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Abstract—Time Slotted Channel Hopping (TSCH) is a recent
enhancement of the IEEE 802.15.4 standard aimed at the indus-
trial sector. To complement its unique features, the IPv6 over the
TSCH mode of IEEE 802.15.4e (6tisch) Working Group released
a set of specifications that define the way Time Slotted Channel
Hopping could be integrated in embedded IPv6 networks based
on the IPv6 over Low Power WPAN. TheI 6tisch standard is
now available under several hardware/software platforms so that
a cross-comparison of the different implementations deserves
particular attention in order to properly identify performance
bottlenecks and scavenge pros and cons of the 6tisch technol-
ogy. The present contribution provides an experimental cross-
comparison of protocol stack implementations running on top of
different devices. In particular, experimental tests were conducted
to characterize the behavior of OpenWSN and Contiki in Time
Slotted Channel Hopping-based scenarios made up by TelosB,
Zolertia Z1, and OpenMote motes. By considering star and
chain topologies and different traffic load conditions, many
performance indices were measured, including memory footprint,
energy consumption, synchronization time, duty-cycle, end-to-end
packet delays, and Packet Loss Ratio. Obtained results highlight
strengths and weaknesses of each hardware/software platform,
while providing trade-off considerations about flexibility, accu-
racy, energy-efficiency, and Quality of Service.

Index Terms—Industrial Internet of Things; TSCH; 802.15.4;
Contiki; OpenWSN.

I. INTRODUCTION

Industrial Internet of Things (IIoT) is now emerging as

a new communication paradigm for a class of low-power

wireless networks used in critical applications, such as in-

dustrial process monitoring and automation [1]. Time Slotted

Channel Hopping (TSCH) is widely considered a cornerstone

technology for the IIoT [2]. On top of TSCH, Internet En-

gineering Task Force (IETF) defined a lightweight protocol

stack for constrained IIoT devices, that grants communication

requirements (i.e., reliability, security, latency, bandwidth) of

typical industrial applications [3], as experimented in [4].

At the time of this writing, two main Open Source projects

are emerging in both academia and industry, i.e., OpenWSN

[5] and Contiki [6]. Both of them are already supported

by many hardware platforms widely diffused in the market

and extensively employed in research activities (like TelosB,

Zolertia Z1, and OpenMote [1][7]).

From the hardware perspective, it is acceptable to assume

that different platforms may experience variable performance

levels, due to their peculiar processing and storage capabilities.

Furthermore, despite the specifications imposed by reference

standards, different software solutions may behave differently

under test. Therefore, an experimental comparison becomes

of great importance. Examples of studies in this direction

can be found in [1], [8] and [9]. The first highlights the

set of features and the list of hardware platforms supported

by available implementations of the IETF protocol stack. It

also presents preliminary performance indices captured by

isolated experimental tests. The second investigates network

performance metrics in terms of routing. The last one evalu-

ates energy consumption of TelosB platforms operating in a

TSCH-enabled scenario when running OpenWSN and Contiki

operating systems.

Unfortunately, the literature does not offer, yet, a com-

plete cross-comparison of the aforementioned IIoT technolo-

gies. This work jointly characterizes operating systems and

hardware platforms in realistic operative conditions. To this

end, different TSCH-enabled scenarios, with two network

topologies and different traffic loads, were investigated. The

experimental campaign was conducted to measure memory

footprint, energy consumption, synchronization time, duty-

cycle, End-to-End packet delays, and Packet Loss Ratio (PLR).

Obtained results illustrate the impact of hardware on network

performance. OpenMote offers the best memory and computa-

tional capabilities, and registers lower values for almost all the

aforementioned parameters. Counterwise, TelosB and Zolertia

Z1 are less energy demanding. The comparison between

operating systems highlights that OpenWSN provides a better

usage of hardware components, thus providing promising

values for almost all of the chosen Quality of Service (QoS)

indices.

The rest of the work is organized as what follows: Section II

presents the technological background on IIoT, including IETF

protocol stack, operating systems, and hardware platforms.

Section III describes the experimental campaign and discusses

obtained results. Section IV concludes the work and proposes

future works.



