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Abstract—This paper capitalizes on two emerging trends, i.e.
the growing use of wireless at the edge of industrial control
networks and the growing interest to integrate IP into said
networks. This is facilitated by recent design contributions from
the IEEE and the IETF, where the former developed a highly
efficient deterministic time-frequency scheduled medium access
control protocol in form of IEEE 802.15.4e TSCH and the
latter IPv6 networking paradigms in form of 6LoWPAN/ROLL,
and scheduling approaches in form of 6TiSCH. The focus of
the present work is on advancing the state of the art of
deterministic 6TiSCH schedules towards more flexible but equally
reliable distributed approaches. In addition, this paper aims
to introduce the first implementation of 6TiSCH networks for
factory automation environments: it outlines the challenges faced
to overcome the scalability issues inherent to multi-hop dense
low-power networks; the experimental results confirm that the
naturally unreliable radio medium can support time-critical
and reliable applications. These developments pave the way for
wireless industry-grade monitoring approaches.

Index Terms—6TiSCH, IEEE 802.15.4e, scheduling algorithms,
Timeslotted Channel Hopping

I. INTRODUCTION

Industrial networks, often referred to as Operational Tech-
nology (OT), and computer networks, referred to as Informa-
tion Technology (IT), emerged simultaneously some 40 years
ago, each designed with a specific aim and different range
of applications in mind. After being developed for years in
parallel, IT and OT technologies commence to converge and
be mutually integrated, enabling OT traffic to be transported
over a shared IP-based IT infrastructure. Due to their different
goals, OT and IT have evolved in a radically different way one
from another. Therefore, a number of new challenges have to
be overcome in order to make the IT/OT integration viable [1].

The IP version 6 (IPv6) protocol [2] is the de-facto IP
standard version for the IT/OT convergence. While the IP
protocol has been used since the beginning at the networking
layer of IT systems, OT needs to adapt not only to the IP
standard itself, but also to the whole IP protocols suite [3],
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including among others the IPv6 Routing Protocol for Low-
Power and Lossy Networks (RPL) [4], and the Constrained
Application Protocol (CoAP) [5]. At the same time it is
necessary to adapt the IP suite to match the constraints and
requirements of industrial networks (e.g., monitoring systems,
motion detection, control loops, etc.), which are deterministic
by design, and different from traditional IP QoS-based net-
works. To this aim, new protocols and an overall architecture
tying the adapted protocol suite together should be defined by
Standard Developing Organization (SDO) [1].

Following this trend, a new Working Group, namely
6TiSCH [6], [7], has been created at the IETF to enable IPv6
over the deterministic Time Slotted Channel Hopping (TSCH)
mode of the IEEE802.15.4e standard [8]. In the 6TiSCH
architecture, low-power wireless devices form a multi-hop
Low power and Lossy Networks (LLN), that is plugged into
Internet through one or more LLN Border Routers (LBRs) [9].

Inside the LLN, nodes communicate by following a com-
mon schedule, which is a matrix of cells, each of them
assigned to a pair of neighbor nodes for communicating at
a given time, on a specific channel. The performance of the
LLN (e.g., throughput, average packet latency, node energy
consumption, network lifetime) are strictly dependent by the
way this schedule is built.

The IEEE802.15.4e standard [8] defines the mechanisms
to execute a communication schedule. At the same time, it
leaves as out of its scope defining how the schedule is built,
updated and maintained, and designating the entity in charge
of performing these tasks. Therefore, one of the goals of
the 6TiSCH Working Group (WG) is to develop a standard
approach to manage this schedule and build it according to
the network requirements [10].

6TiSCH has been recently working on the definition of a
so-called “minimal” schedule, a static one, which is either pre-
configured, or learnt by a node when joining the network.
Such schedule mode does not exploit the full benefits of
IEEE802.15.4e TSCH, but it can be used during network
bootstrap, as a fallback mode of operation when no dynamic
scheduling solution is available or functioning, or during early
interoperability testing and development [11].

At the same time, 6TiSCH aims to investigate and develop
centralized and distributed scheduling solutions. In the central-
ized case, the schedule is built by a Path Computation Element
(PCE), a specific schedule entity, located into the Internet
that continuously collects information from the network (e.g.,
traffic requirements from the nodes), in order to adjust the
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TSCH schedule accordingly. In the distributed case, there is no
central entity, but nodes in the LLN agree on the schedule to be
used, by applying distributed multi-hop scheduling protocols
and neighbor-to-neighbor scheduling negotiation [12].

After the publication of the IEEE802.15.4e standard [8],
both centralized and distributed scheduling approaches have
been investigated by the research community, even before the
birth of the 6TiSCH WG.

The first pioneer work [13] proposed a centralized solution,
i.e., a Traffic Aware Scheduling Algorithm (TASA) that, by
exploiting matching and coloring procedures, allows to sched-
ule cells to all the nodes across the entire network topology
graph. Briefly, with TASA the TSCH schedule is settled based
on the network topology and the traffic load. In detail, the
PCE uses the information related to the paths, coming from
the routing protocol (e.g., RPL), and those related to the traffic
(e.g., average traffic load generated by each node) in order to
assign cells within the schedule, and provide the required level
of QoS (duty cycle, throughput, etc.) to each active flow [14].
However, such scheduling technique triggers the exchange of
a huge amount of signaling overhead, since each node in
the network is supposed to communicate end-to-end with the
PCE for both (i) sending topology and traffic load related
information and (ii) receiving its own portion of the collision-
free schedule. In addition, an underneath assumption is that
the network churn is very low. This is somehow unrealistic
also in non-mobile network scenarios, since the radio medium
reliability is unpredictable in nature: to adapt the network
topology to the best reliability available (i.e., the Packet
Delivery Ratio (PDR), of each link), the routing protocol
will change the routing topology, thus triggering schedule
re-computations and more signaling phases with additional
signaling overhead in the end.

As a counterpart, in the context of the OpenWSN
project [15], some distributed approaches have also been stud-
ied. For instance, uRes [16] proposes the use of a negotiation
process between neighbor nodes to schedule cells. In detail,
uRes allocates cells minimizing the number of collisions,
based on the knowledge of their neighbors schedule. Since
collisions can still occur, they are resolved by re-allocating
the colliding cells [17].

Recently, the Decentralized Traffic Aware Scheduling
(DeTAS) technique [18] was proposed to address the schedul-
ing needs of deterministic networks and was conceived to
comply with the following guidelines:

1) ensure the smallest end-to-end latency between data
generation and its reception at the application sink (i.e.,
the root node in a RPL-organized network);

2) keep the queue utilization as small as possible, through a
strict alternation of transmitting and receiving cells into
the TSCH slotframe structure;

3) use neighbor-to-neighbor signaling for gathering mini-
mal information about the network and traffic features
and for distributing minimal information to compute
a collision-free schedule, thus bounding the signaling
overhead;

4) compute deterministic time schedules in a decentralized
fashion to manage networks rooted to multiple coordi-

nated sinks, while leaving the channel offset computa-
tion based on the RPL rank of each node in the network.

The guideline expressed by item 1) was also exploited in
designing TASA, while the other ones are inherent to DeTAS.
In [18], it has been shown that the guideline of 2) allows
nodes’ queues to be almost empty, as a natural consequence of
a better schedule organization w.r.t. to that of TASA. To shed
some light on these and other features, after having introduced
in Sec. II the 6TiSCH architecture as the technical landscape
behind DeTAS, we briefly recall its theoretical design in
Sec. III.

