOR INTERACTIVE

V IDEO (SAIV)

In this section we introduce a novel algorithm , the Schedul-
ing Algorithm for Interactive Video (SAIV), thought for real-
time interactive multimedia applications. SAIV tries to reduce
all problems discussed in the previous sections and considers
that the end user performs other actions than playback. It
calculates the residual free buffer space and the new schedule
according to RTCP information. It takes into account the
user interactivity to avoid continuous rebufferings and bad
media quality caused by buffer underflows and overflows
respectively. To face these problems we propose a dynamic
scheduling at the server side. The external user actions like
pause or fast forward, change the client buffer fill level and
can easily bring to buffer underflows and overflows, increasing
the probability of losses and rebufferings. According to the
difference between the calculated buffer fill level at server
side and the real buffer fill level at client side, RTCP packets
sampling frequency is varied. If the user stops playback and
server does not quickly react a buffer overflow occurs. On

the other side, fast forward actions can cause underflow. The
proposed algorithm increases or decreases the frequency of
RTCP packets according to user interaction. We focus on the
effects of the user interaction that modify the status of themo-
bile device. Scheduling is performed over partially overlapped
temporal windows. The overlap degree varies dynamically,
according to the varying frequency of the feedback information
carried by RTCP packets. The variation of the RTCP feedbacks
frequency is implemented as follows. Let us suppose that the
streaming server sends VBR video to a 3G device. The server
reduces the video bit rate variability through the work-ahead
scheduling as explained in [12]. The server schedules data in
partially overlapping windows of size N frame times.

Now, let us suppose that a NADU packet arrives to the
server in thekth frame time. The server calculates through
the schedule the expected free buffer levelFBSs(k), as eq.
(5),

FBSs(k) = B(k) − S(k) > 0 (5)

and then it compares it with the real free buffer space in the
kth frame time, coming from the client through RTCP, that we
call FBSc(k).

If the user performs only video playback, surely it holds:

FBSs(k) = FBSc(k) (6)

On the contrary, if the user performs some actions like pause
or fast forward, the expected buffer level and the real buffer
level will be different, andFBSc(k) will depend on the spe-
cific user action. We suppose only two kinds of events: pause,
and 2x and 4x fast forward. In the first case, if the user stops
the playback, the data will only enter the buffer but will never
leave it. In this case, since the server supposes playback with
data also leaving the buffer, it will beFBSc(k) < FBSs(k).
Vice versa, in the case of Fast Forward action, it will be
FBSc(k) > FBSs(k). Nevertheless, SAIV performs more.
It varies the frequency of the feedback information according
to the quantity:

|∆B| = |FBSs(k) − FBSc(k)| (7)

In fact, fast forward actions increase the underflow prob-
ability, but the server knows the precise sequence number
HRSN(k) at each RTCP feedback. So the server can re-
send scheduled frames starting byHRSN(k), because the
buffer is empty. As a consequence, the user will perceive
only a delay in frame decoding due to the rebuffering. Frame
losses due to buffer underflow will never occur. In the case of
buffer overflow, instead, losses will occur because the server
continuously sends data in a full buffer and data exceeding the
buffer size will be dropped. SoHTSN(k) > HRSN(k) and
the server is not able to identify and send lost frames again.
If the server is quickly able to react through rescheduling,
both these events can be efficiently prevented. Each action
other than playback performed by the user changes the free
client buffer level. SAIV compares it with the free buffer

level FBSs(k) calculated by the server. And according to
(7), the larger the differenceFBSc(k) − FBSs(k), the larger
|∆B|. SAIV dynamically varies the RTCP sampling frequency
and consequently the slide lengthα according to|∆B|, with
0 ≤ |∆B| ≤ b. Let us note in fact that each time a RTCP
packet arrives to the server, the schedule must be calculated
again in the time window. This is equivalent to sliding the
time window by the time interval between two consecutive
RTCP packets. The RTCP periodicity thus coincides withα.
Since it is reasonable that small|∆B| increments cause high
α decrements, to more quickly modulate the schedule to the
user external actions, SAIV implements the following simple
hyperbolic relationship betweenα and∆B:

|∆B| =
a1

α
+ a2 (8)

The parametersa1 and a2 are calculated by imposing the
bound conditions:

{

|∆B| = 0 ⇒ α = N

2

|∆B| = b ⇒ α = 1
(9)

The first of (9) means the same fill buffer level at the
client and server side. In this case we assume forα the
value proposed in [10], that is a good compromise between
an efficient reduction of the video burstiness and the computa-
tional overhead due to windows overlap. In the second of (9)
we increase the sampling frequency at its maximum allowed,
that is, a RTCP packet each frame time (α = 1). We chose
α = N

2
as the maximumslide− length, because it is the best

trade-off between the optimum schedule and the computational
overhead of the algorithm, as explained in [10]. The system
(9) brings to:

{

a1 + a2 = b
2a1

N
+ a2 = 0

⇒

{

a1 = Nb

N−2

a2 = − 2b

N−2

(10)

By (8), replacinga1 anda2 and derivingα as a function of
∆B we obtain:

α(∆B) =
Nb

(N − 2) |∆B| + 2b
(11)

According to eq. (11) the server updates dynamically the
frequency of RTCP sampling and rescheduling.

