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On Modeling Shortest Path Length Distribution
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Abstract—Complex and interconnected systems belonging to biological,
social, economic, and technology application fields are generally described
through scale-free topology models. In this context, it is essential to charac-
terize the distribution of shortest paths in order to obtain precious insights
on the network behavior. Unfortunately, the few contributions available
in the current scientific literature require a case-by-case tuning of model
parameters. To bridge this gap, novel Gaussian-based models are proposed
hereby, whose parameters can be immediately tuned based on the number
of nodes (INV) composing the network, only. In this way, given IV, it becomes
possible to predict the distribution of shortest paths without retuning the
model for each scenario of interest. The outcomes of the proposed models
have been successfully validated and compared with respect to state-of-the-
art approaches in a wide set of network topologies. To provide a further
insight, the conceived Gaussian-based models have been also evaluated for
real Internet topologies, learned from reference data sets. Obtained results
highlight that the proposed models are able to reach a good tradeoff between
the level of accuracy and complexity, even for real network configurations.

Index Terms—Analytical model, internet topology, network theory
(graphs), shortest path problem, telecommunication network topology.

1. INTRODUCTION

Scale-free topology models were introduced to catch the logical re-
lationships among entities belonging to a complex and interconnected
system. Today, they are widely adopted in biological, social, economic,
and technology application fields to describe, for instance, cellular
metabolism mechanisms [1], neural networks [2], epidemic phenomena
[3], connections among scientific coauthors [4], online social network
[5], stocks and shareholders relationships [6], web graphs [7], and net-
work architectures (e.g., autonomous system and overlay nodes [8]). In
this context, the shortest path length represents an extremely important
parameter, useful to predict the behavior and the performance of the
considered interconnected system (think, for example, to the disease
spread in a network of people [3], or to the communication latencies in
Internet-like topologies [9], and so on). Unfortunately, quite a few con-
tributions investigated the shortest path length between node pairs and
the diameter, defined as the maximum distance between any node pair in
the topologies. For instance, the distribution of the average shortest path
over different topologies has been studied in [7], but the terms “aver-
age shortest-path length” and “diameter” have been used as synonyms,
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which is not the case. This misunderstanding is recurring in the litera-
ture: for instance, in [10], the average shortest path length in scale-free
networks has been analyzed by referring it as diameter and specifying
that it follows a linear distribution (without estimating the coefficient
values). Similar considerations apply also to [11]. In [12], several mod-
els were investigated, showing that it is possible to catch the distribution
of shortest path lengths by properly tuning the parameters of Gamma,
Log-normal, and Weibull probability density functions. The main lim-
itation of these approaches is that there is no explicit way to set their
parameters. On the contrary, a case by case tuning is required: for each
scenario of interest, a specific optimal set of parameters has to be used.

This paper intends to complement the current scientific literature
by proposing a novel approach that allows us to set the parameters of
the shortest path distribution model by only considering the number of
nodes. In this way, the case-by-case fitting is no longer required. To this
end, the network diameter has been first modeled in Section II-A by
means of a linear regression. After, starting from the diameter regres-
sion, different Gaussian-based models have been proposed and tested
to catch the distribution of the shortest path lengths (see Section II-B).
A massive simulation campaign has been carried out to clearly demon-
strate that the proposed methodology is accurate enough to catch the
diameter and the shortest path distribution of scale-free topologies,
over a very broad set of conditions and as a function of the number
of nodes only. The comparison with respect to the solutions described
in [12], further demonstrates that the proposed methodology can be
safely adopted because it greatly simplifies the model of the shortest
path distribution without any remarkable performance degradation in
terms of accuracy. To provide a further insight, the accuracy of the
conceived Gaussian-based models that have been also evaluated for
real Internet topologies [13] is discussed in Section III. The conducted
study further shows that the proposed models register a good tradeoff
between the level of accuracy and complexity, even for real network
configurations. Finally, Section IV provides closing remarks and draws
future research.

II. ANALYTICAL MODELS FOR SCALE-FREE
NETWORK TOPOLOGIES

A. Diameter Model

The scale-free model entails an evolving networked system over a
discrete time domain: at every timestep, a new vertex is added withm <
my edges, where my is the initial small number of vertices deployed
in the system. Typically, little values of m are used to model several
systems. For instance, the current literature usually assumes m = 2
to model Internet-like topologies [10] and neuronal systems [2]. Also,
m = 1 and m = 2 are used to model the disease spread in a population
[3]. Without loss of generality, the rest of this contribution considers

m = 2. In this case, the average shortest path, d, is approximately
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Fig. 1. Diameter linear regression.
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where N is the total number of nodes in the topology.
Starting from (1), the network diameter is modeled herein through a
linear regression over d, as explained below

- log N

5—ad+ﬂ—alog10gN+ﬂ, )
where « is the y-intercept, /3 is the slope (or regression coefficient). A
massive simulation campaign is carried out to estimate « and /3 coef-
ficients by means of least-square fitting and their values are obtained
as a function of the number of nodes. To this end, BRITE [14] is used
to generate different scale-free topologies with a number of nodes (V)
ranging from 10° to 10*. For each IV, moreover, 50 different topology
realizations are evaluated.