With regard to item 3), in this paper a DeTAS neighbor-
to-neighbor signaling is described in more details in Sec. IV.
For the sake of completeness, we also mention here the work
of Morell et al. [19], which defined a form of neighbor-to-
neighbor signaling exchanges by exploiting the concept of
label switching in TSCH networks and proposing the use of
reservation to establish and manage tracks between nodes in
the network. In that proposal, the TSCH schedule is built
by collecting information along the track and installing it
during the downstream reservation message, in a RSVP-like
fashion [17]. It has to be noted that the neighbor-to-neighbor
RSVP-like signaling computes the scheduled resources along a
given path between a node in the network and the traffic sink.
Instead, the neighbor-to-neighbor DeTAS signaling computes
the scheduled resources for the routing sub-tree rooted at
a given node in the network: that node spreads aggregated
schedule information which are in turn hop-by-hop unbundled
to compute the schedule of each node in the sub-tree. This
feature is very important, because the signaling overhead is
significantly small, since the schedule computation is dis-
tributed into the network with each DeTAS-enabled neighbor
being able to decide how the schedule of its RPL-children has
to be built.

It is worth to note that the original DeTAS proposal in [18]
was only formulated as a high level algorithm design and many
missing items have been contributed in this manuscript to let
DeTAS become a real protocol ready to use in industrial plants
and beyond. They include a lightweight signaling protocol, the
implementation in the OpenWSN stack, and an experimental
evaluation which actually proofs the theoretical findings of the
original DeTAS formulation. Thanks to these contributions it
is now possible to claim that DeTAS is a real protocol ready
to be used and customized in different industrial settings.
And thanks to the open freely available implementation in
OpenWSN, it can be tested before deployment.

As a major contribution, in Sec. V we deeply show and
analyze DeTAS performances in terms of end-to-end latency,
reliability and duty-cycle by means of experimental results.
Specifically, we only considered single-sink topologies and
discovered that some assumptions on the channel offset reuse,
made in [18] and cited in the guideline 4), are somehow
unrealistic in practical scenarios. In this paper we show that a
neighbor-to-neighbor signaling can be used also to overcome
this issue. Finally, Sec. VI draws concluding remarks and
pictures the envisaged future works.
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II. 6TISCH ARCHITECTURE

The IEEE802.15.4 PHY protocol [20] has been the de-
facto standard with the longest-standing impact in low-power
wireless mesh technology, and has been widely used by low-
power battery-powered devices to build LLNs.

The need to interconnect IEEE802.15.4-based low power
networks to the Internet triggered the birth of various WGs
within the IETF, including 6LoWPAN [21] - now 6lo [22]
-, ROLL (the group behind the RPL routing protocol [4]),
and CORE (behind the CoAP web transfer protocol [5]) that
have defined how to fit an IPv6 protocol stack on top of
IEEE802.15.4.

The IEEE802.15.4e standard [8] was published in 2012
as an amendment of the IEEE802.15.4-2011 Medium Access
Control (MAC) protocol only [20]. In other words, it did not
amend the physical layer and therefore, it can still operate on
any IEEE802.15.4-compliant hardware.

Despite that, the IEEE802.15.4e TSCH MAC mode –
which is the main focus of the activities within the 6TiSCH
group, and also of our work – is very different from the
“legacy” IEEE802.15.4 MAC protocol. TSCH combines time
synchronization with channel hopping, to achieve ultra low-
power operation and high reliability, respectively. More-
over, unlike the industrial standards (i.e., WirelessHART [23]
and ISA100.11a [24], [25]) from which it inherits, the
IEEE802.15.4e TSCH focuses exclusively on the MAC layer.
This clean layering lets TSCH fitting under an IPv6-enabled
“upper” protocol stack.

Given the aforementioned appealing features of the
IEEE802.15.4e TSCH, members of both academia and indus-
try have created a new Working Group, 6TiSCH, at IETF to
build IPv6-enabled LLNs, rooted in the IEEE802.15.4e TSCH
MAC layer. The final aim of 6TiSCH consists in filling the
gaps between IEEE lower layers of an industrial IoT protocol
stack and the IETF higher layers, to enable an open standards-
based protocol stack for deterministic wireless mesh networks.

As described in [26], when possible, the 6TiSCH archi-
tecture will reuse existing protocols such as IPv6 Neighbor
Discovery (ND) [27], IPv6 over Low power Wireless Per-
sonal Area Networks (6LoWPAN) [21], and the RPL [4],
with the minimum adaptation required to meet criteria for
reliability and determinism within the mesh, and scalability
over the backbone. 6TiSCH will fill the missing gaps within
the architecture, so that IETF 6LoWPAN Header Compression
and RPL, which enables respectively IPv6 encapsulation and
routing, can optimally operate on top of the TSCH MAC layer.

A. The MAC layer: IEEE802.15.4e TSCH

The IEEE802.15.4e TSCH is suitable for deterministic
traffic, i.e., traffic flows with an emission rate and routing
path patterns that are well-known in advance. In fact, it
combines together Time Division Multiplexing (TDM), time
synchronization and time formatted into slotframes, resulting
in a deterministic wireless MAC standard.

All nodes in a TSCH multi-hop network are synchronized.
Time is sliced up into timeslots which are grouped into one
or more slotframes. A slotframe continuously repeats over

time, and its duration can be fixed to meet the application
requirements (e.g., available bandwidth, lower latency, power
consumption). In a TSCH network, the bandwidth is pre-
formatted in a TDM fashion. Thus, unlike the traditional
CSMA/CA-based networks, there is no contention for gaining
access to the channel (unless allowed explicitly in some
specific timeslots, as detailed in the next paragraph).

Due to its scheduled nature, all nodes follows a common
schedule. The latter is a matrix of scheduled cells, each of
them identified by a slotOffset, and a channelOffset
[28]. A cell represents an atomic unit of bandwidth that can be
allocated by a centralized or distributed scheduling algorithm.
A cell can be dedicated or shared: dedicated cells (those
scheduled by DeTAS, as detailed in this paper) are assigned to
the communication of a pair of neighbors; shared cells are used
by more then two communicating neighbors in a CSMA/CA
fashion (e.g., the static “minimal” configuration [11] deals only
with this kind of cells).

Because of the channel hopping nature of TSCH, the
scheduling algorithm does not care of the actual frequency the
communication happens on, since it changes at each slotframe
iteration. In fact, the channelOffset is translated into a
frequency using a specific translation function which implies
communicating neighbors to “hop” between the different avail-
able frequencies when exchaning data. Such channel hopping
technique efficiently combats multi-path fading and external
interference.

By following the schedule, each node knows when (i.e., at
which time slot), and on which channel (based on the channel
offset) it can exchange (either transmit or receive) data with
its neighbor nodes.

B. The routing protocol: RPL

The RPL Routing Protocol [4] plays a key role in the
6TiSCH architecture, in that it organizes the low power mesh
in form of a Directed Acyclic Graph (DAG), rooted at a
small set of LLN sinks. For each sink, a Destination Oriented
DAG (DODAG) is created by accounting for link costs, node
attributes/status information, and an Objective Function, which
maps the optimization requirements of the target scenario.
In this paper, we consider the simplest topology with a
single sink, also referred as DODAGroot. Although RPL
can manage several kinds of traffic flows (to and from the
DODAGroot or between any pair of nodes in the network),
we have focused on the dominant multipoint-to-point traffic,
i.e., that flowing from the nodes in the network towards the
DODAGroot and more related to monitoring applications in
industrial environments.