II. TECHNOLOGICAL BACKGROUND

A. The protocol stack

The IIoT protocol suite is built on top of MAC and PHY

layers defined by the IEEE 802.15.4 standard [3] and integrates

solutions standardized by different IETF Working Group (WG)

1) Application layer: The Constrained RESTful Environ-

ments (CORE) WG developed Constrained Application Pro-

tocol (CoAP) [10], a lightweight implementation of the well-

known HTTP protocol, suitable for constrained devices. It

allows mapping of CoAP messages to HTTP messages, thus

easing the integration of IIoT services in the web. Unlike

HTTP, CoAP is based on request/response communication

scheme and adopts User Datagram Protocol (UDP) at the

transport layer. At the same time, it supports multicast and

introduces low overhead.

2) Network layer: The IETF protocol stack uses Internet

Protocol version 6 (IPv6). IIoT systems generally appear as

multi-hop Low-power Lossy Networks (LLNs). To facilitate

topology formation and management, the Routing Over Low

power and Lossy networks (ROLL) WG designed a gradient

based routing protocol, namely Routing Protocol for Low-

power and Lossy networks (RPL) [11] that leverages multiple

roots and adapts topology through parametric optimization

functions.

3) Adaptation layers: With IPv6, the default minimum

Maximum Transmission Unit (MTU) size is set to 1280

bytes. IEEE 802.15.4 technology allows a maximum frame

length of only 127 bytes. Therefore IPv6 packet could be too

large to fit in an IEEE802.15.4 frame. To solve this problem,

the IPv6 over Low power WPAN (6lowpan) WG concluded

the standardization of the 6LoWPAN protocol, that fits IPv6

packets in small payload size (up to 127 bytes) through header

compression techniques.

4) IEEE 802.15.4 MAC: Time Slotted Channel Hopping

represents a cornerstone technology for the IIoT; it works at

the Medium Access Control (MAC) layer and offers a good

reliability against interference and multi-path fading. Transmit,

listen or sleep tasks are scheduled in time and frequency slots,

which can be assigned to single network node or shared among

many devices.

5) IEEE 802.15.4 - PHY: IEEE 802.15.4 leverages a low-

power physical layer based on the Direct Sequence Spread

Spectrum modulation scheme and operates at 2.4 - 2.485

GHz ISM frequency band with Offset-Quadrature Phase-Shift

Keying 2 Mbps physical data rate modulation scheme. The re-

sulting physical data rate is equal to 250 kbps. It is configured

to reach a trade-off between energy-efficiency, communication

range, and data rate.

B. Implementations

At the time of this writing, there exist two widely accepted

implementations for the IIoT protocol stack discussed [7],

OpenWSN [5] and Contiki [6].

1) OpenWSN: It is an Open Source and freeware project

[5] implementing 802.15.4 specifications. It runs on top of

two different kernel, i.e., openos and FreeRTOS. Among them,

openos is widely used because of the lower hardware require-

ments1. OpenWSN embraces firmware and software parts. The

former implements instructions and procedures of the protocol

stack and the code to manage drivers on devices. The latter,

namely OpenVisualizer, provides gateway functionalities to

connect the IIoT network to Internet. It also allows network

monitoring and debugging for motes physically connected to

the host controller. OpenWSN relies on a standard-compliant

Finite-State Machine (FSM) that orchestrates all the operations

performed by means of a set of timer. The FSM directly

controls radio transceiver activities and radio duty-cycling

mechanism2.

2) Contiki: It is a highly portable operating system [6],

with a kernel based on event-driven and multi-threaded pro-

gramming principle (namely Protothreads). Protothreads [12]

provide an alternative way to implement a list of operations

(namely flow of control) with the goal of reducing memory

usage, which is useful in constrained systems. Bringing to a

limited memory usage, this approach is useful in constrained

systems. In Contiki, TSCH is implemented through a set of

processes. Each process may be composed by one or more

protothreads, that control the list of operations to execute

during transmission and reception activities. Contiki’s TSCH

implementation is still undergoing [13].

C. Hardware platforms

The work presented herein considers three different plat-

forms that are widely diffused in the market and extensively

employed in research activities. They are TelosB3 [2][4],

Zolertia Z14[14][15] and OpenMote5[16][17]. The main char-

acteristics for each of them are reported in Table I.

