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Abstract—Content-Centric Networking (CCN) is an entirely
novel networking paradigm, in which packet forwarding relies
upon lookup operations on content names directly instead of
fixed-length host addresses. Due to the massive, hierarchical
and length-variable features, the name lookup introduces new
challenges hindering the deployment of CCN at the Internet
scale. In this paper, we make an in-depth study of characteristics
of large-scale CCN names, and propose a simple yet efficient
CCN-customized name lookup engine (named by TB2F), which
capitalizes the strengths of Tree-Bitmap (TB) and Bloom-Filter
(BF) mechanisms, while counteracts their main limitations. To
this end, TB2F splits CCN prefix into a constant size T-segment
and a variable length B-segment with a relative short length,
which are treated using TB and BF, respectively. Furthermore,
an optimal length of the T-segment is found to improve the
lookup efficiency. Experiments are conducted by comparing with
representative Name Prefix-Trie and Bloom-Hash approaches.
The results show that TB2F properly configured has good
scalability and efficiency by (i) speeding up lookup operations
and reducing the false positive rate with respect to Bloom-Hash;
(ii) requiring less memory than Name Prefix-Trie; (iii) achieving
a low overhead in updating operations in the large scale case.

Index Terms—Name Lookup; Content-Centric Networking;
Tree-Bitmap; Bloom Filter

I. INTRODUCTION

Motivated by significant changes witnessed in the usage
of the Internet, Content-Centric Networking (CCN) [1] e-
merges as a novel Information-Centric Networking (ICN) [2]
paradigm, focusing on what rather than where the content is.
Named Data Networking (NDN) [3], as a derived project of
CCN, is developing worldwide. In contrast to the host-centric
IP rationale, CCN adopts hierarchical content names to rule
forwarding operations instead of fixed host addresses [4]. In
this way, it becomes potentially possible to get rid of “host
IP address” in traditional networking primitives and to obtain
several advantages such as: (i) native support to multicast and
mobility; (ii) content level security; (iii) reduction of servers’
load, also thanks to in-network caching; (iv) simplified interop-
erability among content distribution systems and applications.

However, it is also facing with some challenges to be solved
for the practical deployment at the Internet scale.

In CCN, each router/node is equipped with three specific
components: Forwarding Information Base (FIB), Pending
Interest Table (PIT) and Content Store (CS) [1]. The FIB is
used to specify the faces which packets can be forwarded
through; the PIT holds all “not yet satisfied” requests that
have forwarded towards potential data sources but have not
receive a response; the CS is the cache memory, where a copy
of contents retrieved in the past are stored to answer future
requests. When a node is willing to retrieve a content, it sends
an Interest packet, indicating the name of the desired content.
At each hop, forwarding decisions depend upon the outcome
of lookup operations of the requested name in the FIB, PIT
and CS tables. In case there is no matched content in the
CS, the PIT is updated to keep track of the face the Interest
arrived from. Then, the Interest is forwarded to the next hop
(if required) after having looked up the FIB to search for the
most appropriate outgoing face(s). Once a router/node has the
content that matches the requested Interest, Data packet(s) will
be returned back to the requesting node in the reverse path
activated by the Interest. Besides, the CCN-based router may
cache the Data packet(s) in CS, making itself as a provider
for the following Interest requests.

Recently, some researchers have argued that current router
technologies cannot meet the requirements of CCN [5][6][7].
Unlike fixed-length IP addresses (i.e., 32 bits for IPv4 and
128 bits for IPv6), content names in CCN are variable length
strings with a hierarchical structure, consisting of a sequence
of delimited components. These emerging features of CCN
names bring several unprecedented challenges in a practical
large-scale use. Firstly, longest prefix matching (LPM) in CCN
must match a prefix at the end of one component of the
name, rather than at any digit as in IP address. Secondly,
more complex lookup mechanisms are needed to adapt to the
variable-length of content names. Thirdly, CCN forwarding



tables (i.e., FIB) will be much larger than IP ones, because
the cardinality of the set of content names can be many orders
of magnitude larger than the one of IP addresses. Google
has reported that the number of URLs exceeded to 1 trillion
in 2008 [8]. Nevertheless, there are only about 800 million
routable hostnames for all websites by the end of 2013 [9].
Although LPM has been heavily studied for IP lookup, most
of proposed solutions become inefficient if applied to CCN
names directly.

To tackle this inextricable challenge, the scalable and effi-
cient name lookup solutions are researched herein, aiming at
paving the way to the practical development of CCN routers
at the Internet scale. The main contributions are as follows:

(i) We conceived a totally novel name lookup engine,
TB2F, which leverages consolidated Tree-Bitmap (TB) [10]
and Bloom-Filter (BF) [11] solutions. In TB2F, the CCN prefix
is split into a constant size T-segment and a variable length
B-segment. Due to the high aggregation of T-segments, T-
segments can be processed using TB structure time-efficiently.
Instead, B-segments will be handled using BF structure space-
efficiently. In detail, TB2F is made of a novel hybrid Data
Structure TB2F-DS, a Parallel Lookup process TB2F-PL, and
a Differentiated Update scheme TB2F-DU.