RPL employs a gradient strategy, which introduces the
concept of rank to define the individual position of a node
with respect to its DODAGroot. A fundamental property of a
RPL-organized network is that the rank should monotonically
decrease along the DODAG and towards the destination, in
accordance to the gradient-based approach. In general, the rank
is computed based on path metrics, but it is used to let the
routing topology being loop-free. In details, the rank is a 2-
bytes value, whose most significant byte, called DAGrank,
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is used to compare the position of nodes within the network.
As an example, if the DAGrank of a node A is lower than
the DAGrank of another node B, A could be safely a parent
for B; if the DAGrank of two neighbors tie, none of them
can include the other as its own parent.

RPL can adopt several metrics for computing the rank and
the DAGrank. In designing DeTAS, we have forced the
DAGrank to be computed according to the minimum hop dis-
tance metric. According to the standard [4], the DODAGroot
is assigned a DAGrank equal to 1. Hence, the DAGrank
of given source node in the network is exactly equal to the
minimum hop distance from the DODAGroot augmented by
1. However, this approach can be easily extended to account
for different metrics, e.g., the Expected Transmission Count
(ETX).

III. DETAS ALGORITHM DESCRIPTION

The DeTAS algorithm has been designed for building op-
timum collision-free schedules in multi-hop IEEE802.15.4e
TSCH networks. Using a tiny amount of information, locally
exchanged among neighbor nodes, DeTAS allow to compute
the schedule in a distributed manner. Whilst scheduling the
traffic, DeTAS manages queue levels, avoiding traffic conges-
tion and, thus, possible packet drops due to overflow of nodes’
memory buffer. Finally, DeTAS can exploit the availability of
the 16 IEEE802.15.4 frequencies [8] in order to: parallelize
several transmissions at the same time, reduce the number of
active slots per slotframe (i.e., the network duty cycle), and
increase the reliability of wireless links.

In a 6TiSCH network running DeTAS, all devices are as-
sumed to be synchronized with the same slotframe, having size
equal to S time slots. Moreover, all nodes follow a common
TSCH schedule having width equal to L timeslot, with L ≤ S,
and height equal to W channel offset, with W ≤ 16. Such
schedule is set up minimizing its length, i.e., the number of
active slots, L, needed for correctly delivering the network
traffic (expressed as number of packets per slotframe) to
the DODAGroot. More specifically, all transmissions are
scheduled in consecutive L slots, leaving the remaining S−L
slots within the slotframe available for packet transmissions
related to other applications (e.g., other RPL instances). The
length L of the schedule is computed by the DODAGroot
using the formulation introduced in Sec. III-C. Instead, the
width of the schedule, i.e., the number of available channel
offsets, is at least W = 3, since frequencies can be reused
every 3-hops, thus avoiding also collisions due to interference1

[29],[30].

A. Network Topology and Traffic

Being designed for 6TiSCH networks, hereafter we will
use the 6TiSCH terminology [28], while describing the De-
TAS technique. Fig. 1 shows an example network which
is a destination-oriented tree graph coordinated by the
DODAGroot. Given a network with N source nodes, let

1In our experiments (reported in Sec. III) we tested several values of W
parameters in the range [3, 12].

{ni}, with i = 1, . . . , N , be the set of all source nodes, and n0
the DODAGroot. Furthermore, for each node ni it is possible
to identify the set ch(ni) of its children, and the sub-tree STi,
composed by ni itself and all the nodes connected to it through
multi-hop paths. Moreover, Table I summarizes the notation
used throughout this paper.

r=2n

r=3

r=4

r=5

r=1

1 n 2 n 3

n 6n 4 n 5 n 7 n 8 n 9

nn10 n n n n n n n11 12 13 14 15 16 17 18

n n n n n n n n2625242322212019

n 0

DODAG root
ST

1

ST
2

ST
3

Fig. 1: Example of a LLN with a DODAGroot acting as
application sink and 26 source nodes (r is the DAGrank).

TABLE I: List of used symbols.

Symbol Definition
S Number of slots within a slotframe
L Length of DeTAS schedule in slots
W Height of DeTAS schedule in number of channel

offset
N Number of source nodes in the network
n0 LLN sink node
ni, i = 1, ..., N Source nodes
ch(ni) Children nodes of the node ni

STi Subtree rooted to the node ni

qi Data traffic generated on the node ni (local packet
number)

Qi Data traffic generated from the subtree STi (global
packet number)

pi Parent node of the node ni

r DAGrank of nodes representing the distance in
number of hops from the DODAGroot aug-
mented by 1

QM Maximal global packet number among the children
of the DODAGroot

nM Child of the DODAGroot having the maximal
global packet number Qi

qM Local packet number of the node nM

α Number of transmit slots scheduled consecutively
in the node nM

Le Length of the schedule of the even list
Lo Length of the schedule of the odd list
Q0 Data Traffic generated from all the source nodes
Qe

0 Data Traffic generated in the subtrees rooted to
nodes in even list

Qo
0 Data Traffic generated in the subtrees rooted to

nodes in odd list
β The parameter that balances even and odd data

traffic (Qe
0, Q

o
0)

ncut Node which schedule is divided between the even
and odd list

STcut Subtree rooted at the node ncut

DeTAS is a traffic-aware algorithm that builds the schedule
based on the traffic generated by each source node. We assume
that the network supports a multipoint-to-point traffic. In
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detail, every source node in the set {ni} generates a constant2

integer number of packets, i.e., the local packet number, qi,
within a slotframe, destined to the DODAGroot. For each
node ni belonging to the network with i = 1, . . . , N , we
define also the global packet number, Qi, as the total amount
of packets generated within a slotframe by the nodes belonging
to the sub-tree STi.

B. Decentralized scheduling
To setup the schedule in a distributed manner each node

ni needs to know some traffic information: (a) the amount of
traffic that it will receive from its children, and (b) the amount
of traffic it will transmit to its parent node pi. Therefore ni
computes locally its global packet number, Qi, as the sum of
its local packet number, qi, and the global packet numbers
of its children, and then forward such information to its
parent node, pi. In a recursive way, thanks to the information
exchanged at one hop distance, the DODAGroot, n0, will
be able to calculate the overall traffic of the subtree, Q0 as
well as the local packet numbers of its children. Starting from
the aforementioned traffic information, exchanged at 1-hop
distance, the schedule is built in a distributed fashion, where
each node, ni, allocates some slots within the schedule to its
children. The built schedule is collision free for the whole
network and keeps the queue utilization as low as possible. In
what follows, we detail the rules adopted in designing DeTAS
and the resulting scheduling technique.

a) Scheduling the Slot-Offsets: First of all, each DeTAS-
enabled node in the network schedules the transmission slot
in such a way to be synchronized with the reception slot of
its parent. Afterwards it allocates on its own which cells it
will use for receiving packets from its own children. In fact,
a node ni does not perform any scheduling decision until it
is informed by its parent pi about the Qi cells to be allocated
as transmitting (or tx) slots. The allocation of rx slots to the
children is performed in a recursive way, starting from the
DODAGroot and going downward towards the leaf nodes.

