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Abstract—Recently, the two-stage Joint Spatial Division and
Multiplexing (JSDM) precoding scheme was introduced as a
valuable solution for implementing, with a reduced complexity,
Massive MIMO transmission techniques in emerging 5th Genera-
tion of mobile networks. Among its main features, JSDM requires
to partition mobile users into groups, based on the channel
covariance similarity. To this end, the Density-Based Clustering of
Applications With Noise (DBSCAN) clustering algorithm has al-
ready proved to be reasonably suitable. Unfortunately, DBSCAN
falls short in challenging situations, like a large homogeneous
crowd of users. Here, in fact, all the users are put in the same
group despite experiencing different channel covariances, which
degrades the behavior of JSDM. Based on these premises, the
contribution presented herein proposes a modified version of
DBSCAN, which enforces a maximum size on detected clusters
by limiting the difference in channel covariances between any
pair of users in the same group. In line with the requirements
of JSDM, the modified DBSCAN breaks down excessively large
clusters into smaller ones, thus extending its applicability to
a much wider range of scenarios (from small dispersed user
groups to large compact ones). Computer simulations confirm the
behavior predicted by the theoretical formulation: the proposed
approach reaches a better user and system spectral efficiency,
while showing low sensitivity against parameter tuning.

Index Terms—Massive MIMO, 5G, JSDM, clustering, DB-
SCAN

I. INTRODUCTION

The 5th Generation (5G) of mobile networks introduces new
technologies, which promise features and flexibility that are
unprecedented in current cellular networks and other wireless
systems, enabling multi-Gbps peak speeds, large swarms of
autonomous devices, real-time applications with extremely low
latency, and many more [1]. The Massive MIMO communica-
tion technique is one of the key components foreseen in this
context [2]. It adopts hundreds of antennas at the base station
to concurrently serve more users than in current systems, while
simultaneously reducing energy consumption and only requir-
ing relatively simple linear processing. Originally, it uses Time
Division Duplexing (TDD) operation to take advantage of the
downlink-uplink duality. However, many spectrum allocations
are intended for Frequency Division Duplexing (FDD) mode
only. This poses additional difficulties, as the training overhead
in the downlink direction increases proportionally with the
number of transmitting antennas, thus reducing the spectral

efficiency for actual data as more antennas are added [3]. Also,
the size of the Channel State Information (CSI) feedback that
needs to be sent in the uplink direction increases in a similar
manner.

At the time of this writing, the Joint Spatial Division
and Multiplexing (JSDM) technique, firstly proposed in [4],
emerged as a possible method to mitigate these unfavorable
trends. It is a two-stage precoding approach, where the first
stage is common to multiple users and is only based on channel
covariance matrices. These change slowly and can be reported
less often than instantaneous CSI. They also need to be of
low rank, which can happen in different circumstances [?].
Hence, the training overhead and instantaneous CSI required
for the second stage are greatly reduced. The first stage of
JSDM needs a way to identify groups of users with similar
statistical CSI. This requirement is more cumbersome than it
may appear, because it should be achieved over a large range
of situations. In [5], this goal is approached with k-means
partitioning, which iteratively assigns each user the the closest
cluster, and with fixed partitioning of the angular domain,
with the latter being simpler and providing better results.
Instead, [6] proposes an agglomerative clustering method as
an alternative to k-means. While it is faster for low numbers of
users, it becomes comparable or even slower when hundreds
of users are considered. The work in [7] compares k-means, k-
means++, and Density-Based Clustering of Applications With
Noise (DBSCAN) for the same purpose, in a scenario where
the clusters already exist and need to be detected. The results
show that k-means and k-means++ are not well-suited, mainly
because they assign all the users to some cluster, even isolated
ones. Instead, the DBSCAN approach came out as the most
promising, it can exclude outliers and parameter selection is
relatively easy. These findings are confirmed in [8], where
DBSCAN is similarly compared to k-means and k-medoids
methods.

However, DBSCAN presents important limitations in many
scenarios. For example, when there is a large compact crowd
of users with a mostly constant density, it would be detected
as a single cluster. This poses serious problems for JSDM.
From one side, it may not be possible to serve multiple
groups, thus limiting the total throughput. From the other side,



users in a large group may have very different covariance
matrices, which results in intra-group interference at the first-
stage precoder.