(ii) We made practical considerations based on large-scale
names datasets and proposed a theoretical analysis of TB2F
in terms of computational complexity, false positive rate (fpr),
aggregation and updating ratio. Based on such an analysis, we
deduce that these metrics depend on the length of T-segment
directly. Further, we proposed a methodology for discovering
the optimal length of T-segments, able to minimize the lookup
time subject to an affordable memory cost and fpr.

(iii) We performed extensive experimental evaluations to
validate the TB2F approach in comparison to two state-of-
the-art solutions, namely, Name Prefix-Trie [12] and Bloom-
Hash [13]. The results illustrate that, if properly configured,
TB2F enables to capitalize the strengths of TB and BF by
(i) speeding up the lookup and reducing the false positive rate
with respect to Bloom-Hash; (ii) consuming less memory with
respect to Name Prefix-Trie; (iii) reducing the overhead of
updating with respect to both two solutions.

The rest of the paper is organized as follows: Section II
introduces the problem statement and details our novel name
lookup solution. Some practical considerations and theory
analysis for the proposed solution are presented in Section III.
Extensive experiments are compared and analyzed in Section
IV. Section V discusses the related work. Finally, concluding
remarks and future works are presented in Section VI.

II. PROBLEM STATEMENT AND OUR PROPOSAL: TB2F

A. Problem statement

We consider a practical scenario: assuming an average
packet arrival rate of 150 Mpacket/s, reasonable for 100Gbps
interfaces [14], and a packet round-trip time of 80ms [5], thus
the forwarding table should support at least 107 name lookups
per second. How to design a lookup engine for CCN names,
which supports to store massive entries and enables to lookup

TABLE I
KEY NOTATIONS

Notations Definition
N , m Set of requesting names, and its total number;
P Set of prefixes entries stored in forwarding table (FIB);
D,Q Data structure and lookup algorithm for P;
M (·) Memory space function;
T (·) Lookup time consumption function;
U (·) Updating overhead function;
F (·) False positive rate function;
qTi ,ζTqi T-segment for a requested name qi, and its length;
qBi ,ζBqi B-segment for a requested name qi, and its length;
τ ,t0 Request time interval, and observing time instant;

at high speed in such large-scale scenarios? To formalize
the problem, we consider herein the case of a router that
receives m Interest messages, within a time interval τ , each
one asking for a given content name, then the requesting rate
is m/τ . Table I lists key notations in this paper. Accordingly,
let N denote the set of names, {n1, n2, n3 · · ·nm}, that were
requested at the router during τ , and P be the set of total prefix
entries, {p1, p2, p3 · · · pk}, pre-stored in the forwarding table
(e.g., FIB) at the observing time instant of t0. Let D denote
the data structure adopted for storing P , then the occupying
memory space for P will be expressed as a function of D and
P , which is M (D,P).

Starting from this premise, the lookup problem can be
translated in a process of membership queries: assuming we
want to request the content by name q, ∀q ∈ N , the longest
prefix in P for q should be determined with a name lookup
algorithm, Q, and the corresponding forwarding face(s) should
be returned in a short time interval T (N ,P,D,Q) (shorter
than m/τ ); if no prefix matches, the default face is returned.
Besides, we will refer to U (D) and F (Q) to denote the
overhead of updating for D, and be the false positive rate
during the processing of Q, respectively.

Our aim is to design a fairly simple D and an efficient Q for
minimizing the lookup time as well as improving its scalability
for a large-scale CCN name space (i.e., 107 at least). In a more
formal way, this problem can be expressed as follows:

min
N ,P,D,Q

T (N ,P,D,Q)

subject to |N | >> 1, |P| >> 1,

M (D,P) 6 σ,

U (D) 6 δ,

F (Q) 6 ϕ.

(1)

where σ is the maximal available memory, δ and ϕ are
acceptable thresholds on updating overhead and false positive
rate, respectively.

B. TB2F-DS: data structure

In this section, we present a novel hybrid data structure for
CCN name lookup, named by TB2F-DS, which is motivated
by the following three practical observations:

(1) Tree-Bitmap is a compressed multi-bit Trie data struc-
ture which supports fast lookups. However, its performance
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Fig. 1. Framework for TB2F-DS: (a) CCN names samples; (b) Tree-Bitmap and Bloom Filters; (c) Example of TB2F-DS with Stride Length of 2.

degrades linearly as the tree depth increases and this drawback
makes TB unsuitable for unbounded CCN names.

(2) Bloom-Filter is a space-efficient probabilistic data struc-
ture which supports set membership queries. However, the
false positive rate of a BF could become unacceptable in
presence of a large set of names (as in CCN).