Once ni has been made aware of which are its tx cells, it
can decide its Qi− qi rx cells (i.e., those needed for receiving
packets from its children) and it makes sure that these two sets
of cells are not overlapped. In particular the tx and rx cells are
alternated (i.e., as depicted in the example in Fig. 2), which
means that if a type of cell is scheduled in an even slot the
other type should be scheduled in the next odd slot. Then, ni
splits its rx cells in subsets, with each subset being assigned to
a child node. In order to fulfill the requirements each child, the
corresponding subset is sized according to the supplied global
packet number. In the end, each child is made aware by ni
about the assigned subset of cells, and will configure such
cells as tx ones. In the example of Fig. 2 the node n4 splits
its subset of rx slots in two subsets, which in term should
coincide with the set of their tx slots. Such policy does not
allow two nodes having a common parent to transmit using
the same cell, thus it overcomes the hidden terminal problem.

2Such an assumption is supported by the fact that traffic is typically different
between sensors, but relatively constant over time in emerging heterogeneous
embedded applications. Actually, with an efficient signaling, DeTAS could
also support variable bit rate traffic flows.

To avoid any kind of collisions, DeTAS does not allow two
nodes with the same DAGrank to schedule transmissions
in the same timeslot. With this feature DeTAS can build
collision-free schedule, even being agnostic about the physical
connectivity between nodes in the network. Eventually, DeTAS
overcomes the exposed terminal problem too.

Interestingly, by alternating tx and rx cells, the queue of
a node is emptied of 1 packet, as soon as it receives a new
one, and viceversa. Thus, buffer overflow is avoided and queue
utilization is kept as low as possible.

Obviously, to allow packets to be correctly sent and re-
ceived, the tx cells of the children ∈ ch(ni) must be synchro-
nized with the rx cells of ni.

For the sake of clarity, and in order to add some formaliza-
tion to the description, we introduce the following definitions.

Definition 1: A node ni is even-scheduled, if its tx cells are
located in even positions within the scheduling interval, while
its rx cells are located in odd positions.

Definition 2: A node ni is odd-scheduled, if its tx cells are
located in odd positions within the scheduling interval, while
its rx cells are located in even positions.

A sub-tree STi rooted at a node ni can be even- or odd-
scheduled, according to the following additional definitions.

Definition 3: A subtree STi is even-scheduled, if all nodes
∈ STi with even DAGrank are even-scheduled and those
with odd DAGrank are odd-scheduled.

Definition 4: A subtree STi is odd-scheduled, if all nodes
∈ STi with even DAGrank are odd-scheduled and those with
odd DAGrank are even-scheduled.

Fig. 2: Odd-schedule for nodes belonging to ST4 of the
destination oriented tree in Fig. 1 (note that n4 has an even
DAGrank).

Therefore Fig. 2 shows an example of an odd schedule
followed by the sub-tree ST4 of the destination oriented tree
in Fig. 1, and, details the time slots reserved to the nodes
n4, n10, n11, n19 and n20. We can see that n4, having odd
DAGrank is even-scheduled and spends the Qi even time
slots in transmission, the first Qi − qi odd time slots in
reception, and the last qi odd time slots in idle (having already
received all the packets from its children n10 and n11).

b) Scheduling the Channel-Offset: Besides the allocation
of tx of rx cells, the channel offset is changed at each hop
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and the same channel offset is reused only after W -hops. In
particular, for each source node ni, DeTAS allocates tx cells
with a channel offset equal to [(DAGrank−2) mod W ] (for
transmitting packets to the correspondent parent pi), and rx
cells with channel offset equal to [(DAGrank−1) mod W ]
(for receiving packets from children ∈ ch(ni)). If W = 1,
there is a single channel offset used for the whole schedule,
hence this setting does not exploit the bandwidth increase
available with multiple channel offsets and collisions can occur
when two or more motes are transmitting at the same time.
If W = 2, packet collisions can happen when a node ni
and its parent pi are respectively receiving (from a child) and
transmitting (to the parent) at the same time. With W ≥ 3, the
channel offset is reused at least every 3 hops. This means that
the absolute difference between the DAGranks related to two
nodes transmitting in the same cell (i.e., on the same timeslot
and channel offset) can be 0 or ≥ 3. In the latter case, there
will be ideally no collision, due to the minimum hop count
metric used for building the destination oriented tree. Instead,
if the aforementioned difference is 0, some collision due to
mutual interference can occur.

c) Considerations: It is worth noting that a node ni can
accomodate all the schedule (i.e., tx or rx cells) in a scheduling
interval of 2Qi consecutive slots within the slotframe. In fact,
within this interval, the Qi even (odd) slot offsets could be
used for scheduling tx cells (i.e., the needed cells to deliver
Qi to the parent pi), while the first Qi − qi odd (even) slot
offsets could be used for scheduling rx cells (i.e., the cells
needed by ni for receiving Qi − qi packets from the other
nodes ∈ STi). In the remaining qi odd (even) slot offsets,
the node will be idle. Hence, the node ni must be informed
only about the lowest boundary of such interval and about the
policy for alternating tx and rx cells. Such information can be
carried with a small overhead, with the additional advantage
of having an easy management of allocated resources into
constrained devices.

Moreover the nodes in a scheduled sub-tree allowed to
transmit in the same timeslot have all an even (or an odd)
DAGrank. Moreover, with such scheduling technique, it
is not possible that two nodes with the same DAGrank
can transmit simultaneously. As a consequence, it is possi-
ble to schedule simultaneously two sub-trees rooted at the
DODAGroot, with one being even-scheduled and the other
one being odd-scheduled. The schedules will be perfectly
interleaved, with at most a single node per DAGrank being
allowed to transmit packets to its parent.

C. Schedule length L

Even though the schedule is built with a distributed ap-
proach, it is initialized by the DODAGroot, that computes
the length L of the schedule, and selects, among the sub-trees
rooted at its children, the ones to be even-scheduled, and thus,
those to be odd-scheduled.

Being DeTAS a traffic-aware scheduling algorithm, the
length, L, of the schedule is a function of the network traffic.
In fact, the DODAGroot can receive at most one packet per
time slot (i.e., L ≥ Q0). At the same time, the child of the

DODAGroot, referred hereafter as nM , having the maximum
global packet number, i.e., QM = maxni∈ch(n0)Qi, will need
a schedule long enough for containing QM transmit slots and
QM − qM receive slots, i.e., L ≥ 2QM − qM . For every
randomly scattered physical topology, the proposed DeTAS
scheme is able to find the optimum schedule with the minimum
length, given by:

L = max {2QM − qM , Q0} . (1)

To this aim, DeTAS simultaneously guarantees that a single
sub-tree rooted at a sink’s child is even-scheduled, while the
sub-tree rooted at another sink’s child is odd-scheduled, thus,
they will not incur in any kind of collision, since the related
schedules are perfectly interleaved. Therefore, a DODAGroot
running DeTAS must divide its children in two lists, i.e., an
even list and an odd one. The sub-trees rooted at the children in
the even list could be sequentially even-scheduled, in a time
interval long Le time slots. At the same time, the sub-trees
rooted at the children in the odd list could be sequentially
odd-scheduled, for a time interval long Lo time slots. Since
the schedules associated with the two lists can be perfectly
overlapped, the longest schedule between the two determines
the length L of the whole network schedule.