Board MCU
Memory

(RAM/Flash)
Radio Chip

TelosB MSP430 10 kB / 48 kB CC2420

Zolertia Z1
MSP430

(2nd gen.)
8 kB / 92 kB CC2420

OpenMote ARM Cortex M3 32 kB / 512 kB CC2538
TABLE I

HARDWARE SPECIFICATIONS

III. EXPERIMENTAL COMPARISON

The behavior of OpenWSN and Contiki implementations,

running on different hardware platforms and in different

TSCH-enabled scenarios, were deeply characterized by means

of experimental tests. The IPv6 over the TSCH mode of IEEE

1Note that openos is the operating system taken into account in this work.
2The passing of time is handled as a sequence of ticks, that are unitary

time intervals measured by the on-board oscillator (working @32.768 kHz).
Typically, ticks manage interrupts. Then, interrupts control Micro-Controller
Unit (MCU) tasks and the switching among different states of the FSM.

3http://www.memsic.com/userfiles/files/Datasheets/WSN/telosb datasheet.eps
4http://zolertia.sourceforge.net/wiki/index.php/Main Page
5http://www.ti.com/product/cc2538



802.15.4e (6tisch) WG proposes a baseline configuration for

the TSCH schedule, namely 6tisch-minimal [18], that assumes

11 timeslots (10 ms each) per slotframe, 1 timeslot shared

among all the devices, as well as 3 possible retransmissions

of unacknowledged packets. To provide a deep insight in

a realistic scenario, the experimental campaign considers a

network composed by 8 nodes (i.e., 1 network coordinator

and 7 end nodes). Nodes were arranged according to both star

and chain topologies. As for TSCH configuration, a slotframe

made up by 101 timeslots (15 ms each) has been implemented.

The first timeslot is used for transmitting beacon messages.

Then, 7 consecutive timeslots are allocated to each node pair.

During the remaining timeslots, instead, all nodes are forced

to stay in sleep mode. In each test, all the nodes (excepting

for the network coordinator) have been configured in order

to send 800 packets with a payload of 40 bytes each to the

network coordinator. Furthermore, to evaluate the impact of

the network load, two values of the inter-arrival packet time,

∆T , have been considered: 1 s and 10 s.

The following key performance indices have then been eval-

uated: memory footprint, energy consumption, synchronization

time, duty-cycle, end-to-end packet delays, and PLR. Average

values and the related 95% confidence intervals have been

calculated and reported in the figures below.

A. Memory footprint

The firmware for each board is compiled using the appro-

priate toolchain (i.e., MSP-gcc and ARM-gcc). The resulting

memory footprint strongly depends on these premises and it

is of great importance to discuss the effective compatibility

between protocol stack implementations and constrained plat-

forms. Given the limited storage capabilities of IIoT devices,

firmware must be optimized to limit the consumptions of

both ROM and RAM memories. Measured ROM and RAM

footprints are summarized in Table II. Both the absolute

value and the percentage of memory occupied by the op-

erating system over the total are reported. Obtained results

show that a given protocol stack implementation produces a

memory occupancy that depends on the hardware platform.

On TelosB, OpenWSN and Contiki register similar ROM

occupancy values, taking almost all the available space (83%).

On Zolertia Z1, the ROM footprint gets closed to the half

of available memory (specifically, OpenWSN takes 41% and

Contiki takes 54%). OpenMote experiments the lowest ROM

footprint, that is always less than 15%. As a result, OpenMote

emerges as the most promising hardware platform, allowing

future implementation of additional and/or updated algorithms

and protocols. This possibility is almost prevented on the

TelosB mote. Similar considerations can be done as for RAM

footprint. Freeing RAM occupancy expresses the possibility

to load additional variables against those used by baseline

implementations. In this context, experiments demonstrated

that Zolertia Z1 offers very limited capability to load additional

content. Similar considerations can be done for the TelosB

platform, when running the Contiki operating systems. With

OpenWSN, instead, about 33% of RAM can be used for

loading new variables and instructions. Also in this case, the

OpenMote platform emerges as the most versatile platform

because it always guarantees the lowest percentage of the

RAM footprint (equal to 53% and 29% respectively in Contiki

and OpenWSN). Lastly, RAM and ROM occupancies are not

significantly affected by the network topology and the role of

the device.