Resuming the SAIV behavior, when a RTCP packet comes
in k, the server comparesFBSc(k) and FBSs(k) and cal-
culates∆B = FBSs(k) − FBSc(k). Depending on∆B the
server calculates the next RTCP feedback time as:

k1(∆B) = k + α(∆B) (12)

Then the server sends this information back to the client.
The server then updates theNSN(k) information by (4), it
reschedules video data and sends the firstα scheduled frames,
until the updatedFBSc(k1) information comes again from the
client. And so forth until the stream end.

IV. EXPERIMENTAL RESULTS

In this section we test SAIV withslide − length
1 ≤ α ≤ (N/2) and compare it with the algorithm in
[10], that we call SLWIN, with a constantslide − length
α = N/2. We fix a window length ofN = 600 frame times
for SLWIN. All time units are expressed in frame times. The
comparison between SAIV and SLWIN has been obtained by
simulating the transmission of 40.000 video frames of four
videos, MPEG-4 coded with high quality. Table I illustrates
the main statistics of the four considered movies.

TABLE I
MOVIES FEATURES

Movies Compression
Ratio

Mean
Bit Rate
(bit/sec)

Peak
Bit Rate
(bit/sec)

Peak/Mean
of Bit Rate

Aladdin 17.46 4.4e+05 3.1e+06 7.07
Jurassic Park 9.92 7.7e+05 3.3e+06 4.37
Silence of
Lambs

13.22 5.8e+05 4.4e+06 7.73

The Simpson 5.84 1.3e+06 8.8e+06 6.75

We assume four different types of action performed by
the user: pause, play, fast forward 2x and fast forward 4x.
The action type and its starting time are randomly chosen
by a uniform distribution. We suppose that all actions have
a duration randomly chosen by a uniform distribution and
ranging between 5 (125 frame-time) and 50 (1250 frame-time)
seconds. Thirty simulations of the same video have have been
performed, each time with a different random sequence of
user actions, calculating losses and then averaging the results.
The considered losses occur only for buffer overflow, because
when underflow occurs frames are not lost, but the user only
displays a jerky movie. Nevertheless, in this case the server
can retransmit the frames to be still decoded. As explained
above, a different sequence of user actions with different
durations, is generated in each simulation. The first experiment
shows SAIV and SLWIN performance with a fixed buffer and
window sizes. The window size is 600 frames and the buffer
size is 1MByte.

Fig. 4. Histogram of lost frames during the movies transmission

Fig.(4) shows the overall averaged overflow losses for each
movie.

It is clearly visible that SLWIN losses are always higher
on average than SAIV losses for all considered movies. This
demonstrates the SAIV better capacity of reacting more effi-
ciently to external user actions thanks to the dynamic variation
of RTCP periodicity.

A. SAIV and SLWIN performance for different window sizes

In Fig. (5) another experiment is illustrated, that shows
SAIV and SLWIN performance for different windows sizes.
We selected two movies, ”Silence Of the Lambs” and ”Jurassic
Park” both of length 20 minutes. We fixed the client buffer
size at 1Mbyte. The window size N varies from 550 frame
times (22 seconds) to 1000 frame times (40 seconds) with
step 50 frame times (2 seconds). The markers in the figure
represent the simulation results averaged over 30 experiments,
as previously explained.

Fig. 5. Lost frames for SAIV and SLWIN with fixed window size

Fig. (5) shows the influence of the window sizeN on
losses for SAIV and SLWIN. Based on the specific user
action SAIV dynamically varies the instant of the next RTCP
feedback and consequently of the slide-lengthα. Also in
this case, for both movies SAIV performs better than the
SLWIN, as shown in Fig. (5). For both SAIV and SLWIN,
losses decrease withN decrease since an increased average
feedback frequency reduces the loss probability, even if the
computational complexity increases too.

B. SAIV and SLWIN performance for different buffer sizes

Another proposed experiment shows SAIV and SLWIN
performance for different client buffer sizes. It is illustrated
by Fig.(6) that shows the ”Jurassic Park” losses and Fig.(7)
that shows the ”Silence of Lambs” losses.

Losses have been calculated by choosing the same pieces of
video stream used in the previous simulation. Type, duration
and starting time of the user actions have been randomly
extracted by a uniform distribution as during the previous
experiments. In this case the window size has been set to
N = 600 frame times, and the buffer size varies from
64Kbytes to 1Mbytes, with increasing powers of 2.