(3) The structure of CCN names is hierarchical, much like
the format of URLs. Statistically, it can be observed that if
two different URLs are taken the probability that they will
differ in the first components is much lower than in the last
ones. This feature can be fruitfully exploited by processing the
first components of names using TB to avoid the high memory
cost. Contrariwise, the rest of the name is better fitted to BF.

To overcome the drawbacks of TB and BF as well as
capitalize their strengths, we propose to split each CCN name
prefix into two parts. The first part, named by T-segment, is
bounded with a certain number of components, and the rest
belongs to the second one, named by B-segment. For ease of
description, we first give a definition of Split Level.

Definition 1 (Split Level): For a CCN name ni, a split
scheme L is adopted to split ni into an ordered set of two
segments, T-segment n′i and B-segment n′′i . We define Split
Level (SL) for L as the number of components in n′i.

Example: If the SL for a given L is 3, the name
“a/b/c/d/e/1” will be split into “a/b/c” as its T-segment and
“d/e/1” as its B-segment.

The framework of TB2F-DS is illustrated in Fig.1. Fig.

 
Fig. 2. Diagram of TB2F-DS.

1(a) lists a set of CCN name samples. Fig. 1(b) presents the
traditional data structures of TB and BF respectively. Fig.1(c)
shows a simple diagram of TB2F-DS. In TB2F-DS, all T-
segments are stored using TB, constructing the T-segment
Tree, while B-segments are inserted into a sequence of mini
Counting BFs (mCBFs) [22], each of which is linked to
the corresponding node of T-segment Tree. The association
between T-segment Tree and mCBFs is implemented using a
pointer for “children” of one node. In other words, mCBFs
become leaves of T-segment Tree, which makes it possible to
not bring much extra complexity in implementing TB2F-DS.

The diagram of TB2F-DS is detailed in Fig. 2. In the T-
segment Tree, there are two kinds of bitmaps for each node.
One bitmap is for all the internally stored prefixes and the
other one is for the external pointers. All the children of a
given node are stored contiguously, which allows us to use
just one pointer for all of them (i.e., each child node can be
found using an offset from the single pointer)1. This yields
a remarkable reduction of the memory requirements. On the
other hand, k hash functions are adopted to compute the hash
value for B-segments, which guides to fill the corresponding
mCBF, equipped with c counters and b bits for each counter.
In one extreme case, TB2F-DS supports to use a global CBF
for all B-segments, which can be implemented more easily2.
The direct benefits of using many mCBFs (with a simple T-
segment associated allocation scheme) instead than a unique
CBF are to reduce the scale for each mCBF, thus alleviating
the difficulty of finding perfect hash functions that remain
valid for a universal name space and to avoid the chaos of
association between T-segment and B-segment.

In this structure, the SL parameter plays a fundamental role
on the efficiency of TB2F-DS. Firstly, the depth of the T-
segment tree is bounded by the SL, which, as a consequence,
directly benefits the processing time and occupying space.
Secondly, all names with less than SL components will not
be mapped in an mCBF at all. It can reduce the number of
items inserted into the mCBFs, accordingly, lowers the fpr.

1It is noted that T-segment Tree is not necessary to be a binary tree.
2In the following discussions, we focus on a more general case of using

many mCBFs.
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Fig. 3. (a) Diagram of TB2F-PL; (b) Compositions of time consuming in lookup process.

Furthermore, it is worth noting that hash computing for a long
string is expensive, a cut by SL components may improve
processing speed in mCBFs.

To sum up, TB2F-DS provides a simple but powerful data
structure for CCN names lookup. We get three promising
promotions: (1) TB2F-DS transfers the long-unbounded names
to be short-bounded, suitable for using TB; (2) TB2F-DS
accelerates the hash computing and lowers the fpr in mCBFs;
(3) TB2F-DS does not bring much extra space consumption,
if configure SL properly, which makes TB2F space efficient.
The next section will provide an experimental analysis of the
suitability of TB2F-DS to large-scale CCN scenarios.

C. TB2F-PL: parallel lookup process

TB2F enables to provide fast processing thanks to a parallel
lookup process (TB2F-PL). It is a fact that frequently hash
computing for strings is a time-consuming operation in CBF.
To reduce the lookup time consumption, an available solution
is to preprocess the hash value of each string before using it.
In CCN, all hierarchical names are carried in the Interest and
Data packets, and different routers may adopt different hash
functions. Thus, it is very difficult to obtain the hash values
of each substring before the lookup starting. Fortunately,
TB2F-PL allows to process two segments in parallel due
to the decoupling of T-segment and B-segment. Thus, hash
computing for all possible substrings of B-segment can be pre-
processed in parallel during the T-segment matching. To some
extent, this operation ensures the hash values of B-segment
are prepared well when the B-segment’s lookup starts, which
can save the total lookup time.

