
CCN-TV: a data-centric approach to real-time video services

Vincenzo Ciancaglini∗, Giuseppe Piro †, Riccardo Loti∗, Luigi Alfredo Grieco† and Luigi Liquori∗
∗INRIA - Sophia Antipolis (France)

Email: {vincenzo.ciancaglini, riccardo.loti, luigi.liquori}@inria.fr
†DEE - Politecnico di Bari (Italy)

Email: {g.piro, a.grieco}@poliba.it

Abstract—Content-Centric Networking (CCN) is a promis-
ing data-centric architecture, based on in-network caching,
name-driven routing, and receiver-initiated sessions, which can
greatly enhance the way Internet resources are currently used,
making support for a broader set of users with increasing traf-
fic demands possible. The CCN vision is, currently, attracting
the attention of many researchers across the world, since it
has all the potential to become ready to the market, to be
gradually deployed in the Internet of today, and to facilitate a
graceful transition from a host-centric networking rationale to
a more effective data-centric working behaviour. At the same
time, several issues have to be investigated before CCN can
be safely deployed at the Internet scale. They include routing,
congestion control, caching operations, name-space planning,
and application design. With reference to application-related
facets, it is worth noticing that the demand for TV services is
growing at an exponential rate over time, thus requiring a very
careful analysis of their performance in CCN architectures.
To this end, in the present contribution we deploy a CCN-
TV system, capable of delivering real-time streaming TV
services, and we evaluate its performance through a simulation
campaign based on real-world topologies.

Keywords-Content-Centric Networking, Multimedia Ser-
vices, Live Streaming

I. INTRODUCTION

Due to the relevant importance that content sharing appli-
cations are going to play in the upcoming future [2], [3], the
Content Centric Networking (CCN) rationale [4] has been
proposed as a possible way to drive the current host-centric
Internet paradigm towards a novel content-centric behaviour.
It is based on in-network caching operations, receiver initi-
ated data exchange, hierarchical content naming, and native
support to security and privacy.

In a CCN, contents are split in chunks which are requested
using opposite Interest messages, generated at the client
side. Each Interest is then routed until it reaches a node
which has, in its own cache, a copy of the requested item.
Then, this copy is sent, as a Data message, back along the
path the Interest had gone through. Intermediate nodes can
cache the Data before forwarding it to the next node (more
details on the CCN working behavior is provided in Sec. II).

Since its born, the CCN vision has gained a warm
attention from both scientific and industrial communities
to discover the bounds of its real potential from different
perspectives. Many studies have focused on modeling and

designing caching strategies and data-transfer performance
such as in [5]-[10]. In that direction, it is now clear that
the cache size may have a major impact on the overall
performance of a CCN even if finding an optimal caching
strategy is still an open problem to address. With respect
to congestion control issues, instead, recent studies shown
as the classic additive increase multiplicative decrease al-
gorithm, at the foundation of TCP, could be inherited by
CCN, provided that some countermeasures are employed
to limit unfairness issues that could arise among contents
with different popularities [11], [12]. Another very relevant
topic in CCN research covers routing operations, which
are essential to properly drive the dissemination of receiver
generated Interest packets. To this end, the adoption of
Bloom filters appears a promising solution [13], [14] that
merits further investigations. Starting from this premise, it
is evident that all facets of CCN are going to be afforded in
an ebullient panorama of activities that cover both the under-
lying mechanisms within the protocol architecture and the
design of content oriented applications and services. With
reference to application-related features, it is worth to notice
that the demand for TV services is growing at an exponential
rate over the time [2], thus requiring a very careful analysis
of their performance in CCN architectures. A preliminary
study presented in [15] addresses time shifted applications
only, whereas live streaming operations are currently under
investigation as testified in the interesting contribution [16].
To complement the research efforts of the community in a
so relevant domain, the present manuscript is intended to
design a complete CCN-TV system encompassing all the
main facets of typical live streaming video services. The pro-
posed CCN-TV has been tested through a solid simulation
campaign based on real topologies. To this end, the ccnSim
simulator [17] has been properly tailored to our purposes
by adding window based flow control, handling of playout
delay and real-time data, advanced logging functions, links
with bandwidth constraints, and data session bootstrapping.
Simulation results shown that in-network caching seems to
play a minor role in live streaming video services, mainly
because cached data looses its utility after the deadline is
expired. On the other hand, the way CCN handles client
requests for TV contents helps improving the performance
of the system with respect to a plain IP infrastructure.