OpenWSN Contiki

RAM (B) ROM (B) RAM (B) ROM (B)

TelosB

Chain
Coordinator

6662
(66.7%)

39882
(83%)

8102
(81%)

39883
(83%)

Chain

End Node

7996
(79.9%)

Star
Coordinator

8102
(81%)

Star

End Node

7996
(79.9%)

Zolertia Z1

Chain
Coordinator

6560
(82%)

37676
(41%)

7523
(94%)

49954
(54%)

Chain

End Node

7890
(98%)

49628
(54%)

Star
Coordinator

37530
(41%)

7523
(94%)

49954
(54%)

Star

End Node

7890
(98%)

49628
(54%)

OpenMote

Chain

Coordinator
9284
(29%)

71092
(14%)

17112
(53%)

52278
(10%)

Chain

End Node

17239
(53%)

52242
(10%)

Star
Coordinator

17112
(53%)

52278
(10%)

Star

End Node

17239
(53%)

52242
(10%)

TABLE II
MEMORY FOOTPRINTS

B. Energy consumption

During communication processes, both radio interfaces and

MCUs drain current. Frequent transmissions and receptions

activities can discharge batteries in a matter of days. While a

datasheet can be used for preliminary evaluation on nominal

values, conducted tests provide real energy consumptions.

This enables realistic measurements of the amount of energy

consumed during each operation within each time slot (i.e.,

data transmission, data reception, ACK transmission, and

ACK reception). Overall values are detailed in Table III In

OpenWSN, data transmission and reception processes take 2.5

ms and 5 ms, respectively. The transmission and the reception

of ACKs take 2 ms. In Contiki, the same processes take:

3.3 ms for data transmission, 5.5 ms for data reception, and

2.5 ms for transmitting and receiving the ACK. In Figure 1

energy consumption values are reported6. The most noticeable

results is that measured values are not in line with refer-

ence datasheets7. On TelosB and OpenMote platforms, higher

discrepancies are measured with Contiki. At the same time,

however, the measured energy consumptions of OpenMote are

6The real energy consumption (expressed in Joule) are calculated as the
product of the batteries voltage values, the current measured and the specific
reference time interval.

7Zolertia Z1’s nominal MCU current consumption value for active mode is
<10 mA, so estimations are not as precise as for other platform solutions.



far from those reported in reference datasheets (sometimes up

to 50%).

(a)

(b)

(c)

Fig. 1. Energy Consumption in (a) TelosB, (b) Zolertia Z1 and (c) OpenMote

C. Synchronization time and duty-cycle

Devices synchronization is mandatory to maintain con-

nection between neighbors in a TSCH-based network. The

entire network is configured by means of advertising and

joining mechanisms. At the beginning, the network coordi-

nator sends (periodically and in broadcast) the advertisement

command frame. A new node willing to join the network,

processes that command and sends in unicast the join request

command frame. The coordinator confirms the success of

the joining procedure by transmitting the activate command

Data
Tx

Data
Rx

ACK
Tx

ACK
Rx

OpenWSN

TelosB 4.5 4.6 4.4 4.4
Zolertia Z1 0 0 0 0
OpenMote 6.7 40 6.7 6.7

Contiki

TelosB 38 16 30.6 30.6
Zolertia Z1 0 0 0 0
OpenMote 6.7 50 6.7 6.7

TABLE III
ENERGY CONSUMPTION OVERHEAD WITH REFERENCE TO NOMINAL

VALUES, REPORTED IN %.

frame. Then, this procedure is replicated hop-by-hop until the

farthest child node is reached. For each pair of nodes, IEEE

802.15.4 adopts an ACK-based synchronization approach. To

this end, the receiver calculates the difference between the

expected and effective time of arrival of the frame Then, it

provides that information to the sender node via an ACK,

and the sender synchronizes with receiver’s clock. Once the

network is established at the MAC layer, the RPL protocol

configures the topology at the network layer as well. In this

work, synchronization time is defined as the time taken by

all the devices in the network to successfully complete the

MAC joining procedure and the RPL configuration of both

downward and upward communication paths. Results reported

in Table IV remark that synchronization times are up to 71 s

in the worst case. Nevertheless, OpenMote achieves the best

performance by registering the lowest synchronization time, in

all the considered conditions. Once the network is configured,

nodes start exchanging data. According to the TSCH schedule,

the communication occurs in specific time slots.

It is of relevance to verify effective duty-cycle values (e.g.,

the time percentage of the radio transceiver activity over the

total slotframe definition) Results are shown in Figure 2.

Values show that OpenWSN always provides the lowest duty-

cycle: differently from Contiki, a reduction up to 64% in the

star topology and up to 69.15% in the chain topology has been

observed. This behavior can be justified by considering the

lower amount of time (see Section III-B) taken for performing

Tx and Rx operations. At the same time, the higher the

interarrival packet time, the lower the duty-cycle. As expected,

when the interarrival packet time increases, the quota of

packets to be disseminated within the network decreases. Thus,

the radio activity (and so the duty-cycle) decreases as well.