The parallel lookup process is detailed in Fig. 3(a). Assum-
ing ∀qi in N with a length ζqi (here we use the length to
indicate the number of components of prefix), we will refer to
as qTi and qBi to indicate its T-segment and B-segment with a
length of ζTqi and ζBqi , respectively. First, qTi is looked up along
the T-segment Tree. In the meantime, the hash computing for
all substrings of qBi is conducted. If the longest matching
prefix p′i for qTi is found and its length is shorter than the SL,
the forwarding face will be returned. In this case, the lookup
terminates. On the other hand, if the length of p′i is equal to SL,
one corresponding pointer to an mCBF is returned. With the
knowledge of hash values of substrings, the qBi is then looked

Algorithm 1: The insertion of an entry in TB2F-DU
1: procedure InsertEntry(Prefix x)
2: (xT , xB)←GetSeparation(Prefix x); //split the prefix
3: if mCBF ptr ←Lookup(xT ) then
4: Locate the split mCBF by mCBF ptr;
5: Position in mCBF: j←hi(xB); //hash computing
6: Increment counter for j: Cj←Cj+1; // updating CBF
7: elseif Node ptr ←Lookup(xT ) then
8: Locate the leaf multi-bit node contains an insertion;
9: Bits in internal Bitmap: bi←1; //updating TB
10: Bits in external Bitmap: be←1;
11: if xB 6= NULL;
12: Locate the new allocated mCBF;
13: Position in mCBF: j←hi(xB); //hash computing
14: Increment counter for j: Cj←Cj+1;
15: end if
16: end if
17: end procedure

up in this mCBF. After the membership queries for these
possible substrings, a match vector is returned, which indicates
the longest matching substring p′′i for the qBi . Combining
with p′i, we can easily obtain the longest matching prefix
pi ← 〈p′i, p′′i 〉 for the entire name qi. At last, a hash check for
the next hop forwarding face is conducted. Note that default
faces will be returned if no match is returned. A detailed
timeline for time consumptions of TB2F-PL is illustrated in
Fig. 3(b). It will be used as a ground for the theoretical and
experimental analysis carried out in next sections.

D. TB2F-DU: differentiated update scheme

TB2F provides flexible update process with low overhead
thanks to a differentiated update scheme (TB2F-DU), which
takes full advantage of the low updating frequency of T-
segment Tree as well as the simplified hash computing in
mCBFs. The update process is triggered when new entries
arrive in the FIB and replace the expired ones. This updating
operation in TB2F-DU includes insertion and deletion opera-
tions in both the T-segment Tree and the mCBFs.

Entry insertion (Algorithm 1): When a new entry has to be
added to the TB2F-DS, three cases have to be considered: (i)
only the T-segment has to be updated (i.e., the name has less
than SL components); (ii) the entry just requires an update of
one mCBF (i.e., the T-segment Tree already maps the former
components of the name); (iii) both the T-segment Tree and the



Algorithm 2: The deletion of an entry in TB2F-DU
1: procedure DeleteEntry(Prefix x)
2: (xT , xB)←GetSeparation(Prefix x); //split the prefix
3: if mCBF ptr ←Lookup(xT ) then
4: Locate the split mCBF by mCBF ptr;
5: Position in mCBF: j←hi(xB); //hash computing
6: Increment counter for j: Cj←Cj -1; //updating CBF
7: elseif Node ptr ←Lookup(xT ) then
8: if xB == NULL;
9: Locate the leaf multi-bit node contains a deletion;
10: Bits in internal Bitmap: bi←0; //updating TB
11: Bits in external Bitmap: be←0;
12: end if
13: end if
14: end procedure

mCBF have to be updated. Accordingly, upon an insertion, if
the length of the inserting name is less than SL, we just update
the T-segment Tree, no need to make any operation in mCBFs.
Otherwise, the T-segment Tree is queried to discover whether
a possible match does exist. If the match exists then we are
in the second case otherwise we are in the third one. In the
second case, it is just required to update the mCBF (using an
addition operation on the CBF) pointed by the leaf node of
the T-segment Tree. Instead, if we are in the third case, the T-
segment Tree is renewed to account for the new entry and the
corresponding mCBF is updated with an addition operation.

Entry deletion (Algorithm 2): In parallel with the insertion,
three cases are considered in the deletion process, (i) the
updating of one mCBF when the length of name is bigger
than SL; (ii) the updating of the T-segment Tree when the
length of name is smaller than SL and (iii) the updating of
both them when one T-segment has no B-segment following
after deleting a B-segment. In the first case, one corresponding
mCBF for a given x should be found before, then it carries
out a deletion in mCBF by decreasing the associated counters
by 1. In particular, if one corresponding mCBF cannot be
returned, we believe the name to be deleted does not exist
in TB2F-DS originally. In the second case, one leaf multi-bit
node in T-segment Tree should be updated by renewing both
the internal and external bitmaps by setting the associated bits
to zero, which is detailed in reference [10]. The third case can
be seen as a special situation of case one, a further updating
should be conducted in T-segment Tree because there is no
B-segment following the T-segment.