The rest of the paper is organized as follows: Sec. II
illustrates the core concepts of CCN. Sec. III describes the
CCN-TV system we propose in this paper, which is then
evaluated in Sec. IV. Finally, Sec. V summarizes the main
findings of this contribution and draws future research.

II. BASIC BACKGROUND ON CCN

Internet usage has undergone a radical change during the
last ten years: content-sharing applications are now dominant
whereas the IP architecture still provides a connection-less
service among remote hosts [3]. Users ask for contents,
looking for what they intend to retrieve from the Internet
while the language spoken by the underlying IP infrastruc-
ture provides answers on where a packet should be sent. This
mismatch is actually overcome by a number of workarounds
at different levels of the protocol stack, which, indeed, limit
the overall efficiency of the Internet.

The so-called Future Internet represents a family of
possible solutions to the aforementioned issues, embracing
novel communication models that can better accommodate
and fulfill users’ requirements related to efficiency, security,
support to mobility, and integrated media experience [3].

At the present stage, many valid proposals for the Future
Internet exist, such as the Publish Subscribe Internet Routing
Paradigm, the 4WARD NetInf project, and the Cache-and-
Forward Network Architecture, the Data-Oriented Network
Architecture and the CCN approach [4], [18], having differ-
ent levels of compatibility with the IP paradigm.

Among them, the CCN vision looks promising since,
besides being “data-centric”, it can be gracefully integrated
with today’s IP-based Internet. In a CCN, all content is
unambiguously identified by a hierarchical name, allowing
users to retrieve information without being aware about the
physical location of servers (e.g. IP address). Also, commu-
nication is receiver-driven and based on content chunk ex-
change, name-based routing, and self-certifying packets [4].

Nevertheless, the real performance bounds of a CCN and
the actual benefits it can bring to the Internet are still not
entirely known, mainly because there are many open issues
that surround the CCN architecture, such as those related to:
(i) routing, (ii) congestion control, (iii) strategy layer design,
(iv) name space definition, (v) semantic layer, (vi) accurate
models, and (v) fairness among heterogeneous applications
and contents having different popularities.

As specified before, CCN communications are driven
by the consumer of data and only two types of messages
are exchanged (namely Interest and Data). A user may
ask for a content by issuing an Interest, which is routed
within the CCN towards the nodes in posses of the required
information, thus triggering them to reply with Data packets.

The routing operations are performed by the strategy
layer only for Interest packets. Data messages, instead, just
follow the reverse path to the requesting user, allowing every
intermediate node to cache the forwarded content.

CCN adopts a hierarchical structure for names, which
leads to a name tree. In particular, it is formed by several
components, each one made by a number of arbitrary octets
(optionally encrypted), so that every name prefix identifies
a sub-tree in the name space. An Interest can specify the
full name of the content or its prefix, thus accessing to the
entire collection of elements under that prefix.

Finally, since contents are exchanged based on their
names, multiple nodes interested in a particular data can
share it using multicast suppression techniques over a broad-
cast medium. Analyzing a CCN node, it is possible to
identify three main structures [4].

• the Content Store (CS): a cache memory that can imple-
ment different replacement policies as Least Recently
Used (LRU) and Least Frequently Used (LFU);

• the Forwarding Information Base (FIB): is similar to an
IP FIB except for the possibility to have a list of faces1

for each Content Name entry, thus allowing Interest
packets to be forwarded towards many potential sources
of the required Data;

• the Pending Interest Table (PIT): is a table used to
keep track of the Interest packets that have been for-
warded upstream towards content sources, combining
them with the respective arrival faces, thus allowing
the properly delivery of backward Data packets sent in
response to Interests.

When an Interest packet arrives to a CCN node, the
CS is searched to discover whether a data item is already
available as an answer to be sent immediately back to the
requesting user. Otherwise, the PIT is consulted to find out
if others Interest packets, requiring the same content, have
been already forwarded towards potential sources of the
required data. In this case, the Interest’s arrival face is added
to the PIT entry. Otherwise, the FIB is examined to search
a matching entry, indicating the list of faces the Interest has
to be forwarded through. At the end, if there is not any FIB
entry, the Interest is discarded.

On the other hand, when a Data packet is received, the PIT
table comes into play, which, keeping track of all previously
forwarded Interest packets, allows to establish a backward
path to the node that requested the data.