In this work, we extend the baseline DBSCAN approach
with a configurable limit on the cluster size. This way, large
clusters are split into smaller parts, which are more suitable for
JSDM precoding. The resulting algorithm retains the desirable
properties of DBSCAN identified in prior work, and can be
applied to a much broader set of scenarios. This is verified by
numerical simulations, which show an increase of both user
and system spectral efficiencies, and also highlight that the
algorithm parameters do not need a very precise tuning.

This paper is organized as follows: Section II describes
the general system model, while Section III describes the
improved clustering algorithm, and Section IV presents the
simulation results. Finally, Section V closes the paper.

II. SYSTEM MODEL

Throughout this paper, scalar quantities are denoted with
italic letters (a, A), while vectors are written with lowercase
bold letters (a) and matrices are assigned uppercase bold
letters (A). Sets are represented by calligraphic letters (A), and
their elements are listed in square brackets ([a1, a2, . . . , an]).
(·)H represents the Hermitian matrix, while E[·] is the expec-
tation operator, and ‖·‖F is the Frobenius norm of a matrix.

In the considered scenario, the base station is equipped with
N antennas and a Multiple Input Multiple Output (MIMO)
downlink block-fading channel is taken into account. At the
end user side, there are K single antenna receivers. Thus, the
receive signal y ∈ CK is written as:

y = HHVx + n, (1)

where H ∈ CN×K is the radio channel between the N
antennas of the base station and the K antennas of the end
users, V ∈ CN×T is the precoding matrix for T independent
data streams, x ∈ CT is the data vector, and n ∈ CK denotes
the additive white Gaussian noise assuming n ∝ CN (1, IK).
Since linear precoding is used, the number of data streams
is bounded by T ≤ min (N,K) [4]. By following the
assumptions in [5], the transmit power is equally split to
all data streams, such that E

[
xxH

]
= P

T IT , where P is
the total transmit power. The radio channel of the receiver
k ∈ K = [1, . . . ,K] follows hk ∝ CN (0,Rk), where the
covariance matrix Rk is positive semi-definite. Rk is a so
called second-order statistic of the radio channel with a longer
coherence time than direct CSI of hk. The singular value
decomposition of Rk is given as:

Rk = UkΛkUH
k , (2)

where Uk ∈ CN×bk contains the bk eigenvectors that corre-
spond to the non-zero bk eigenvalues in the diagonal matrix
Λk of size bk × bk. A subset of Uk is used in Section III to
obtain the input metric for receiver clustering.

Following the two stage precoding in [4], the precoder
V = BP is split into a first and second stage precoder.
According to the clustering approach described in Section III,

the K receivers are divided into G clusters of size Kg , such
that K =

∑G
g Kg , where subscript g ∈ [1, . . . , G] is the

cluster index. In this work, the terms ”group” and ”cluster”
are used interchangeably to denote the disjoint subsets of users
produced by a clustering algorithm. Following the guidelines
in [4] receivers within the same cluster should have similar
covariance matrix eigenvalues whereas the eigenvalues of
different clusters should be orthogonal. The first stage precoder
B ∈ CN×b is a function of second order statistics to co-
ordinate inter-cluster interference. The second stage precoder
P ∈ Cb×T is a function of direct CSI of the effective channel
H̃ = BHH. To take into account the G receiver clusters,
Hg =

[
hg1, . . . ,hgKg

]
denotes the channel matrix for one

group as the concatenation of the individual users’ channels,
and the first-stage precoder becomes B = [B1, . . . ,BG] where
Bi is the i-th group’s precoding matrix. Also, P can be written
as P = diag (P1, . . . ,PG), where Pi is the i-th group’s
diagonal power allocation matrix, and xg =

[
xg1, . . . xgKg

]
is the matrix of all the user signals in group g.