Due to the differentiated updating operations, it can improve
the updating efficiency and avoid unnecessary overhead in
certain cases. We remark that the depth of the T-segment
Tree is bounded by SL and that our experimental findings
on huge datasets demonstrates that the first levels of the name
tree are relative steady and unlikely to change frequently. As
a consequence, the updating ratio can be kept under control
using a proper SL. This allows us to avoid a fair complex tree
updating process, and transfer it to the low-overhead updating
in mCBF. Furthermore, the length of entries in the mCBF is
shortened by SL, this also benefits the overhead of updating
in mCBFs. In the sequel of the work, all the aforementioned
qualitative evaluations will be proved experimentally to crisply
highlight the relevance of TB2F to CCN scenarios.

 

 

 

 

 

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Characters

P
ro

b
a

b
ili

ty

5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of Components 

P
ro

b
a

b
ili

ty

 

 

Statistic Data 
Fitting Function

X~Gamma(16.24,0.32)

0 2 4 6 8 10
0

0.05

0.1

0.15

Number of Inserted Elements (M)

F
a

ls
e

 P
o

si
tiv

e
 R

a
te

 

 

Bloom Filter size 40M
Bloom Filter size 60M
Bloom Filter size 80M
Bloom Filter size 100M

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Prefix Levels
A

g
g

re
g

a
tio

n

Fig. 4. (a) Number of characters; (b) Number of components for each name.

TABLE II
DATASET COLLECTIONS

URL Datasets Value Names Dataset Value

Baidu URLs ∼1, 960, 000 Crawling URLs ∼14, 800, 000
DMOZ URLs ∼3, 240, 000 CCN names3 ∼200, 000, 000

III. THEORY ANALYSIS BASED ON PRACTICAL
CONSIDERATIONS

Is the proposed TB2F fitted to large scale CCN scenarios?
And how to choose an optimal SL for TB2F? To answer
these questions practically, we make an in-depth study of the
characteristics of CCN names. We recognize that the set of
Internet URLs is a subset of CCN names. Thus, we collected
a large scale real-world URLs as our raw materials, which
contain 2×107 URLs with about 1.3×108 components. Then,
we processed them to build the experimental CCN-names
dataset according to the reference [4]. Finally, the total dataset
contains about 2×108 CCN names, occupies 9.725 GB. Table
II shows the summary information of dataset collections. In
the following, we will make a further analysis for the statistical
features of names.

We seek to explore the shape and statistical characteristics
of two very relevant features of the name space: (1) the
number of the components ` (ui) for each name ui and (2)
the number of the characters ϕk (ui) for the k-th component
in ui. Both of them are core indicators for the features of
CCN names and dramatically affect lookup operations. Fig. 4
shows the characteristics of our dataset in terms of number of
characters and components for each CCN name, respectively,
where the names are reported with the same sequence as the
crawling process provided them. Furthermore, their statistical
distributions are shown in Fig. 5, some essential findings are
observed in what follows.

Observation 1: In Fig. 5(a), it can be argued that more than
91% components have a length smaller than 10 characters,
and nearly 40% components with a length of 3 characters.

This feature means short components are popular to be used
in CCN name, whereas long components exist but are rare. An
intuitive explanation is that short components are easier to be
remembered by human, and more convenient to be used.

Observation 2: In Fig. 5(b), we observe that nearly 40%
names have a length less than 4 components, and nearly 75%
names have a length less than 5 components.

This feature means if we consider the case of 50% names,
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the threshold of the length should lie in the set of [4,5].
Based on these primary considerations, we deepen our

analysis to assess the metrics in terms of (a) computing
complexity, (b) false positive rate, and (c) aggregation and
updating ratio, dependent on SL.

(A) Computing complexity: The lookup complexity in a
trie is directly dependent on the depth of the trie [15], thus,
the average time complexity of T-segment lookup achieves a
reduction from O

(
ζ̄qi
)

to O
(
ζ̄Tqi
)
, and is O (SL) in the worst

case. As for the B-segment, the membership query complexity
is O (1) in theory [13]. However, it is a fact the hash comput-
ing for each prefix of B-segment in CCN is expensive, which is
dependent on the length of substrings [16]. Since it requires
to compute for each level substring of qBi for membership
queries, the computing complexity is O

(
ζ̄Bqi ·

(
ζ̄Bqi − 1

)/
2
)
.

If the hash computing for each substring is independent,
the time complexity will become O

(
ζ̄Bqi
)

in the worst case
relying on concurrent processing for all substrings. Let κ
be max

(
SL, ζ̄Bqi

)
. Since T-segment matching and B-segment

hashing can be processed in parallel, the total time complexity
for TB2F-PL is O (κ+ 1) in theory.

The updating process includes entry deletions and entry
insertions. Different from lookup operations, this process only
conducts hash computing for the string to be deleted or
inserted, and need not to care about its substrings in the CBF.
For TB2F-DU, the hash computing for the updating entry costs
O
(
ζ̄Bqi
)
. The computing complexity of locating the proper leaf

in TB is O (SL) in the worst case. The update complexity in
CBF is O (1). Due to the parallel process, the time complexity
for TB2F-DU is also O (κ+ 1) in the worst case.