III. CCN-TV ARCHITECTURE

Unlike Video-On-Demand, real-time video distribution
has to deal with a specific class of problems to ensure
the timely delivery of an ordered stream of chunks. Video
chunks have to be received in playing order and within
a given time interval (the playout delay), before they are
actually played, thus ”expiring”. A chunk not delivered be-
fore its expiration will result in degradation of the rendered

1In CCN it is used the term “face” instead of the “interface” because
packets are also exchanged between application process, besides being
forwarded only over real network interfaces.



video, impacting the end user Quality of Experience; the
extent of the video degradation may vary depending on the
video codec and the type of the lost frame. To solve these
challenges, client nodes implement a receiving buffer queue
where the chunks are stored in order, that is emptied while
the video is being played. Therefore, any chunk not received
before its playing instant becomes useless. To reduce the
chance of chunk loss several mechanisms can be put in
place to retransmit requests for chunks close to expiration.
Furthermore, in modern codecs, such as H.264 [19], there
are different types of video frames, encoded using intra-
frame or inter-frame techniques, each having a different level
of importance. For example, the so called I-frames, derived
using intra-frame compression techniques, actually represent
a full video image, providing a fundamental reference for
subsequent inter-frame encoded images.

With this in mind in CCN-TV we considered a network of
nodes requesting different real-time video streams, identified
by a channelID, served by one or more broadcast server.

Unlike canonical UDP/TCP-based streaming, in CCN-TV
each video chunk, identified by a progressive chunk number,
has to be requested individually, via a dedicated Interest.

Although this might look costly at a first sight, CCN’s
routing mechanisms ensure that Interests for the same chunk
do not propagate twice along the same routing path (unless
under specific conditions, as explained in Sec. III-B), and
the caching strategy implemented by every node can make
sure that Interests for the most popular contents are served
before going through the whole routing path. Moreover,
the Interest/data exchange allows for a natural flow control
mechanism, where each node can request for new chunks
just when the old ones have arrived.

Herein we thoroughly describe the design rationale and
all the details of the CCN-TV system this paper targets.
Specifically, in what follows, we present: the bootstrap
phase, the flow control strategy, and the management of
retransmitted Interest packets.

A. Channel bootstrap

One challenge we are faced with in a real-time scenario
is to bootstrap the channel to be received. Bootstrapping a
channel involves the operations of finding a routing path
to the nearest channel provider and locating the first valid
chunkID of the video stream. Due to video codec re-
quirements, the video stream can be visualized only once the
first I-frame has been received. Therefore, a client has to first
gather from the server the first chunk (and the corresponding
chunkID) of the last generated I-frame. To do so, it sends
an Interest packet for the URI: [domain]/[channelID],
with the Status field set to BOOTSTRAP and the Nonce field
set by the client, as in in Sec. III-D. An Interest with Status
= BOOTSTRAP would travel unblocked until it reaches the
first good stream repository (i.e. a node who can provide a
continuous real-time flow of chunks, not just cached ones).

CCN-TV Client CCN-TV ServerCCN network

last generated
I- frame: 23
chunkID: 234

Start channel:
domain: BBC
channelID: 3

Status: BOOTSTRAP
Nonce: #easd2

INT: bbc.co.uk/3

Status: BOOTSTRAP
Nonce: #easd2

INT: bbc.co.uk/3

Propagate? True
Check cache? False

FrameID: 23

DATA: bbc.co.uk/3/234

FrameID: 23

DATA: bbc.co.uk/3/234

INT: bbc.co.uk/3/235

INT: bbc.co.uk/3/236

RX Start

...

Figure 1. Bootstrap handshake

To this Interest, the server responds with a data message
in the format [domain]/[channelID]/[chunkID], with
chunkID being the first chunk of the last generated I-frame,
and the corresponding Frame ID field value. Upon receipt,
the node starts asking for subsequent chunks, using the
sliding window mechanism detailed in Sec. III-B. The use
of a nonce (a uniquely generated identifier) in the Interest
URI allows the Interest to propagate to the server without
being blocked along the routing path, as every bootstrap
Interest for the same channel has a different nonce. It also
avoids the retrieval of the data response from the cache of
an intermediate node; the risk, in this case, is the retrieval of
a bootstrap data message for a given channel from a cache
containing an already expired chunk of an I-frame.