With these definitions, the receive signal reported in Eq. (1)
can be rewritten for the user k in cluster g as:

ygk=hH
gkBgpk︸ ︷︷ ︸

ĥgk

xk+

k′∈Kg∑
k′ 6=k

hH
gk′Bgpk′

︸ ︷︷ ︸
zgk

xk′+
∑
g′ 6=g

HH
g Bg′Pg′

︸ ︷︷ ︸
ẑgk

xg′+nk,

(3)
where subscript gk denotes receiver k in cluster g, Kg =
[1, . . . ,Kg] the set of receivers in cluster g and ĥgk, zgk, ẑgk
comprise the signal, inner-cluster and inter-cluster interfer-
ence, respectively. The advantage of this scheme is that in
FDD, the dimension of H̃ is b×K, where b =

∑G
g=1 bg , and

the required feedback per receiver is reduced from hgk ∈ CN

to h̃gk ∈ Cbg assuming that bg � N .
Thus, the resulting Signal to Interference plus Noise Ratio

(SINR), γgk, is given by:

γgk =
ĥHgkĥgk

zHgkzgk + ẑHgkẑgk + E
[
nHk nk

] (4)

and the corresponding capacity as normalized with the band-
width assigned to receiver k in cluster g is obtained by:

Cgk = log2 (1 + γgk) . (5)

III. CLUSTERING

As stated in the previous section, JSDM uses the same first-
stage precoder for all the users within one group. This implies
that it should match all the covariance matrices of the users.
If the precoder does not match the covariance of a given user,
then the orthogonality between groups is violated: some of
the power allocated to the target user is received by other
groups, and the user itself is susceptible to interference from
other groups. For a perfect matching, the users in one group
should have the exact same covariance matrix, but this is not
possible in practice. Instead, it is possible to find groups of
users that have similar covariance matrices, so that the inter-
group interference is small enough to have a limited impact.



This is an example of a clustering problem, which usually
occurs in data science, and whose typical terminology derives
from that field. Given a set of data points, potentially very
large, it is necessary to partition it into groups. The points
in each group should be as close to each other as possible,
according to a given similarity measure, while groups should
be as far apart as possible. In the context of Massive MIMO
and JSDM, some clustering approaches have been investi-
gated in [7], where the density-based approach DBSCAN
is shown by simulations to be better than the parametric-
based methods, i.e. k-means and k-means++. Specifically, it
was assumed that the users were actually located in well-
separated clusters, except for a few outliers, and the clustering
step had to detect such clusters. In this work, we target a
different user distribution where DBSCAN performs poorly,
and propose an improved version that can cope with the new
situation. The original DBSCAN algorithm is described in
Section III-A, while the new challenging scenario and the
improved DBSCAN algorithm are presented in Section III-B.

A. DBSCAN

In the DBSCAN clustering algorithm [9], a cluster is
intuitively defined as a region of the feature space where there
is a higher density of data points, compared to regions outside
of the cluster. A more formal definition starts with the notion
of Eps-neighborhood: given a distance function dist(p, q) and
a distance Eps, the Eps-neighborhood NEps(p) of a data
point p is defined as the set of points no farther than Eps
from p:

NEps(p) = {q|dist(p, q) ≤ Eps} (6)

A simple approach could define a cluster as a set of
points whose Eps-neighborhood contain at least a certain
number minPts of data points. However, this would be sub-
optimal, because points on the edge of the cluster (border
points) typically have a lower number of points in their Eps-
neighborhood, compared to internal points (core points), even
if the density of the cluster is constant. By using a lower
value for minPts would underestimate the density of the
cluster, which can be problematic in the presence of noise.
A better solution is to require core points to have at least
minPts points in their Eps-neighborhood, and border points
to be directly density-reachable from one or more core points.
Given a core point q, a point p is directly density-reachable
from q if it is contained in the Eps-neighborhood of q.

The directly density-reachability property can only con-
nect points in a cluster that are close to each other. The
definition of an entire cluster requires two more concepts:
density-reachable and density-connected. A point p is density-
reachable from a point q if there exist a sequence of points
p1 = q, p2, . . . , pn−1, pn = p which connects q to p, so that
pi+1 is directly density-reachable from pi. This allows going
from any core point to any other point of the cluster, but not
from border points to other points. The notion of density-
connected points fills this last gap: two points p and q are said
to be density-connected if they are both density-reachable from

some point o. Now, a cluster can be unambiguously identified
by any one of its points, either a core point or a border point,
together with all of the points that are density-connected to it.

DBSCAN relies on such definition of cluster. Ideally, given
the right values of both Eps and minPts, which may be
different for each cluster, and a starting point for each cluster,
it is straightforward to assign each other point to the right
cluster. However, this would require some previous knowledge
of the data that is usually not available. Instead, DBSCAN uses
a single value for Eps and for minPts, which are assumed
to be valid for the thinnest cluster and thus would also work
for more dense clusters.