(B) False positive rate: In original BF-solutions, all names
should be inserted into the filters. However, in TB2F-DS not all
prefixes need to be stored using BF, but only the B-segments.
Based on the theory in [17], a new expression for false positive
rate is formulated as

p =

(
1−

(
1− 1

C

)kµn)k
≈
(

1− e−kµn/C
)k

(2)

where C is the size of the CBF, k is the number of hash
functions, n is the total number of prefixes, and 0 6 µ 6 1 is
the ratio of B-segments over the entire space of prefixes.

Formula (2) presents a direct relation between the false
positive rate p and the ratio µ on condition of n being a known
constant. Furthermore, Fig. 6(a) shows the varying pattern at
different filter sizes in the case of 10 million name prefixes.
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Fig. 6. (a) False positive rate; (b) Aggregation ratio of prefixes.

Observation 3: From Fig. 6(a), it is observed that the false
positive rate increases as the value of the ratio µ. Combining
with formula (2), a higher ratio µ will bring a higher false
positive rate if the total number of name prefixes is a constant.

In TB2F, only if the length of one name is bigger than SL,
its B-segment would be inserted into CBFs. According to the
Observation 2, different values of SL will bring different ratio
µ. If the threshold of SL is 5, then only 25% names have
corresponding B-segments. To this end, an optimal choice of
SL may lead to a suitable µ, that drives a small false positive
rate within an acceptable range.

(C) Aggregation and updating ratio: For ease of descrip-
tion, we first give a formal definition for aggregation ratio for
a set of names.

Definition 2 (Aggregation ratio): Given a name set S,
in which the number of names is |S|, and a prefix length l,
∀l > 0, l ∈ N + , we can calculate the total number of all
different prefixes in S with a length l, that is C (l). Then, the
aggregation ratio is defined as 1 - C (l)/|S|.

Intuitively, the aggregation ratio represents the probability of
many names sharing one same prefix, and it is an important
indicator for the space compression of prefixes in the tree-
based data structure. Fig. 6(b) shows the aggregation ratio as
well as its rate of change greatly relying on the prefix length.

Observation 4: According to Fig. 6(b), the aggregation
ratio of the prefixes decreases with the length of prefixes. It is
larger than 95% when the length of prefixes l ∈ [1, 5], l ∈ N + ,
and it starts decreasing quickly when l > 6, l ∈ N + .

This feature implies that it would have a high aggregation
ratio in the first several components of CCN names. It will
bring a great space saving in TB structure and provide benefits
for the low updating probability of TB elements if the SL 6 5.

Proposition 1: Given a tree R (P1) for name prefixes set
P1, a new set of name prefixes P2 brings an updating for
R (P1) to build R (P1 ∨ P2). The updating probability for
R (P1) increases with the depth of the tree.

Proof: Let A (t) denote the aggregation ratio of the prefixes
set Pt with a length of t, B (t) be the updating probability
for Pt. Based on Observation 4, ∀ε > 0, we have A (t) >
A (t+ ε). Given a new name prefix px, only if px /∈ Pt, one
updating would occur. Since a higher A (t) means a bigger
probability of px ∈ Pt, thus it obtains a lower updating
probability. Therefore, for ∀ε > 0, B (t) 6 B (t+ ε). It
concludes our proof. �

Based on the above observations and analysis, we provide



a methodology to estimate an optimal reference size for SL,
subject to all the constraints of the problem we are dealing
with: (i) to minimize the false positive rate, the SL should
be as much as possible, which is restricted in [4,∞) (from
Observation 3); (ii) to achieve a low memory cost as well as
a low updating ratio for T-segment Tree, the SL should be as
small as possible, which is restricted in the range [1, 5] (from
Observation 4 and Proposition 1); (iii) to obtain a reasonable
time complexity and memory cost, SL would better lie in the
set [4, 5] (from Observation 2). All these considerations guide
us to conclude an inference for the estimation of SL.

Inference: To maximize the benefit of TB2F, thus, minimize
the lookup time on the restriction of the affordable memory
cost as well as acceptable false positive rate and updating
overhead, an optimal size of SL is concluded with a set-
intersection operation, which is suggested in the set of [4, 5].

In next section, experimental comparisons will analyze the
performance tendency along with different SL values and
further crisply verify the relevance of this inference.

IV. EXPERIMENTS EVALUATION

To evaluate the scalability and efficiency of the TB2F, we
carefully selected two state-of-the art solutions, namely Name
Prefix-Trie [12] and Bloom-Hash [13] for comparisons. The
two candidates are typical to represent the Trie-based and BF-
based solutions, respectively. In the experiments, we focus
on comparing our solution with both of them in terms of
four metrics: (i) memory cost, (ii) lookup time consumption,
(iii) false positive rate as well as (iv) updating overhead.
To verify the optimal value of the SL, we further compare
the performance in varying SLs. All logical algorithms are
implemented with C++ in software, and run in a router testbed,
which is equipped with 16G RAM, 2 × Intel Xeon(R) 4 Cores
2.27GHz CPU, 8 Forwarding faces. Each set of experiments
repeat 100 times to get an average result.