B. Flow control

From the moment a node receives the bootstrap data
message, it can initiate the sliding window mechanism to
request the subsequent chunks in an optimal way. Each
node has a windows of size W to store W pending chunk.
We define pending chunk a chunk whose Interest has been
sent by the node, and the window containing the pending
chunks a Pending Window. Together with the chunkID, we
store in the pending window other information, such as the
timestamp of the first request and the timestamp of the last
retransmission. Whenever a new data message is received,
the algorithm described in Fig. 2 runs over the Pending
Window, to perform the following operations:

1) Purge the Pending Window from all the chunks who
are expired, i.e., who have already been played, to free
new space in the sliding window.

2) Retransmit all chunks that have not been received for
a given timeout (onward denoted as windowTimeout.

3) Transmit, for each slot that got freed by the received
or expired chunks, the Interest for a new one.



1: procedure SENDINTERESTS(PW,W,WinT,Now,LC)
2: # Remove all expired Interest
3: for all CID in PW do
4: if CID is expired then
5: remove CID from PW
6: end if
7: end for
8: # Resend stale Interests
9: for all CID in PW do

10: if lastTx(CID) < Now −WinT then
11: resend(Int(CID))
12: lastTx(CID)← Now
13: end if
14: end for
15: # Send Interests for new chunk
16: NNC ←W − size(PW )
17: for i← 1, NNC do
18: send(Int(LC))
19: lastTx(LC)← Now
20: add LC to PW
21: LC ← LC + 1
22: end for
23: end procedure

Figure 2. Sliding window algorithm

Furthermore, the same operations are performed if a node
doesn’t receive any data for at least windowTimeout seconds,
in which case, all the Interests for non-expired chunks in
the Pending Window are retransmitted, together with new
chunks if new slots have been freed due to expired chunks.

Fig. 2 details the implemented algorithm; for the purpose
of brevity and readability, the variable names have been con-
tracted: PW is the Pending Window, W is the aforementioned
system parameter, indicating how many Interests should a
node have ongoing, WinT is the window timeout, after which
Interests in the Pending Window are resent, Int is a new
Interest message, CID is a chunkID in the pending window,
lastTx is the transmission time of the most recent Interest
for a given chunkID, LC is the chunkID of the most recent
requested chunk and NNC is the number of new chunks to
request, after the pending window has been purged.

To provide a further insight, we reported in Fig. 3 an
example of the conceived sliding window algorithm, in
which we have set the value of W to be equal to 3.

C. Interest routing

As described in Sec. II, CCN nodes along the routing
path of an Interest will stop the propagation of said Interest,
if they have previously routed another Interest for the same
resource, and the correspondent data has note been sent back
yet; instead, they will simply update their Pending Interest
Table adding the face from where this newcomer Interest
was originated, so to reroute the data back recursively along
the path the Interest has gone through.

Interest [chunkID=1, status=normal]

Data [chunkID=1]

Timeout

CLIENT SERVER

Interest [chunkID=2, status=normal]

Interest [chunkID=3, status=normal]

Interest [chunkID=4, status=normal]

Interest [chunkID=2, status=normal]

Interest [chunkID=3, status=normal]

Interest [chunkID=4, status=normal]

Interest [chunkID=2, status=retransmit]

Interest [chunkID=3, status=retransmit]

Interest [chunkID=4, status=retransmit]

Interest [chunkID=2, status=retransmit]

Interest [chunkID=3, status=retransmit]

Interest [chunkID=4, status=retransmit]

Data [chunkID=2]

Data [chunkID=3]Lost!

Lost!

Timeout

Interest [chunkID=4, status=retransmit]

Interest [chunkID=5, status=normal]

Interest [chunkID=6, status=normal]

Interest [chunkID=4, status=retransmit]

Interest [chunkID=5, status=normal]

Interest [chunkID=6, status=normal]

1 2 3

window

ROUTER

2 3 4

2 3 4

2 out delay

3 out delay

4 5 6

Figure 3. Sliding window example

This mechanism ensures flow control and limits the prop-
agation of duplicate Interests, in case several nodes in the
same network are watching the same channel.

However, to make the Interest retransmission mechanism
effective, a retransmitted Interest needs to propagate all the
way up to the server, or to the first node with the desired
chunk in cache. Therefore, retransmitted Interests carry the
Status field set to Retransmission to mark if the Interest is a
retransmission or not, and each node along the routing path
propagates the Interests marked as retransmitted, thus skip-
ping the usual CCN mechanism, unless the correspondent
chunk is found in the cache.