Once again SAIV performs better than SLWIN. As Fig.(6)
and Fig.(7) show, SLWIN losses are higher than the SAIV

Fig. 6. ”Jurassic Park” lost frames for SAIV and SLWIN with fixedbuffer
size

Fig. 7. ”Silence of Lambs” lost frames for SAIV and SLWIN with fixed
buffer size

ones. In both cases losses decrease with the increase of the
buffer size since larger client buffers reduce the buffer overflow
probability. For smaller buffer sizes (64, 128 and 256 kB)
losses are high with or without variable slide length. This
happens because high quality videos are transmitted, with
a relatively high number of bits per frame that are more
problematically stored in relatively small client buffers. As
a consequence the probability of buffer overflow increases
on average. Nevertheless, SAIV losses decrease more quickly
with the buffer increase.

V. CONCLUSIONS AND FUTURE WORK

In this paper a new scheduling algorithm, the Scheduling
Algorithm for Interactive Video (SAIV), has been proposed.
It schedules the transmission of VBR video streams sent
over UMTS network. The algorithm takes into account the
interactivity of the end user to reduce losses at client side. The
user actions influence the transmission plan; the frequencyof
the RTCP packets that the client sends to the server and the
slide − length are varied accordingly. The comparison with
SLWIN, the most representative online scheduling algorithm
known by literature, testifies the SAIV better performance in
UMTS scenarios of practical interest. SAIV performance are

influenced by the sequence of the user actions and especially
by varying RTCP frequency calculated by the server. Further
improvements, in this direction, can be done by testing other
methods for the dynamic calculation of the RTCP sampling
frequency. Other on-line scheduling algorithms can also be
adopted, that can more quickly react to the varying client
buffer conditions and further reduces frame losses. The real
status of the UMTS core network, together with its interme-
diate buffers, could also be modeled to analyze the network
behavior towards losses.

ACKNOWLEDGMENT

This work was funded by the Projects PS-121, PS-092, PS-
025 (Apulia Region, Italy).

REFERENCES

[1] H. Holma and A. Toskala,WCDMA for UMTS : Radio Access for Third
Generation Mobile Communications, J. Wiley, Ed., 2004.

[2] I.Elsen, F.Hartung, U.Horne, M.Kampann, and L.Peters, “Streaming
technology in 3G communication systems,”IEEE Computer, September
2001.

[3] 3GPP-TS23.107,3GPP Technical Specification Group Services and
System Aspects; Quality of Service (QoS) concept and architecture,
(Release 9), December 2009.

[4] A.Lo, G.Heijenk, and I.Niemegeers, “Performance evaluation of MPEG-
4 video streaming over UMTS networks using an integrated tool
environment,”Society for Modeling Simulation Int l, 2005.

[5] 3GPP-TS26.234,3GPP; Technical Specification Group Services and
System Aspects; Transparent end-to-end Packet-switched Streaming Ser-
vice (PSS); Protocols and codecs,(Release 9), December 2009.

[6] M. Kampmann and C. Plum, “Stream switching for 3GPP PSS compliant
adaptive wireless video streaming,”IEEE Consumer Communications
and Networking Conference (CCNC), vol.2, pp.954-958, January 2006.

[7] H.Kaaranen, S. Naghian, L.Laitinen, A. Ahtianen, and V.Niemi, UMTS
Networks: Architecture, Mobility and Services, J. Wiley and Sons, Eds.,
2001.

[8] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A
transport protocol for real-time applications,” Internet draft standard
RFC 3550, July 2003.

[9] Ott, S. Wenger, N. Sato, C. Burmeister, and J.Rey, “Extended RTP
profile for real-time transport control protocol (RTCP)-based feedback
(RTP/AVPF),” Internet proposed standard RFC 4585, July 2004.

[10] S. Sen, J. Dey, J. Kurose, and D. Towsley, “Online smoothing of
variable-bit-rate streaming video,”IEEE Transactions on Multimedia,
vol. 2, no. 1, pp. 37–48, March 2000.

[11] F. Fitzek, P. Seeling, and M. Reisslein, “Video streaming in wireless
internet,” Electrical Engineering and Applied Signal Processing Series,
2004.

[12] J. Salehi, Z.-L. Zhang, J. Kurose, and D. Towsley, “Supporting stored
video: Reducing rate variability and end-to-end resource requirements
through optimal smoothing,”IEEE/ACM Transactions On Networking,
vol. 6, no. 4, pp. 397–410, August 1998.

[13] P. Camarda, D. Striccoli, and R. Laraspata, “A bandwidthdependent
window-based smoothing algorithm for wireless video streaming in
UMTS networks,”Packet Video Workshop (PV 2007) Lausanne, Switzer-
land, November 2007.

[14] N. Baldo, U. Horn, M. Kampmann, and F. Hartung, “RTCP feedback
based transmission rate control for 3G wireless multimedia streaming,”
15th IEEE International Symposium on Personal,Indoor and Mobile
Radio Communications (PIMRC 2004), vol.3, pp.1817-1821, September
2004.

[15] I. Johansson, M. Westerlund, and Ericsson, “Support for reduced-
size real-time transport control protocol (RTCP): Opportunities and
consequences,” Internet proposed standard RFC 5506, April2009.