However, for allowing the coexistence of several applica-
tions sharing the same slotframe structure, the schedule length
related to a given application running on a network must be
bounded to the minimum possible given by eq. (1). In this
case, the DODAGroot can exactly calculate the length of
the schedule based on the information about the global and
local packet numbers provided by its own children.

As a consequence, DeTAS has to let the even and odd lists
be load balanced, in order to get their schedule lengths as
close as possible. This load balancing problem falls into the
class of multiprocessor scheduling problems [31]. The greedy
heuristic employed in this paper is the same described in
[32]: the DODAGroot’s children are ordered in a descending
order, according to their global packet number. Then, they
are appended subsequently to the list (even or odd) with the
current smallest sum of global packet numbers.

DeTAS assumes a different behavior depending on the
traffic loads of the children of the DODAGroot. Specifically,
if QM ≥ Q0/2, the node nM will obviously be the only one in
the even-list. With DeTAS, the sub-trees rooted at the nodes in
the odd-list will be subsequently odd-scheduled. At the same
time, the sub-tree rooted at nM will be even-scheduled for the
first 2(QM − α) slots, with

α = min{2QM −Q0, qM}; (2)

subsequently, the schedule of the node nM will contain α
additional consecutive slots for delivering α packets to the
DODAGroot. In the schedule related to nM illustrated in
Fig. 3(b) it can be noticed that the first 2(QM − α) slots
are even scheduled (i.e. alternated transmit and receive slots),
whereas the remaining α slots are scheduled consecutively.
Moreover in [18], it has been shown that, with this technique,
eq. (1) is always fulfilled when QM ≥ Q0/2.

The previous strategy is applied in some bounded cases,
i.e., when a child node of the DODAGroot is the bottleneck
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(a) Schedule pattern of a generic node of the network.

(b) Schedule pattern in the case QM ≥ Q0/2.

(c) Schedule pattern of a node in the case QM < Q0/2 and the
Qe

0 6= Qo
0, which is divided between the even and odd list.

Fig. 3: Schedule patterns of a node ni.

for at least one half of the traffic offered by the network.
As a matter of fact, the DODAGroot will have more than
two children in dense network deployments, and the routing
protocol will load balance the traffic among the children.
Hence, the most common network scenario entails the case
QM < Q0/2, i.e., the child of the DODAGroot having the
maximum global packet number, nM , will manage less than
one half of the traffic flowing towards the DODAGroot. In
this case, many techniques could be found to load balance
the even and odd list. We found that the easiest solution is
to perform the following operations: (i) for each list calculate
the sum of the global packets numbers related to the root
nodes of the subtrees in the list itself; (ii) select the list with
the biggest sum; (iii) within this list, select the subtree rooted
at the node, ncut, with the highest global packets number;
(iv) split the schedule of STcut in two parts, so that the first
part will be placed at the beginning of the network schedule
according to the same scheduling parity of the selected list,
while the second part will be scheduled in the end of the
network schedule according to the opposite scheduling parity.
In this context, DeTAS decides the sizes of the two parts of
the schedule related to STcut: since the target is to compute
the schedule with the minimum length (i.e., L = Q0), DeTAS
has to make sure that the resulting lengths of the even and odd
schedules are as close as possible.

In details, DeTAS reduces the discrepancy between the sum
Qe

0, computed over the global packet numbers related to the

even-list, and the sum Qo
0, computed over the odd-list, to 1

(if Q0 is odd) or 0 (if Q0 is even). It is worth to note that
Qe

0 + Qo
0 = Q0. The DODAGroot computes the value β,

which balances the two lists:

β =

⌊
Qe

0 −Qo
0

2

⌋
. (3)

If β ≥ 0 (β < 0)3, DeTAS will even-schedule (odd-schedule)
firstly the sub-tree STcut for 2(Qcut − |β|) time slots and,
then, all the sub-trees related to the other nodes appended in
the even-list (odd-list). Simultaneously, it will odd-schedule
(even-schedule) firstly all the sub-trees related to the nodes in
the odd-list (even-list), then the sub-tree STcut for exactly 2|β|
time slots. The resulting schedule length is L = Q0, as already
shown in [18]. Note that in this traffic load conditions, ncut
should be informed by the DODAGroot about when to even-
and when to odd-schedule STcut. This information must be
accordingly updated and propagated along STcut. For the sake
of clarity, Fig. 3(c) sketches an example schedule for ncut.

IV. DETAS IMPLEMENTATION

In order to evaluate the performance of DeTAS we have
implemented it in the OpenWSN project [15]. OpenWSN
is an implementation of a standards-based stack and, to the
best of our knowledge, it is the first and unique open-source
implementation of the IEEE802.15.4e TSCH standard. On top
of IEEE802.15.4e TSCH, OpenWSN implements Internet of
Things-related standards [3], namely 6LoWPAN, RPL and
CoAP. In order to schedule some cells, each node must be
able to exchange information with its parent and children.
It should transmit the Qi and qi parameters to the parent
node and receive back the necessary information. In a DeTAS
enabled network, the portion of the network schedule related
to a given node is shaped according to one of the three patterns
described in Fig. 3 and discussed in the previous section. The
amount and type of information needed from a node to build
its own schedule will depend strictly on the schedule pattern
of the node. However, despite some differences, the following
parameters are used by all configuration patterns:
• Ts: slotoffset of the first cell allocated for that node

and it indicates where to start scheduling cells for its
communication;

• EO: parameter specifying if the sub-tree that a node
belongs to is even or odd-scheduled;

In the following we describe in more details the different
node patterns, by indicating the parameters needed by a
DeTAS-enabled node to build them.
• PATTERN 1: it is the most common node schedule

installed by DeTAS, and it is pictured in Fig. 3(a). For
building such node schedule, a node needs to get from
its parent only the data set {Ts,EO}. The schedule will
be built by simply alternating Qi tx cells with (Qi − qi)
rx cells, starting from Ts. The parity of the schedule
is computed based on the EO parameter and on the
DAGrank.

3In the rest of the paragraph, we indicate the alternative case and the related
settings in brackets.
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• PATTERN 2: this pattern is used when QM ≥ Q0/2.
Fig. 3(b) shows a example of such pattern. As already
detailed in the previous section, this pattern can be held
by a single node in the network, i.e., the child of the
DODAGroot with the highest global packet number.
Such node will firstly even-schedule (QM−α) cells, than
will schedule α consecutive tx cells, with α given by eq.2.
In addition to the common data set, the α parameter is
needed in order to schedule the final consecutive cells.
Therefore the related data set is given by {Ts,EO, α}.

• PATTERN 3: this schedule (pictured in Fig. 3(c)) can be
present on a node when QM < Q0/2 and Qe

0 6= Qo
0

are both satisfied. As described in section III, the ncut
node will allocate its cells in two parts. The first part,
composed by Qcut−β cells, will be even (odd) scheduled,
while the second part, composed by β cells, will be odd
(even) scheduled, with β being set according to eq.(3).
In addition to the common data set, a node needs to be
informed about the β parameter, for calculating the length
of the two parts of its schedule, and the starting slot offset
Tscut for the second part of the schedule. Therefore the
complete data set in this case is {Ts,EO, β, Tscut}. It
is worth noting that such kind of schedule can be present
on a single node per DAGrank in the network.