Table I
MESSAGES USED IN CCN-TV

Packet
type

Field Content

Chunk
Interest

Content
Name

[domain]/[channelID]/[chunkID].

nonce Used only for the bootstrap phase.
Publisher
Filter

Not used.

Status Bootstrap, Normal, Retransmission.
Chunk
Data

Content
Name

[domain]/[channelID]/[chunkID].

Publisher
ID

Optional.

Signature Optional (for increased content authentication).

Stale
Time

Set to the frame time of the frame the chunk
belongs to.

Frame
ID

ID of the frame the chunk belongs to.

Data The request video chunk binary data.

D. CCN-TV messages
As detailed above, additional functionalities required by

the system for real-time video streaming are implemented
on top of existing CCN data and Interest messages via new
fields carrying the required additional information.



However, should the situation require the system to con-
form to classical CCN messages, all additional fields can be
easily replaced by additional fields in the content name.

Tab. I shows how we made use of the classical CCN
message fields, together with the new fields and their use.

In particular, CCN-TV Interests carry an additional Status
fields marking if the Interest is a bootstrap Interest (Section
III-A), a normal one or a retransmission (Section III-C).

Concerning CCN data message, we extended the mes-
sages with an additional field, i.e., Frame ID, containing the
ID of the frame to which the embedded chunk belongs to.

IV. SIMULATION RESULTS

In this section, we will evaluate performances of the pro-
posed CCN-TV architecture. To this end, we implemented
it within ccnSim, i.e., an open source and scalable chunk-
level simulator of CCN [17] built on top of the Omnet++
framework [20], dedicated to the evaluation of Video On
Demand systems on top of CCN. By itself, ccnSim models
a complete video distribution systems, with a high degree of
fidelity concerning catalogs, requests and repositories distri-
bution, and network topologies. Since, however, it did not
support the real-time constraints required by our evaluations,
it has been modified and improved in the following ways:

• we added support for links with bounded capacity and
packets with a well defined size, which was missing
in ccnSim, to be able and estimate the CCN behavior
under some bandwidth constraints;

• due to the datarate channels, we implemented a trans-
mission queue for each face of each node, in order to
properly manage the packet transmission;

• we added the support for synthetic video traces, so to
be able to transmit and receive chunk of real videos,
and consequently being able to reconstruct the received
video and evaluate its PSNR;

• due to possible expiration of Interests, we implemented
a cleanup mechanism for each node’s PIT, to avoid
having in long term stale entries due to expired chunks;

• we improved and enriched the logging system, so to
be able to record each node’s received chunks and
reconstruct the received video;

• we added more controls server-side, to send a data only
for those chunks who have already been generated.

Furthermore, the following mechanisms, beyond the pro-
vided ones, have been implemented in the simulator:

• the sliding window mechanism described above, and all
the related data structures;

• the Interest forceful propagation in case of retransmis-
sion;

• constant data reception, until a channel is changed.
The extended ccnSim simualtor is available at [21].
The aim of our study is to evaluate how the behavior

of the CCN-TV system is influenced by (i) the amount

of the network bandwidth dedicated to real-time streaming
services, (ii) the windowTimeout adopted by the sliding
window mechanism, (iii) the playout delay, and (iv) the
cache decision policy.

We focus the attention on the GEANT network, which
interconnects the European research and education institu-
tions and it is composed by 22 routers [22]. Every node
of the network is considered to be a direct CCN node,
i.e. no TCP or UDP encapsulation is implemented. We
assume the presence of only one small video streaming
provider that offers 5 parallel real-time transmissions to
remote clients. It is connected to one of the nodes forming
the GEANT topology. In every simulation round, each video
content is mapped to a video stream compressed using
H.264 [19] at a average coding rate randomly chosen in
the range [250, 2000] kbps. Clients, i.e., CCN nodes that
download video contents from the server, are connected to
remaining nodes (1 client per node). In order to catch the
behavior of people watching TV, we modeled two groups
of users: faithful and zapping. Faithful users are attached to
one video channel for the whole simulation. Zapping users,
instead, change frequently the channel among those offered
by the server according to a Poisson process with parameter
λ = 0.0666. Further, the channel selection process has been
modeled considering that contents popularities follow a Zipf
distribution. According to [23], the most of works presented
in literature set the parameter α of the Zipf distribution in
the range [0.6, 2.5]. In line with these common settings, we
set α = 1. Once a client decides to watch a specific channel,
it performs the bootstrap process described in the previous
section and then starts sending Interest packets following the
designed sliding window mechanism.