With respect to the network, chain topology registers higher

duty-cycles. Unlike the simple star topology, in a chain the

intermediate nodes are in charge of disseminating application

data coming also from other nodes. Therefore, their radio

activity (and so the duty-cycle) experiences an increment. It

is important to highlight that the TSCH schedule does not

represent the only factor that influences the radio activity.

Indeed, the traffic load (and therefore the presence of data

to transmit) can introduce a significant overhead.

D. End-to-end packet delays and PLR

End-to-end packet delays are depicted in Figure 3. As

expected, network latencies increase together with the traffic



Star Chain

OpenWSN
TelosB 47 56
Zolertia Z1 59 52
OpenMote 46 46

Contiki

TelosB 66 71
Zolertia Z1 58 61
OpenMote 42 49

TABLE IV
SYNCHRONIZATION TIME (EXPRESSED IN S).

(a)

(b)

Fig. 2. Duty Cycle in (a) star topology and (b) chain topology

load. Surely, the lower the interarrival packet time, the higher

the amount of packets to be disseminated. Given the fixed

(and limited) number of time slots dedicated to link-level

transmissions (that is equal to 1 time slot for per slot frame

for each node pair), higher packet delays are measured when

∆T = 1s. Furthermore, with chain topology the additional

latency introduced by the multi-hop communication paths still

create effects. In the star topology, packet delays are in the

range between 0.8 s (TelosB with Contiki) and 2.9 s (Z1 with

OpenWSN). In the chain topology, instead, they fall in the

range between 4 s (OpenMote with Contiki) and 8.7 s (TelosB

with Contiki).

By comparing different hardware platforms, it clearly

emerges that the higher the profile of the device, the better

the performances. In line with the previous comments, PLR is

higher in scenarios with the highest traffic load and in chain

network topology. Similar considerations can be done here

analyzing performances reached by the hardware platforms.

(a)

(b)

Fig. 3. Latencies in (a) star topology and (b) chain topology

It is also noticeable that OpenWSN registers, in this case,

the worst behavior when compared with Contiki. Typically,

IIoT networks are also classified as LLNs. Therefore, IIoT

networks may experience important PLR values [4]. This

may depend on the number of devices, their location and the

overall QoS. Moreover, packets might be lost due to different

phenomena, i.e., queue filling, channel interferences, multi-

path fading, etc. In such conditions, lower interarrival packet

time may lead to queue overflow. The probability of queue

overflow is higher if the mote is more hops away. In general,

increasing the interarrival packet time can help reaching longer

distances. Counterwise, the increase in interarrival packet time

can significantly lower the throughput.

To provide a further insight, both PLR and latencies for

lower-end devices could be explained with portability issues

related to the TSCH code. For example, drift correction may

be the cause of unreliable frame identification thus leading

to an increase in latencies, when packets are received, or

packet losses, in the worst cases. The latter implies the

consequent retransmission requests. The outcome is clearer

when observing OpenMote behavior: values are considerably

better and networks look more efficient with respect to TelosB

and Zolertia Z1-based deployments.

IV. CONCLUSIONS AND FUTURE WORKS

The present work proposed an experimental comparison of

IIoT protocol stacks in TSCH scenarios. In particular, two



(a)

(b)

Fig. 4. PLR in (a) star topology and (b) chain topology

main implementations were evaluated in different network

deployments made up by heterogeneous hardware platforms.

The study highlighted pros and cons of available software

and hardware solutions in terms of: memory footprint, energy

consumption, synchronization time and duty-cycle, end-to-

end packet delays, and Packet Loss Ratio. Obtained results

demonstrated that: (i) adopted hardware and software solutions

impact on memory footprints, (ii) computational capabilities

impact on network performance; (iii) the OpenMote platforms

guarantees lower memory footprint, lower synchronization

time and duty-cycles, as well as lower end-to-end packet de-

lays and PLR, at the expense of a higher energy consumptions

(with respect to both TelosB and Zolertia Z1 motes); (iv)

OpenWSN provides a better usage of hardware components,

thus resulting in lower values in terms of memory footprint,

energy consumption, synchronization time, duty-cycle, end-to-

end packet delays; and (v) OpenWSN registers higher Packet

Loss Ratio values than Contiki. Future work will improve the

experimental analysis for large scale IIoT deployments by:

considering new communication protocols, verifying Orches-

tra’s efficiency, including RiOT OS, and investigating specific

optimization in network synchronization mechanism.
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