DeTAS must be able to recompute schedules when nodes
join or leave the network. To this aim, a DeTAS Version
Number (DVN), similarly to the DODAGversion number of
RPL, is managed by the DODAGroot to control the schedule
version. Such parameter is initialized to 0 at the network
bootstrap and than incremented each time the DODAGroot
triggers a new schedule distributed computation. Indeed, a new
schedule computation is needed during network formation and
whenever the topology and the traffic conditions change.

A. DeTAS MAC command frames
The DeTAS information exchange has required the defini-

tion of two “ad hoc” MAC command frames. Although the
IEEE 802.15.4e amendment introduces the Enhanced Beacons
(EBs), which could be used for exchanging minimal informa-
tion about the schedule, command frames are more appropriate
to DeTAS for the inherent possibility of quickly building the
schedule. For the sake of completeness, we mention that the
6TiSCH working group is defining new Information Elements
(IEs) to be used for cell negotiation and scheduling [33].
However, the schedule objects defined in such draft are still
not suitable for the requirements of DeTAS. One of the aim
of this paper is to highlight another form of schedule object,
that eventually could be integrated in such working draft.

According to the signaling required by DeTAS, a node ni
has to transmit to its preferred parent, pi, some information
about its Qi and/or qi parameters. For this purpose, the
Request MAC command frame (REQ) has been defined and
structured as shown in Fig. 4(a). This command frame is sent
as unicast only to the preferred parent, either when a node
joins the network or when Qi changes (i.e., in the case the
node ni receives a new REQ from one of its children).

In turn, with a broadcast Response MAC command frame
(RES), a parent can instruct its own children about the rules

(a) REQ Command frame format.

(b) RES Command frame format in the PATTERN 2 case.

Fig. 4: Frame formats for the REQ and RES commands.

(a) Format for the PATTERN 2 case.

(b) Format for the PATTERN 3 case.

Fig. 5: Format of the last neighbour (n-th) field for the RES
command.

to be followed for building the DeTAS schedule. The RES
payload contains detailed information for each of the children
receiving the message, as shown in Fig. 4(b).

As introduced earlier, the amount of scheduling information
to be sent by a node to a specific child depends on the pattern
shape that the child must follow when building its schedule.
The most common pattern to be communicated is PATTERN 1,
which requires 4 bytes per child (2 bytes for the node ID and 2
bytes for the Ts time offset). It has to be noted that a node can
have only a single child to be made aware about a different
pattern: a single child of the DODAGroot can be selected
to schedule according to PATTERN 2 (which requires a 5-
bytes long field); a single node per DAGrank can be selected
to schedule according to PATTERN 3 (which requires a 7-
bytes long field), so that a single child of a given node can
be selected to schedule according to PATTERN 3. In Fig. 4(b)
it is shown the RES command format in the case where all
the neighbors have PATTERN 1 schedule. If a neighbor has
PATTERN 2 (or a PATTERN 3 ) schedule, the last field of
the RES command frame (i.e., the data related to the N-th
neighbor), is substituted with the field shown in Fig. 5(a) (or
in Fig. 5(b)). Therefore the RES command payload contains:
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(i) three bytes where are stored common information to all the
neighbors; (ii) N-1 fields with 4 bytes each, required for the
PATTERN 1 scheduled neighbors; (iii) The last field which
can be 4, 5 or 7 bytes according to the particular PATTERN
scheduled for the last neighbor.

As a consequence, when a RES command frame is built
by a node, the common information useful to all neighbors
is appended at the beginning of the payload: (i) the DVN,
(ii) the number of neighbors that are notified in the command,
(iii) the channel reuse factor W (whose setting has been widely
described and analyzed in Sec. V), (iv) the schedule PATTERN
of the last neighbor, and (v), finally, the EO flag (which is
common to all children). The scheduling information related
to each child is then appended, making sure that, if a child has
to be scheduled according to PATTERN 2 or PATTERN 3, the
correspondent field will be appended as last. This technique
is used for a fast parsing of data on the receiving side. Note
that the length of the RES command frame depends on the
number of children and on the scheduling pattern related to
the last field appended.

B. DeTAS Signaling
The command frames described in the previous subsection

are sent by a node according to some triggering events and
trigger other events when received on a given neighbor. In the
following list we describe the protocol used to exchange such
command frames, thus making DeTAS a viable solution for
scheduling in large networks; in details:
• REQ transmission: the REQ command is sent from a

node ni to its preferred parent pi. This event is triggered:
(i) when the node has just joined the network and it has
not yet a DeTAS schedule; (ii) when traffic load of the
node has changed (i.e., Qi or qi) and, therefore, it requests
a new schedule; (iii) when the node has recognized
that it is using a DVN which is smaller than the one
advertised from the LLN sink. When ni sends a REQ,
it waits for receiving a RES command from pi. It may
happen that one between the REQ and RES commands
is lost. In order to cope with this issue, the node ni will
transmit periodically REQ commands until it receives a
RES command with the scheduling information required.

• REQ reception: a node ni receives this command from
one of its children ∈ ch(ni) in two cases: (i) when the
child is asking for a schedule; (ii) the child recognizes to
have an outdated schedule and sends a REQ command
to get an update. In the first case (i), if ni is not a
DODAGroot, it will update its own Qi parameter and
trigger a REQ transmission to its parent pi. Hence, at each
hop a new REQ will be created until the DODAGroot is
reached. When the DODAGroot receives a new request,
it calculates the new schedule with the updated data
and triggers a RES command transmission. In case (ii),
the node ni, will send a RES command containing the
information necessary to build the current schedule.

• RES transmission: the RES command is sent from
a node to all its children as a broadcast frame. Four
condition can trigger the transmission of a RES com-
mand: (i) the DODAGroot has just (re)computed the

schedule after receiving a REQ; (ii) a non-DODAGroot
node has just processed a RES command frame and has
(re)computed the schedule for its children; (iii) an update
request has been received; (iv) a node recognizes that one
of its children has not received a schedule belonging to
the current DVN, thus it sends an update with the right
schedule.

• RES reception: When receiving a RES command a node
ni firstly checks if it has a new DVN, than it checks the
payload to find if there is any scheduling information to
be consumed. If both conditions are verified the node
builds its schedule according to the information received,
and it calculates and sends the schedule to its children (if
any).

Since a RES command is sent in broadcast, many chil-
dren will receive such information at the same time. As
they compute the schedule for their own children, they will
start sending RES commands simultaneously, with possible
collisions. In fact, RES commands are sent according to the
6TiSCH “minimal” schedule, which provides a set of shared
cells known by all nodes in the network and used in Slotted
Aloha mode. If the network is dense, collisions among RES
commands could happen. To encompass this problem, the RES
command transmission is delayed by a random time period4.

Fig. 6: IE format that contains the DVN information.

Another important facet related to the DeTAS signaling is
that related to the DVN. A DVN is communicated into a RES
command and used by the receiving nodes to determine its
validity: only RES commands which contain a DVN greater
than the current one will be accepted. In addition, the DVN is
inserted into the IEs of data and EB frames. Fig. 6 illustrates
the IE that contains the DVN and the termination IE. A node
can check in each received frame the DVN and recognize if
there is any action to be taken. For example if the node ni
receives a frame with a DVN bigger than the one it is using,
then it recognizes it has to send a REQ. If it receives a frame
from a child with DVN smaller than the one it is using, it
recognizes it has to send a RES.