In our tests, we adopted the optimal routing strategy,
already available within the ccnSim framework. According
to it, Interest packets are routed towards the video server
along the shortest path. On the other hand, three caching
strategies have been considered in our study: no-cache, LRU,
and FIFO [23]. When well known LRU or FIFO policies are
adopted, we set the size of the cache to 100 chunks. The
no-cache policy is intended to evaluate the performance of
the CCN without using any caching mechanism.

The window size W has been set to 10, ensuring that
faces of the server are almost fully loaded in all considered
scenarios. Also, the transmission queue length associated to
each face, Q, has been set, in order to be larger than

Q = 2 ∗ Lc ∗ PD (1)

where Lc and PD represent link capacity and maximum
propagation delay in the considered network topology. All
simulation parameters have been summarized in Tab. II.

A. Interest generation process

As a first step, we investigate the impact that the sliding
window mechanism has on the amount of sent Interest



Table II
SUMMARY OF SIMULATION PARAMETERS

Parameter Value
Topology GEANT with 22 routers
Link capacity 40 Mbps and 100 Mbps
Number of real-time service pro-
vides

1

Number of clients 21
Catalog size 5 files
Chunk size 10Kbytes
Video average bit rate 250kbps, 600kbps, 1000kbps and

2000kbps
W (window size) 10
Playout delay 10s and 15s
Window timeout 1s, 3s, and 5s
Caching strategy No cache, LRU, and FIFO
Cache size 100 chunks
Client zapping behavior 50% fixed, 50% changing on aver-

age every 15s
Simulation time 60s
Number of seeds 5

packets, which is shown in Fig. 4. From these plots it
is evident that the highest windowTimeout, the lowest the
total number of Interest messages sent by end users. When
the windowTimeout increases, the probability that a given
client does not receive any chunks within such a time
interval decreases and, as a consequence, also the number of
retransmitted Interest packets decreases as well. As a further
confirm of this result, Fig. 5 shows that the percentage of du-
plicated Interest packets increases when the windowTimeout
decreases due to a high number of chunks that are unable
to reach the client within the expected timeliness.

As expected, the playout delay has a minor impact on the
number of generated Interest messages, which, as is known
from the theory on sliding window mechanisms [24], can be
only influenced by window size (W ) and windowTimeout.

Also, caching operations do not have any significant
impact on the number of generated Interest messages. The
main reason being that chucks stored in cache memories lose
their effectiveness after their deadline is expired.

On the other hand, the link capacity greatly influence
the Interest transmission rate. From Fig. 4 emerges, in
fact, that the number of Interest lowers when the capacity
of links decreases. This is because a limited bandwidth
reduces the quota of received chunks, thus preventing a
rapid advancement of the sliding window. In other terms,
this result proves, once again, the effectiveness of the sliding
window mechanism in CCN.

B. QoS and QoE

The first important parameter that describes how CCN-
TV settings affect the quality of service offered to end users
is the chunk loss ratio, which represents the percentage of
chunks that have not been received in time (i.e., before the
expiration of the playout delay) by clients.

From Fig. 6, showing the chunk loss ratio measured in
all considered network scenarios, we note that playout delay

plays a fundamental role. When the playout delay increases,
in fact, the client could receive a Data packet within a longer
time interval, thus reducing the amount of chunks discarded
because out of delay. On the other hand, a slight increment
of the chunk loss ratio can be registered by increasing the
windowTimeout. If the client retransmits an Interest packet
after long time, there is the risk that the Data packet will
be reached by the destination after the expiration of the
playout delay. In addition, we note that a reduction of the
link capacities leads to a higher number of lost chunks, due
to increased latencies induced by network congestion.