To check the performance in various scale cases, we ran-
domly select name prefixes from our dataset and insert them
into the forwarding tables with randomly assigned forwarding
faces. The number of inserted entries is ranged from 1 to
20 million. Then, we conduct names queries concurrently
to simulate a practical CCN name lookup. We observe and
compare the performance when the SL value varies from 1 to
6, and different hash functions [23] are adopted for computing
hash keys for CBF. To keep a small false positive rate, we set
the number of buckets in mCBFs as 10 times of the number of
inserted names (the load factor is 0.1). Each bucket occupies
8 bits, which is enough to avoid the potential bucket overflow.

(i) Memory cost. In this experiment, we select 1-20 million
names from the dataset and insert them into the FIB in
order. Meanwhile, we record the memory cost each additional
one million names. Fig. 7 shows memory cost in different
solutions. It states that memory cost increases with the number
of names. The Name Prefix-Trie has the biggest memory cost
as well as the sharpest increasing rate. When the number of
prefixes rises to 11 million, the memory cost reaches to the
max limit of our hardware (nearly 16 GB). This means Name
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Prefix-Trie has the worst scalability at large scale systems.
TB2F may provide a great improvement with respect to Name
Prefix-Trie. The memory cost decreases as the SL decreases.
In the worst case (SL=6), the memory cost is still acceptable
by our hardware. In the case of SL=1, the memory cost of
TB2F approaches to the one of Bloom-Hash, which exhibits
the smallest memory consumption.

(ii) Lookup speed. Fig. 8 presents that the mean lookup
time for each lookup increases slightly with the scale of pre-
fixes. Bloom-Hash has the worst performance because Bloom-
Hash must conduct complex hash computing for all substrings
of each name and cope with a number of conflicts, which
consumes additional time. Name Prefix-Trie has a smaller
processing time when the number of prefixes is less than
11 million. Unfortunately, as shown in Fig. 8, the usage of
Name Prefix-Trie is restricted to a small set of prefixes due a
poor scalability. Concerning TB2F, its processing time first
decreases then increases as the SL increases. Note that it
achieves to the minimized time consumption when SL=5.

To make a more detailed explanation, Fig. 9 shows the
components of processing time for every lookup, including
the name reading, T-segment lookup, B-segment lookup, and
hash check processes in cases of SL=3,4,5,6. In this figure, the
time consumptions in name reading and T-segment lookup are
independent on the number of prefixes. Nevertheless, the time
in B-segment lookup and hash check slightly increases by the
number of prefixes, which contributes to an increase law for
the total time. It is also observed that the total time decreases
as SL increasing in Fig. 9 (a), (b) and (c), and get the minimum
in case of SL=5. In the case of SL=6, the total time increase
again due to the time in TB lookup increases greatly. Further,
we make a horizontal comparison with different SLs with a
same scale in Fig. 10. Here, we focus on two cases of 10M
prefixes and 20M prefixes. In this figure, we observe that for
increasing values of SL, the time in B-segment lookup drops
down, while the time in T-segment grows up. Most excitingly,
the time in B-segment lookup first falls below the one in
T-segment when SL=5. There is a cross point in the nearly
SL=5, which is the optimal solution. The main reason is that
a bigger SL brings a longer T-segment Tree as well as shorter
B-segments, and time consumption highly relies on the length
of both kinds of segments. This result confirms the rationality
of previous inference, an optimal SL is in the range of [4, 5].

(iii) False positive rate. Fig. 11 shows the false positive rate
as a function of the number of hash functions. We compare
the Bloom-Hash and TB2F-based solutions with different SL
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Fig. 10. (a) 10M prefixes; (b) 20M prefixes (with 95% CI).

values. In this experiment, a certain total size 100MB is set
for the mCBFs, and the case of total 20 million names is
considered. In this figure, TB2F-based solutions have a lower
false positive rate than Bloom-Hash, since Bloom-Hash has
the biggest number of names need to be inserted into the
filter. Further, we observe that the false positive rate decreases
along with the SL increase. The reason is that the number of
B-segments is reduced by the SL increasing, then achieves
a smaller false positive rate. This result also validates our
previous analysis.

(iv) Overhead of updating. To evaluate the overhead of
updating, we first finish inserting 1-20 million prefixes into
the FIB in different cases, then randomly delete and insert
20% prefixes from/into the data structure. The average time
consuming for per prefix is used to denote the overhead of
updating. Fig. 12 shows the overhead varies with the scale of
prefixes. In this figure, the overhead keeps a relative high level
in Name Prefix-Trie and Bloom-Hash. We observe that TB2F
with SL=1 is a little higher than both them, while the ones
with other SLs have lower overheads. That’s because TB2F-
DU bring benefits for the updating process with a limited
extra overhead. However, its benefit is dependent on the value
of SL. When SL=1, the benefit is too small to make up the
extra overhead. As the SL increases, the benefits become more
impressive, which results in a relative low update overhead.
More importantly, the overhead of updating achieves to the
minimum when SL=5, which is the result from the tradeoff of
the length of T-segments and B-segments.