The resulting linear regressions are plotted in Fig. 1 (results shows
the average diameter over the 50 simulation runs and its confidence
interval at 95%).

With reference to results reported in Fig. 1, the least-square fit-
ting procedure has produced the following outcomes: a = 2.8989 and
[ = —3.1938. Note that the values of « and 3 coefficients implicitly
encompass different network configurations so that the resulting model
is able to predict the network diameter as a function of the number of
nodes only. In other words, while the linear regression is deducted just
one time in this short paper, (2) can be directly used in other contexts,
even if the number of nodes and links change, i.e., without requiring
any further case by case fitting.

To provide a further insight, the well-known R-squared method is
used to evaluate the accuracy of fitting [15]. Accordingly, the R* pa-
rameter has been evaluated as

R X = 8)
Z;Lzl((si — 5)2

where §;, 62-, and ¢ are the ith average diameter value obtained from
simulations for each IV, the projection of the aforementioned value to
the linear regression calculated according to (2), and the mean of the av-
erage diameter samples, respectively. It has been found that R* = 0.92.
Considering that R? can be a value in the range [0, 1] and the higher R?,
the better the model, the R-squared method clearly demonstrates that
the linear regression is accurate enough to catch the network diameter
of scale-free topologies, over a very broad set of number of nodes.

B. Shortest Path Length Model

1) Model Design: Different Gaussian-based models are pro-
posed and tested herein to fit the distribution of shortest path lengths.
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The probability density function, f(), of a generic Gaussian random
variable X lying within the interval X € (a,b), with —co < a < b <
400, is reported below [15]:

(2 )

———<——— fa<z<b
Flasp,o,a,b) = s(GE ety TS 3)
0 elsewhere.
(2=n)? i
Note that ¢(*1)=——e¢" %7 and P(=L) =11 +erf

(;T/%)] are the probability density function and the cumulative dis-
tribution function (CDF) of the normal distribution with mean p and
standard deviation o.

Depending on the interval (a, b), four Gaussian-based models can
be defined.

Model 1. Gaussian random variable, with a = —oco and b = +oc.
It represents the most general case modeling the shortest paths through
a normal distribution.

Model 2. Lower-tail truncated Gaussian random variable, with
a = 0 and b = +o0. This model imposes that the minimum allowed
value of the shortest path is equal to 0.

Model 3. Upper-tail truncated Gaussian random variable, with
a = —oo and b = 4. In this case, the upper bound of the diameter is
taken into account to better characterize the shortest path distribution.

Model 4. Two-sided truncated Gaussian random variable, with
a = 0 and b = §. This model merges the constraints presented with the
previous two cases, thus considering a shortest path distribution lied in
the interval (0, ¢).

Considering the (nontruncated) Gaussian-based model, the mean
w is set to log N/loglog N, in line with the previous section. The
standard deviation o, instead, is estimated by considering the relation
between the diameter of the network topology and its average shortest
path. Indeed, since the diameter is defined as the longest shortest path
length of the topology, it can be represented as the average shortest
path d plus a certain tolerance interval ko, with k being a coefficient
of proportionality, as shown below

log N

5 o5t
loglog N

IR

d+ ko = + ko. @)

Now, by replacing (2) in (4), the standard deviation o can be
rewritten as
1 log N
Tk alog log N
Mean and standard deviation of truncated Gaussian-based models
can be finally calculated by using (6) and (7), respectively [15]

log N > 5)

 loglog N
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2) Model Tuning: Proposed models are tightly coupled to the
coefficient k. For this reason, their CDFs are evaluated hereby for dif-
ferent values of N and k. Fig. 2 reports the CDFs related to Model 1.
The curves that refer to the simulated network topologies are shown
too.! Obtained results clearly demonstrate that the accuracy of pro-
posed models is influenced by k so that it is necessary to undergo
a tuning stage. To this end, the theoretical CDFs obtained using the

1For lack of space, only results related to networks with 3000 and 30 000
nodes are reported. The missing cases and models exhibit similar behaviors.
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TABLE I
ABSOLUTE ERRORS OF THE 50TH AND 90TH QUANTILES OF THE CDFS OF THE SHORTEST PATHS, EXPRESSED IN TERMS OF NUMBER OF HOPS