The authors of [9] describe a procedure to determine such
parameters with minimal user interaction. The algorithm starts
from the first point in the database, finds all the points that are
density-connected to it, and marks them as belonging to the
same cluster. Then it picks the next unclassified point and
repeats the procedure. This is repeated until all points are
either assigned to a cluster or marked as noise points, i.e.
points that are not density-reachable from any other point.

The detection of noise points is particularly important in
the context of JSDM: in fact, they represents users that have
covariance matrices quite different from any other user, and
thus can not be assigned to any group. As already observed in
[7], the best strategy for dealing with these users is to schedule
them in dedicated slots.

The pseudo-code for most parts of DBSCAN is given in
[9], and is used in this work without modification. Here we
only give the pseudo-code used for the RegionQuery function,
that is not reported in the original work. This function returns
the Eps-neighborhood (Neps in the pseudo-code) of a given
point p, and it is implemented by Algorithm 1. The improved
version of this function will be described later. The distance
function used here is the chordal distance between matrices,
applied to the eigenspaces of the users’ covariance matrices:

dist(U1,U2) = ‖U1U1
H −U2U2

H‖2F (7)

Algorithm 1 RegionQuery for the original DBSCAN
Input: p, Eps

for i := 0 to SetOfPoints.size do
q := SetOfPoints.get(i)
// Check that q is not assigned to other clusters already
if q.ClusterId IN {NONE,NOISE,p.ClusterId} then

if dist(p,q)<Eps then
Neps.append(q)

end if
end if

end for
return Neps

B. Improved DBSCAN

DBSCAN is effective at detecting clusters when they are
delimited by a clear decrease of data points density, i.e. when
the original data is already spontaneously clustered. This is



assumed in [7], where the groups of users are separated by a
certain distance. In this work, we address the totally opposite
scenario where there are no clearly identifiable groups, but it
is necessary to artificially create them.

Suppose that there is a dense crowd of mobile users spread
over a large area, i.e. at an outdoor concert or similarly
crowded events, with no significant fluctuations in density,
and we use JSDM for downlink transmission. The area of
interest should be large enough to span the coverage area of
the closest base stations, which is likely if micro/pico cells are
deployed. With DBSCAN, each of these base station would
only detect a single large cluster of users in its coverage area,
because their density stays essentially constant. However, this
is detrimental for the use of JSDM for two reasons: (i) the
number of groups that can be concurrently served is reduced
to one, and (i) users sufficiently distant from each other will
have different covariance matrices, so it is not possible to find
a first-stage precoder that applies to the entire group.

A better strategy to handle this situation is to split the large
cluster into smaller clusters that have a limited ”size”, mea-
sured through the chordal distance between the eigenspaces of
the users. It should be tuned so that all the users of one group
can be served with the same first-step precoding matrix. Then,
the base station would select a set of groups that are suitable
for co-scheduling, i.e. groups that are sufficiently separated in
the angular domain. If such condition is not met, they would
still experience significant mutual interference [5].

It would be cumbersome to have different clustering meth-
ods for many scenarios, as it would be necessary to detect
such scenarios as well. Instead, we modified DBSCAN to
work as desired in both these extreme cases. It should also
cover all the intermediate cases, although we can’t present
these in this paper due to the limited space. The key idea is
to modify the RegionQuery function so that when it builds the
Eps-neighborhood of point p, it also takes into account the
centroid of the cluster where p belongs. Define Dmax ∈ R+

as the maximum acceptable diameter for a cluster. Therefore,
if a point is further away then Dmax/2 from the centroid, it
is not included in the Eps-neighborhood of p. The extended
RegionQuery function is reported in Algorithm 2. Given the
eigenspaces U1, . . . ,UN ∈ CM×b and the corresponding
eigenvalues D1, . . . , DN ∈ Cb of the N users assigned to
a cluster, the eigenspace of its centroid is calculated as:

Uc = eig

[
1

N

N∑
i=1

Uidiag (Di)U
H
i

]
(8)

where diag(x) is the diagonal matrix with the elements of x
on its diagonal. The centroid is updated for each invocation
of RegionQuery, because new points could have been added
between subsequent invocation.

This updated formulation introduces new properties, while
retaining others that already existed in DBSCAN. First of all,
the detection of border points with respect to Eps and minPts
is untouched, so the limits of clusters that already exist are
still recognized. Thus, in the scenario of [7] with small and

well-separated clusters, the modified DBSCAN works exactly
as the original one, provided that the new parameter Dmax

is sufficiently large. In fact, this is true in any case: one can
always find an Dmax so large that the new DBSCAN behaves
as the original one, with Dmax →∞ as the extreme case.