It is very important to remark that the presence of the
cache can guarantee only a small reduction of the chunk
loss ratio. With our study, we found that, in the presence of
real-time flows, the cache does not represent an important
CCN feature. On the other hand, we noticed that the PIT
plays a more relevant role. In fact, in presence of live
video streaming services, clients that are connected to a
channel request the same chunks simultaneously. In this
case, a CCN router has to handle multiple Interest messages
that, even though sent by different users, are related to
the same content. According to the CCN paradigm, such
a node will store all of these requests into the PIT, waiting
for the corresponding Data packet. As soon as the packet
is received, the router will forward it to all users that
have requested the chunk in the past. According to these
considerations, the use of the cache will not produce a
relevant gain of network performances. Indeed, the PIT helps
reducing the burden at the server side by avoiding that many
Interest packets for the same chunk are routed to the server.

To conclude our study, we have computed Peak Signal to
Noise Ratio (PSNR), which is nowadays one of the most
diffused metrics for evaluating user satisfaction, together
with interactivity level, in real time video applications [25].
Results shown in Fig. 7 are in line with those reported for
chunk loss ratio (the PNSR is higher in the same case in
which the chunk loss ratio is lower). Again, link capacity
greatly influences the quality of the TV service provided to
users. According to [26], the obtained PSNR values can be
translated to a Mean Opinion Score (MOS) not less than 4,
corresponding to satisfactory quality for almost all users.

V. CONCLUSIONS AND FUTURE RESEARCH

In this work, the effectiveness of TV services in a CCN
has been investigated. To this end, the ccnSim simulator
has been modified to add several relevant features such
as window-based flow control, handling of playout delay
and real-time data, advanced logging mechanisms, and data
session bootstrapping. Preliminary results reported herein
clearly show that the most relevant CCN feature to TV ser-
vices is the management of Interest packets through the PIT
data structure. In fact, such a mechanism limits the number
of requests for the same chunk at the server side for multiple
clients watching the same TV channel, thus decreasing



 

1 3 5
0

50

100

150

200

Window timeout [s]

N
u

m
b

er
 o

f 
In

te
re

st
 p

ac
k

et
s 

[1
03

]

(a)

1 3 5
0

50

100

150

200

Window timeout [s]

N
u

m
b

er
 o

f 
In

te
re

st
 p

ac
k

et
s 

[1
03

]

(b)

Figure 4. Total number of Interest packets sent by clients with playout
delay of (a) 10s and (b) 15s.

the link and the computational load at the server. Further
research will explore: wider scenarios with many users and
available channels, advanced optimization techniques for TV
services in CCN (including routing and congestion control),
and the adoption of scalable video coding. Moreover, a more
deeply investigation on the relevance of the cache and the
PIT in live TV services will be also conducted.

REFERENCES

[1] H. Kopka and P. W. Daly, A Guide to LATEX, 3rd ed. Harlow,
England: Addison-Wesley, 1999.

[2] “Cisco visual networking index: Forecast and methodology,
2010-2015,” White Paper, Cisco, Jun. 2011.

[3] B. Ahlgren, P. A. Aranda, P. Chemouil, S. Oueslati, L. M.
Correia, H. Karl, M. Sollner, and A. Welin, “Content, connec-
tivity, and cloud: ingredients for the network of the future,”
IEEE Commun. Mag., vol. 49, no. 7, Jul. 2011.

[4] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H.
Briggs, and R. L. Braynard, “Networking named content,” in
ACM CoNEXT ’09, 2009.

[5] G. Carofiglio, M. Gallo, L. Muscariello, and D. Perino,
“Modeling data transfer in content-centric networking,” in Int.
Teletraffic Congress, (ITC), 2011.

1 3 5
0

10

20

30

40

50

Window timeout [s]

P
er

ce
n

ta
g

e 
o

f 
d

u
p

li
ca

te
d

 I
n

te
re

st
 p

ac
k

et
s

(a)

1 3 5
0

10

20

30

40

50

Window timeout [s]

P
er

ce
n

ta
g

e 
o

f 
d

u
p

li
ca

te
d

 I
n

te
re

st
 p

ac
k

et
s

(b)

Figure 5. Percentage of duplicated Interest packets sent by clients with
playout delay of (a) 10s and (b) 15s.

[6] L. Muscariello, G. Carofiglio, and M. Gallo, “Bandwidth and
storage sharing performance in information centric network-
ing,” in ACM SIGCOMM workshop on Information-centric
networking (ICN ’11), 2011.

[7] M. Varvello, I. Rimac, U. Lee, L. Greenwald, and V. Hilt, “On
the design of content-centric manets,” in Int. Conf. on Wireless
On-Demand Network Systems and Services, (WONS), 2011.