C. Implementation in OpenWSN

Fig. 7 describes the software architecture of the OpenWSN
project. Each protocol in the stack is depicted as a horizontal
layer whereas the vertical module implements some common
functions which are used from all the different layers of the
stack.

In order to implement the algorithm the “DeTAS” compo-
nent has been added to the OpenWSN stack. The relations

4In our implementation we have considered a delay which varies in the
range from [1:5] slotframes with a uniform distribution of probability.
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of the “DeTAS” component with the existing modules of
OpenWSN are also described in Fig. 7.

In particular the new component is positioned inside the
MAChigh module. The “DeTAS” component in its own is
divided in three logical parts. (i) “Signaling” is the component
that handles the reception and the transmission of REQ and
RES command messages described in the previous subsec-
tion. (ii) “Scheduling” implements the scheduling functions.
It has access to the existing “SCHEDULE” component in
order to execute the schedule calculated according to DeTAS
algorithm, and at the same time, it is accessed from the
“Signaling” component to create the RES command payload.
(iii) The last part, “Attributes” implements the data structures
which are necessary to store all the DeTAS related information
and the functions to handle them.

The relations of the “DeTAS” components with the existing
OpenWSN components, as it can be verified from the Fig.7,
are mainly unidirectional and the existing modules are ac-
cessed without any need to modify them. The only exception
is the relation with the “RES” component. In this case the
existing ‘‘RES” component which handles the forwarding of
the packets from the lower layer to the upper ones and vice
versa, is modified in order to handle the command packets
defined for DeTAS. In addition it accesses the “Signaling”
component for two reasons. First, when it needs to create the
DVN IE in the data packets that are transmitted from the mote.
And second, to notify the “Signaling” component in the case
there is a mismatch between the DVN of the mote and the
DVN of a received packet.

As the rest of the existing module, DeTAS will have access
to the cross layer functions. Among other functions accessed,
from the “IDMANAGER” it will retrieve the rank, which is
obtained originally from the RPL protocol.

V. EXPERIMENTAL EVALUATION

The performance of the DeTAS implementation in the
OpenWSN protocol stack (described in Sec. IV) has been
evaluated over some network topologies deployed with TelosB
motes [34].

OpenWSN by default provides a very basic schedule for all
nodes in a network. In details, it implements the “minimal”
configuration schedule [11] over a slotframe structure long
exactly 101 timeslots. Each timeslot can be configured as one
among the following possibilities:
• advertisement (ADV): slot reserved for the transmission

of EBs;
• transmission (TX) or receive (RX): slots respectively

scheduled for data transmission or reception;
• TX/RX: shared slots used for both transmissions and

receptions of all kinds of frames with Slotted Aloha
contention access;

• serial receive (SERIALRX): slots reserved for the com-
munication with the serial port.

At bootstrap, each node is preconfigured to run an initial
schedule formed by an ADV slot followed by 5 shared TX/RX
slots (with an associated channel offset equal to 0). Such slots
are positioned at the very beginning of the slotframe structure.

Fig. 7: DeTAS module inside OpenWSN stack.

Fig. 8: Slotframe structure used in the experiments.

In addition, 3 SERIALRX slots positioned in the end of the
slotframe are reserved for serial communication. Fig. 8 shows
such basic schedule. This configuration could be exploited for
maintenance operations and data exchange as well.

However, in very dense networks with huge traffic require-
ments, such setting is not sufficient in terms of bandwidth.
Some dedicated cells (i.e., TX or RX) could be installed to
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avoid collisions and increase the network bandwidth. Hence,
the remaining 93 slots, as pictured in Fig. 8, are scheduled
by DeTAS, which provides indeed a technique for configuring
dedicated cells. Although the example shows a DeTAS sched-
ule using 3 channel offsets (i.e., W = 3), we have explored the
adoption of several values for W . The impact of this setting
on the network performance has been thoroughly evaluated
and will be discussed in the remaining part of this section.

In order to evaluate the efficiency of DeTAS in managing
multipoint-to-point traffic flows, each source node runs an
application to send dummy data toward the DODAGroot.
In details, at the network bootstrap, whereas nodes join the
network, DeTAS updates the network schedule through some
signaling packets (those described in Sec. IV). When a node
joins the network, signaling packets are conveyed in both
“minimal” shared slots (i.e., for TSCH joining, RPL DIO
exchange, and DeTAS RES command frames) and dedicated
slots just allocated by DeTAS (i.e., for DeTAS REQ command
frames). Once the network is formed, source nodes starts
sending periodically data according to the aforementioned
application.5 Specifically, a node generates a packet every 2
slotframe cycles, i.e., 1 packet every 3.03 seconds.

Since packets can be lost due to the mutual interference
among nodes using the same cell, we have overprovisioned
the number of cells installed by DeTAS in order to allow for
retransmission. In details, the local packet number related to
each node ni in the network has been configured as qi = 2.
In other words, a source node will install at least 2 cells
per slotframe to deliver the data it has generated toward the
DODAGroot. Since the traffic generation rate is equal to 0.5
packet per slotframe, the available cells for the transmission
of a single packet are 4. In general, a data packet can be
retransmitted several times until either it is acknowledged
at the MAC layer (i.e., it has been correctly received by
a neighbor) or the number of maximum retries has been
reached [8]. In the experiments, we have varied also this
parameter, in order to understand the tuning rule of thumb
to be used in industrial deployments.

For testing the efficiency of DeTAS, the network topologies
deployed are described in the following list:

1) A double chain topology is able to characterize the
network depth and complies with DeTAS. In fact, at
each instant, only a single node per DAGrank is
allowed to transmit. Among these, nodes with an odd
DAGrank belong to the sub-tree related to a child of
the DODAGroot, while nodes with an even DAGrank
belong to the sub-tree related to another child of the
DODAGroot. Both sub-trees can be represented with
a chain topology without loss of generality. Fig. 9(a)
pictures an example of double-chain topology.

2) A binary tree topology is able to characterize the
network width. Hence, this topology (sketched in
Fig. 10(a)) permit us to assess the DeTAS performance
when used in almost realistic dense networks.

With the double chain topology it is possible to investigate how

5We have used the DVN field to let nodes know that the network is
completely formed.
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(a) Topology.

(b) Testbed (the first five hops).

Fig. 9: Double-Chain (a) Topology and (b) Testbed.

the performance of DeTAS changes by increasing the diameter
of the network. On the other side, the binary tree topology
allows to investigate the sensitivity of DeTAS to the density
of nodes. As a such, the findings of this experimental campaign
can be also used to approximately characterize DeTAS also in
different scenarios, based on the network diameter and node
density. For the sake of clarity, Table II summarizes the list

TABLE II: Set of parameters used for experiments

Binary Tree (%) Double Chain (%)

Freq. Reuse (W) 3, 4 3, 4, 6, 12

Retransmissions 1, 2, 4 1, 2, 3, 4

Nr. Source Nodes 30 24

Max Rank 4 12

of parameters used in the experiments.
Nodes with the same DAGrank have been positioned as

close as possible, in order to increase the effect of mutual
interference. In fact, we have investigated the effect of channel
reuse. Furthermore, the transmission power of the cc2420
radio present in the TelosB mote has been reduced in order
to position the motes in a closer distance (between 25-
30cm) and to have complete control of the deployed network.
The experiments have been conducted without interference
from other wireless technologies, since we are interested in
evaluating the effect of the mutual interference among nodes
in the same network. As a consequence, the reduction of
the transmission power is acceptable for this experimental
environment. Fig. 9(b) and Fig. 10(b) show some pictures of
the actual testbed deployed.