As for the new scenario with a single large cluster, the
selection of Dmax creates different cases. Note that as Dmax

decreases, the number of detected groups G ∈ N grows and
their average user count Ĝ ∈ R+ decreases. The possible out-
comes, differentiated for their effect on the JSDM precoding,
are listed here in the order of decreasing Dmax:
• For Dmax → ∞, the new DBSCAN behaves as the

original DBSCAN, i.e. G = 1. The difference between
user covariances can be large, and JSDM is not useful.

• For some value of Dmax, the algorithm results in G > 1,
but the clusters are still too large to meet the assumption
of almost-identical covariance throughout one group.
JSDM is still not usable at its full potential.

• For decreasing Dmax, G gets larger and the groups
get smaller with respect to the distance between users’
eigenspaces. As long as Ĝ ≥ b, JSDM can be used with
high performance.

• For even smaller Dmax, the groups get so small that Ĝ <
b. JSDM can still be used, but less users can be served
and the sum throughput diminishes.

• For Dmax → 0, all the users are marked as outliers
(Ĝ = 1) and JSDM can’t be used anymore.

Thus, the value chosen for Dmax is critical for the outcome
of the clustering step, and it should be selected according to
the specific application and its requirements. For our use in
the context of JSDM, we can observe the following: Dmax

is expressed with respect to the chordal distance between
users’ eigenspaces, which directly affects the performance of
the two-step precoder. Thus, the optimal value for a given
scenario is very likely to work in most other situations: when
there are large groups, they would be split in smaller groups
of reasonable size according to Dmax, and when they are
small, they would just be detected and used as they are.
Ultimately, this modified version of DBSCAN would be able
to handle both the extreme cases outlined here, intermediate
situations, and scenarios with both small and large groups,
without additional tuning.

IV. NUMERICAL RESULTS

The improved version of DBSCAN has been evaluated
through computer simulations, by assuming a large-crowd
scenario as described in Section III. Specifically, mobile users
are evenly distributed over a sub-region of a base station sector,
as shown in Figure 1. The distance from the base station varies
from 100 to 225 m, and the azimuth ranges from −60° to 60°.
The angular spread varies with the distance, from 28° for the
closest users to 13.5° for the farthest users.

Parameters from [7] are reused as much as possible to make
comparison easier: the base station uses a Massive MIMO
array with 256 antennas, with λ/2 spacing, center frequency
of 2.5 GHz, and JSDM for precoding. For the first stage,



Algorithm 2 RegionQuery for the improved DBSCAN
Input: p, Eps, Dmax

// Calculate centroid of the cluster where p is assigned
c := SetOfPoints.centroid(p.ClusterId)
for i := 0 to SetOfPoints.size do

q := SetOfPoints.get(i)
// Check that q is not assigned to other clusters already
if q.ClusterId IN {NONE,NOISE,p.ClusterId} then

if dist(p,q)<Eps and dist(c,q)<Dmax/2 then
Neps.append(q)

end if
end if

end for
return Neps

−60◦

−30◦

0◦

30◦

60◦

Fig. 1. Positions of the mobile users

the design parameter b of JSDM is set to 6, and the first-
stage precoder, valid for all the users in the same group, is
matched to the covariance matrix of one of the scheduled
users, that is selected randomly [5]. As for the second-stage
precoder, it uses Regularized Zero-Forcing (RZF) [10] and
Per-Group Processing (PGP) [5]. For channel modeling, we
use the Kronecker correlation model [11] together with the
one-ring scattering model [12].

At the clustering step, the improved version of DBSCAN
is employed, with parameters Eps = 3.0, minPts = 3, and
Dmax from 0.5 to 24. After clustering, an ideal selection is
assumed for which clusters are actually served. Since the best
results are obtained when the clusters are well-separated in the
angular domain, we select the three clusters closest to azimuth
directions −60°, 0°, and 60°. After the group selection, there
is an intra-group scheduling to randomly select b = 6 users
within each group, unless the group already has 6 or less users.
A more realistic selection of the clusters is left for future study.