[8] G. Carofiglio, V. Gehlen, and D. Perino, “Experimental evalu-
ation of memory management in content-centric networking,”
in IEEE ICC, 2011.

[9] M. Tortelli, I. Cianci, L. A. Grieco, G. Boggia, and P. Camarda,
“A fairness analysis of content centric networks,” in Proc. of
Int. Conf. on Network of the Future, NOF, Paris, France, 2011.

[10] D. Rossi and G. Rossini, “On sizing CCN content stores
by exploiting topological information,” in IEEE INFOCOM,
NOMEN Worshop, 2012.

[11] L. A. Grieco, D. Saucez, and C. Barakat, “AIMD and CCN:
past and novel acronyms working together in the Future
Internet,” in Capacity Sharing Workshop 2012 (CSWS’12) co-
located with ACM SIGCOMM CoNEXT 2012., Dec. 2012.



1 3 5
0

10

20

30

40

50

Window timeout [s]

C
h

u
n

k
 l

o
ss

 r
a
ti

o
 [

%
]

(a)

1 3 5
0

10

20

30

40

50

Window timeout [s]

C
h

u
n

k
 l

o
ss

 r
a
ti

o
 [

%
]

(b)

Figure 6. Chunk loss ratio with playout delay of (a) 10s and (b) 15s.

[12] G. Carofiglio, M. Gallo, and L. Muscariello, “Joint hop-by-
hop and receiver-driven interest control protocol for content-
centric networks”, ACM SIGCOMM, ICN12 workshop, 2012.

[13] M. Tortelli, L. A. Grieco, and G. Boggia, “CCN forwarding
engine based on bloom filters,” in Proc. of ACM Int. Conf. on
Future Internet Technologies, CFI, Seoul, Korea, Sep. 2012.

[14] W. You, B. Mathieu, P. Truong, J. Peltier, and G. Simon,
“Dipit: A distributed bloom-filter based pit table for CCN
nodes,” in 21st International Conference on Computer Com-
munications and Networks (ICCCN), 2012, pp. 1–7.

[15] Z. Li and G. Simon, “Time-shifted TV in content centric
networks:the case for cooperative in-network caching,” in Proc.
of IEEE ICC, Jun. 2011.

[16] H. Xu, Z. Chen, R. Chen, and J. Cao, “Live streaming with
content centric networking,” in Proc. 3rd Int. Conf. on Net-
working and Distributed Computing, Hangzhou, China, 2012.

[17] G. Rossini and D. Rossi, “Large scale simulation of ccn
networks,” in In Algotel 2012.

[18] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and
B. Ohlman, “A survey of information-centric networking,”
Communications Magazine, IEEE, 50(7), pp. 26–36, 2012.

1 3 5
0

20

40

60

80

100

Window timeout [s]

P
S

N
R

 o
f 

th
e 

Y
 c

o
m

p
o

n
en

t 
[d

B
]

(a)

1 3 5
0

20

40

60

80

100

Window timeout [s]

P
S

N
R

 o
f 

th
e 

Y
 c

o
m

p
o

n
en

t 
[d

B
]

(b)

Figure 7. PSNR of the Y components of received videos with playout
delay of (a) 10s and (b) 15s.

[19] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra,
“Overview of the H.264/AVC video coding standard,” IEEE
Trans. on Circuits and Systems for Video Technology, 13(7),
pp. 560–576, Jul. 2003.

[20] Omnet++ home page. [Online]. Available at: http://www.
omnetpp.org/

[21] Ccn-tv webpage. [Online]. Available at: http://telematics.
poliba.it/ccn-tv/

[22] “Geant project website,” [OnLine] Available at: http://www.
geant.net/.

[23] D. Rossi and G. Rossini, “Caching performance of content
centric networks under multi-path routing (and more),” in
Technical report, Telecom ParisTech, 2011.

[24] J. F. Kurose and K. W. Ross, Computer Networking: A
Top-Down Approach, 6th edition. Addison-Wesley Publishing
Company, 2012.

[25] G. Piro, L. Grieco, G. Boggia, R. Fortuna, and P. Camarda,
“Two-level Downlink Scheduling for Real-Time Multimedia
Services in LTE Networks,” in IEEE Trans. Multimedia,
vol. 13, no. 5, Oct. 2011, pp. 1052–1065.

[26] J. Ohm, Multimedia Communication Technology. Springer,
USA, 2004.