In total, above experiments verify that with a suggested
SL=5, TB2F achieves a relative good scalability and efficiency
by (i) speeding up lookup operations and reducing the false
positive rate with respect to Bloom-Hash; (ii) requiring less
memory than Name Prefix-Trie; (iii) achieving a lower over-
head in updating operations with respect to both algorithms
in the large scale case. In fact, the set of requested names
may have a strong regional disparity, which means the local
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optimal SLs may be different. The methodology in this paper
can be adopted to guide how to decide an optimal SL locally.

V. RELATED WORK

A well-known solution for fast LPM is the Trie [18], based
on which several solutions have been conceived [14]. These
solutions are inherently able to handle name aggregations due
to their tree structure [19]. The TB [10], a multi-bit expanded
Trie, is believed as one of the most efficient schemes among
them. Recently, their usage in CCN is being investigated by
the research community. Wang et al. first propose an effective
name component encoding solution for Name Prefix Trie to
reduce the memory cost and accelerate name lookup [12].
Additionally, a parallel name lookup is proposed by allocating
the logically tree-based structure to parallel physical modules
[20]. Li et al. also proposed a fast longest-name-prefix lookup
framework and implemented it using fat tree and extensible
hybrid data structures [21]. Although Trie-based algorithms
are simple and efficient, their performance degrades linearly as
the tree depth increases. The tree depth can be very huge due to
the length of CCN names, so that existing Trie-based solutions
if used in CCN cannot easily scale to Internet scenarios.

Another family of alternative approaches rely on the adop-
tion of BFs. The BF [11] provides a space-efficient proba-
bilistic data structure to support set membership queries. Since
standard BF does not allow element deletions, Counting BF
(CBF) is proposed to tackle this limitation by adding a counter
[22]. Dharmapurikar et al. first apply BF in the LPM [13].
Recently, there are some emerging BF-based solutions for
CCN. You et al. propose a distributed PIT table, named DiPIT,
which implements a sub-PIT on each CCN node face with a
CBF [17]. So et al. design a fast forwarding table combining
with BFs and data prefetching [23]. Wang et al. propose an
efficient lookup scheme for NDN by applying two-stage CBFs
[24]. However, BFs bring a chance for false positive rate due



to hash collisions, which partially depends on the number
of entries inserted into the filters. Due to the potential huge
number of CCN names, the false positive rate will be not easily
limited at a large scale. What’s worse, the hash computing for
possible prefixes of CCN names is needed in BFs, which will
lower the lookup efficiency, especially for the long names. All
these facts impede BFs readily applied in CCN at a large scale.

Besides, hardware-based approaches are also evolved for C-
CN by taking advantage of its parallelism. Varvello et al. target
the hardware design of a high-end content router, named by
Caesar [25]. At the same time, Wang et al. conduct an study on
wire speed name lookup by exploiting GPU’s massive parallel
processing power [26]. These hardware-based technologies can
bring a considerable improvement for the processing, however,
they make sacrifice on the high cost and power consumption,
and low flexibility of self-accommodating.

It is this investigation that guides us to focus on novel
name lookup design in data structure and consider its suitable
hardware implementation. One idea is to split the long CCN
name into relative short segments by an alternative split rule.
With this simple operation, it allows us to make full use of
the advantages of existing lookup mechanisms. Our recent
work has originally explored a name lookup mechanism using
adaptive prefix Bloom filters [27]. In this paper, we take
more considerations of simplifying practical manufacturing
techniques and focus on a more straightforward solution which
can be easily deployed in practical. Different from the previous
one, this work proposes a CCN-customized name lookup
engine by leveraging TB and BF with a static optimized name
split rule based on extensive practical experiments. We believe
this fundamental work can provide a novel insight for further
developing high scalable and efficient lookup solutions for
large-scale CCN usage.

VI. CONCLUSION

In this paper, a novel CCN-customized name lookup so-
lution (TB2F) has been presented. TB2F makes a simple
partition for hierarchical unbounded CCN names, and explores
a scalable data structure as well as efficient lookup scheme by
leveraging existing TB and BF. Practical analysis combining
with extensive experiments at a large scale suggests an optimal
value of the split level, and verifies the performance with fast
lookup with affordable memory cost, low false positive rate
and low updating overhead, which are believed to be suitable
for CCN at large-scale deployment. With promising results,
this work might timely pave a new way for the development
of practical CCN routers. In our future work, more tests
and further enhancements for TB2F will be planned, such as
taking into account of caching optimization, names distribution
in content retrieval [28][29], multithreads and GPU-based
implementation to further improve the CCN name lookups.
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