For each experimental scenario, we have collected 5 40-
minutes long traces. In the remaining part of this section, we
present the plot related to some performance indices, specify-
ing also the 95% confidence interval. In particular, we have
evaluated: (i) the end-to-end delay, i.e., the latency between
the data generation and its reception at the DODAGroot; (ii)
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(a) Topology.

(b) Testbed.

Fig. 10: Binary tree (a) Topology and (b) Testbed.

the end-to-end and link Packet Loss Ratio (PLR); (iii) the node
duty cycle, calculated considering for each active slot only the
time when the radio is on (i.e., TX or RX mode).

A. Experiments results: double chain topology

The results related to the experiments on a double chain
topology are shown in Figs. 11–18.

Fig. 11 shows the average duty cycle as a function of
the DAGrank, for any value of channel offsets used and
retransmissions allowed. As a general expected behavior, it can
be seen that the average duty cycle linearly decreases as the
DAGrank increases. In fact, nodes with smaller DAGrank
are those closer to the DODAGroot, hence bottlenecks for
the traffic directed to the DODAGroot.

In Fig. 12, the average duty cycle (regardless of DAGrank)
has been plotted with histograms. In details, we have grouped
results according to the value W of the number of channel
offsets used. As it can be seen, as the W increases, the duty

Fig. 11: Duty cycle as a function of the DAGrank a node
has inside the network in the Double Chain Topology.

Fig. 12: Average network duty cycle as a function of W in
the Double Chain Topology.

cycle decreases, because with more channel offsets available
there will be less mutual interference. For instance, with
W = 3, 4 couple of nodes in the double chain topology
will be allowed to interfere in the same cell. Although some
of these couples will not be exchanging data (1 cell every
4 will be used for data packet exchange), the receiving side
of each couple will detect a transmission and will continue
receiving the packet. Therefore, some nodes will increase their
duty cycle because overhearing the radio medium, even though
they will later realize that the packet was not addressed to
themselves.

In addition, it can be also noticed that for lower values
of W , the duty cycle increases as the maximum number of
retransmissions increases. For higher values of W , results are
almost identical when varying the retransmissions number.
This behavior was expected too, since with higher W values,
the mutual interference is lower, thus making the retransmis-
sion mechanism useless.

The end-to-end average delay as a function of the
DAGrank is shown in Fig. 13. As expected, the delay linearly
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Fig. 13: Network Delay as a function of the DAGrank that
a node has inside the network in the Double Chain Topology.

increases as the number of hops (which is directly correlated to
the DAGrank) augments. It is also worth noting that the av-
erage maximum delay is lower than 1.5 seconds. On average,
a data packet will reach the DODAGroot in less than half
of the slotframe duration.6 This feature is inherent to DeTAS:
given a path between a source node and the DODAGroot, the
transmission on a link belonging to that path will be always
scheduled before the transmission on the following link in the
same path toward the DODAGroot. In other words, if a node
has to relay packet toward the DODAGroot, a given receiving
cell in the schedule of that node will be always followed by a
transmitting cell. This feature is very important with reference
to time-critical monitoring application in industrial plants.

Fig. 14 clearly shows that augmenting the number W of
channel offsets available, the number of maximum retrans-
mission has a lower effect. With W = 3, more collision can
happen, so more allowed retransmissions give more reliability
to the network at the cost of bigger delays.

Obviously, the end-to-end PLR increases as the hop distance
between a node and the DODAGroot augments. This is
confirmed by the results plotted in Fig. 15. Such increase
depends on the link PLR measured at each hop, which is also
plotted in Fig. 16. The average link PLR does not depend
on the DAGrank, and the not aligned values for the link
PLR (e.g., the average link PLR at DAGrank = 10) can be
explained as due to device misbehavior.

Finally, in Fig. 17 it can be seen that the end-to-end PLR
is significantly reduced with at least a re-transmission (RTX)
allowed then a regular transmission (RTX≥ 2). Increasing
the number of available channel offsets there is an additional
improvement of the reliability. Similar arguments can be used
when considering the link PLR (as pictured in Fig. 18).

B. Experiments results: binary tree topology

The performance results related to the experiments per-
formed for exploring the efficiency of DeTAS on a binary

6In OpenWSN a timeslot is 15 milliseconds long, therefore a 101-sized
slotframe is 1.515 seconds long).

Fig. 14: Average network Delay as a function of W in the
Double Chain Topology.

Fig. 15: End-to-end PLR as a function of the DAGrank that
a node has inside the network in the Double Chain Topology.

Fig. 16: Link PLR as a function of the DAGrank that a node
has inside the network in the Double Chain Topology.
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Fig. 17: Average end-to-end PLR of the network as a function
of W in the Double Chain Topology.

Fig. 18: Average link PLR of the network as a function of W
in the Double Chain Topology.

Fig. 19: Average network duty cycle as a function of W in
the Binary Tree Topology.

Fig. 20: Average network Delay as a function of W in the
Binary Tree Topology.

Fig. 21: Average end-to-end PLR of the network as a function
of W in the Binary Tree Topology.

Fig. 22: Average link PLR of the network as a function of the
W in the Binary Tree Topology.
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tree topology are shown in Figs. 19–22.
In this topology, a number of available channel offset equal

to 4 is sufficient for avoiding collisions and radio overhearing.
In fact, the maximum DAGrank is 4 with a binary tree topol-
ogy made by 30 source nodes (as in our experiments). The
results clearly confirm that DeTAS has the same performance
independently from the network topology. This is what we
expected, since DeTAS has been designed to manage all kinds
of topology and to be scalable in all scenarios.

VI. CONCLUSION

In this paper, we have described in more details the very first
implementation of the Decentralized Traffic Aware Scheduling
algorithm in the OpenWSN protocol stack. Some experimental
results related to real network deployments have been as-
sessed confirming the effectiveness of DeTAS in time-critical
applications especially needed in industrial environment for
monitoring and control purposes.

In details, we have described the efforts being spent within
the IETF 6TiSCH working group to the aim of standardizing
an adaptation layer which can let IETF standards be employed
on top of the novel IEEE802.15.4e Timeslotted Channel
Hopping MAC protocol.

Then, we have described the DeTAS scheduling technique,
highlighting its theoretical effectiveness in building a multi-
hop schedule in a distributed fashion.

We have also reported details of the real implementation
of DeTAS, by picturing the signaling required and explaining
how it can be integrated into 6TiSCH-enabled networks.

The experimental results confirm what we already expected
for the DeTAS performance in terms of duty cycle, end-to-end
delay, end-to-end and link Packet Loss Ratio.

We strongly believe that the strength of DeTAS relies
in its design: it enables a fast communication between the
DODAGroot and any node in the network; it avoids queues
being congested; and it reduces the packet loss ratio through
a proper scheduling of resources.

In future work, we will extend DeTAS to manage topologies
where each node can route traffic to more than one parent.
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