The receivers are equipped with a single antenna, and the
total equivalent Signal to Noise Ratio (SNR) at the end user
side is 50 dB. This means that if a single user is served and
no interference is considered, its SNR is 50 dB. With multiple
users, the equivalent SNR is split among them in equal parts,
and then their individual intra-group interference and inter-
group interference are also added. After all the precoding and
scheduling steps, the final SINR experienced by each user is
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Fig. 2. Number of detected groups and served users

evaluated, and the Spectral Efficiency (SE) is derived using
Shannon’s capacity formula. The entire process is repeated
for 30 independent channel realizations.

Figure 2 shows the number of groups detected during the
clustering phase, as a function of Dmax, together with the total
number of users served in each case. For Dmax ≥ 24 there
is only one group, which means that the algorithm is working
like the classical DBSCAN, treating the entire population as a
single density-connected cluster. Consequently, only one group
can be scheduled and only b = 6 users can be served. For
lower values of Dmax, more and more sub-clusters are created,
and in most cases it is possible to serve 3 groups with 6 users
each, reaching 18 users in total. However, with Dmax < 4,
the number of served users starts decreasing, because groups
get increasingly smaller, to the point of containing less than
6 users. As a consequence, the multiplexing gain is reduced.
Also note that at the lowest considered value of Dmax = 0.5,
almost half of the users are marked as noise point and thus
can’t be served as part of a cluster.

Figure 3 shows the sum SE and the user SE, both as a
function of Dmax. They are proportional for most of the
values, i.e. for the entire range where the number of served
users is high and stable. However, there is a sharp contrast
between the left part (4 ≤ Dmax ≤ 12) and the right part
(12 < Dmax ≤ 22), as the left part exhibits consistently higher
values than the right one. The reason is that for Dmax > 12,
the groups become so large that some adjacent groups must be
scheduled together, which creates high inter-group interference
and thus lower SE values. Please note that the performance in
the left part is quite stable, thus the optimal value for Dmax

does not need to be estimated with extreme accuracy.
At the extremes of the investigated region, the user SE

increases but the sum SE decreases. For the sum SE, it is
easily noted that the lower values are due to the lower number
of served users. As for the user SE, the reason is different for
the two cases. With very low values of Dmax, the chordal
distance between the user eigenspaces is reduced, so the first-
stage precoder is better matched to all the users in the group,
leading to higher SE. Instead, when Dmax ≥ 24, the user SE
suddenly increases because there is only one group, and thus
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the inter-group interference disappears. However, this comes
at the cost of serving less users and is thus undesirable.

Figure 4 shows the CDF of the user spectral efficiency, for
different values of Dmax. Again, there is a sharp difference
between Dmax > 12 region (dashed lines) and the Dmax ≤ 12
region (solid lines). In the first case, many users have low
throughput and only few users have high throughput, similarly
to a maximum-throughout scheduler with low fairness. This is
due not only to both inter-group interference between adjacent
groups, but also intra-group imbalance: recall that the first-
stage precoder is based only on one of the users, and in large
groups other users may not be well matched to it. Conversely,
in the second case, the CDFs look more like a round-robin
scheduler with higher fairness. In this regime, inter-group
interference is more limited because the scheduled groups
are not adjacent, and intra-group imbalance is also reduced
due to the lower group size. This confirms that the ideal
operating region is 4 ≤ Dmax ≤ 12 in the adopted scenario.
Regarding complexity, computing the additional distance from
the cluster center can make RegionQuery twice as expensive.
However, users that have been already classified in other
groups are completely ignored by it, therefore creating smaller
groups removes users from calculations earlier. In the optimal
operating range for the considered scenario, this results in a
net complexity gain compared to the original DBSCAN.

V. CONCLUSION

In this work we propose a modified version of the DBSCAN
algorithm for downlink user grouping in Frequency Division
Duplexing Massive MIMO. The proposed modification is an
additional stopping criteria, controlled by a new system design
parameter Dmax, in order to ensure the similarity of the second
order channel statistics of receivers within the same cluster,
and thus enforce a maximum cluster size. We studied the
impact of this new control parameter by numerical evaluation,
and showed that in large dense user distributions the modified
algorithm works as intended. In terms of sum and user spectral
efficiency the proposed modified DBSCAN algorithm can
outperform the original DBSCAN algorithm. Some possible
future improvements on this topic include a more realistic
selection of the clusters to be scheduled, and the selection
of the clusterhead within each user cluster.
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