Not truncated Gaussian-based
50th quantiles 90th quantiles

Topologies generated through BRITE

Weibull case by case
50th quantiles 90th quantiles

N 3000 10000 10000
Error | 0.2721  0.4582 0.3078

30000
0.5737

3000
0.2539

30000
0.4010

3000
0.444

10000 30000 10000 30000
0.389 0.297 0.015 0.013

3000
0.050

Not truncated Gaussian-based
50th quantiles 90th quantiles

Real Internet topologies learned from CAIDA

Weibull case by case
50th quantiles 90th quantiles

N 3233 16565 34832 3233 16565 34832 3233 16565 34832 3233 16565 34832
Error | 0.7319  0.7199 0.5789 | 0.4531 0.6401  0.5981 0.4678  0.4429 03584 | 0.2363 0.2180 0.2014
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Fig. 2. CDF of the shortest path, simulated with BRITE and obtained with  Fig.4. CDF of the shortest path, provided by the CAIDA data set and obtained

Model 1 where (a) N = 3000 and (b) N = 30 000.
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Fig. 3. Outputs of the Kolmogorov—Smirnov test on the overall distributions
obtained through BRITE.

four proposed models have been compared with respect to the em-
pirical ones for different values of N and %, using the well-known
Kolmogorov—Smirnov test. This test evaluates the maximum absolute
difference between the CDFs generated through simulations and the
CDFs deriving from the proposed models. Given the number of avail-
able samples, a good level of accuracy is reached if the output of the
Kolmogorov—Smirnov test is below a threshold equal to 0.35 [16].

From results reported in Fig. 3, it is possible to observe that all the
Gaussian-based models provide the same accuracy, given k. In other
words, they are equivalent. Moreover, a coefficient £ = 11 is able to
minimize the overall error. According to the Kolmogorov—Smirnov
test, in fact, it provides a distance from empirical distributions that lies
in the range [0.112, 0.208], below the aforementioned threshold.

3) Performance Comparisons: To assess the degree of accuracy
of the proposed models, it is necessary to compare their optimal perfor-
mance with respect to the models in [12], derived using a case-by-case
fitting. To this end, the Kolmogorov—Smirnov test is also executed for
the CDF generated with the Weibull model in [12], properly fitted for
each considered network topology. In particular, shape and scale pa-
rameters of the Weibull distributions, i.e., (7, A), are tuned as in what
follows: (4.95,5.68) for N = 3000, (5.54, 6.34) for N = 10 000, and

with the proposed Model 1 and Weibull where (a) N = 3233 and (b) N = 34832.

(5.82,6.52) for N = 30000. The resulting distance between simu-
lated and modeled distributions falls within the range [0.054, 0.062].
Therefore, the complexity introduced by the case-by-case fitting pro-
vides some performance gain in terms of accuracy with respect to the
models proposed in this short paper (i.e., using the case-by-case fit-
ting, it is possible to obtain lower Kolmogorov—Smirnov distances).
To quantify the loss of accuracy incurred by the proposed models, the
errors associated to the 50th and 90th quantiles of the CDFs of the
shortest paths are evaluated and shown in Table I. They clearly demon-
strate that the error is always lower than 1 hop. This means that, albeit
the proposed models do not require a case-by-case fitting, they are able
to predict the median and 90th quantile of the shortest path length with
absolute errors less than 1 hop. Indeed, it is possible to conclude that
the methodology proposed in this contribution can be safely adopted
because it greatly simplifies the model of the shortest path distribution
without any remarkable performance degradation in terms of accuracy.
In fact, differently from state-of-the-art solutions, it allows to tune the
parameters of the shortest path distribution model by only considering
the number of nodes, without requiring a case-by-case fitting.

III. MODELS VALIDATION IN REAL INTERNET TOPOLOGIES

The accuracy of the conceived Gaussian-based models has been
also evaluated for real Internet topologies. Specifically, autonomous
system-level topologies are extracted from the CAIDA database [13].
It is important to note that CAIDA does not offer simulated data, but it
provides trustworthy topological details of the Internet architecture in
different reference years. Thus, considering network topologies from
CAIDA is equivalent to conduct real-world topological experiments.
The study considered snapshots of the Internet from 1998 to 2010, with
a number of node N growing from 3233 to 34 832.

The cumulative distribution of the shortest path of real topologies is
reported in Fig. 4, alongside the theoretical CDF related to Model 1.
Also in this case, the Kolmogorov—Smirnov test has been executed to
evaluate the goodness of the fitting. The outputs are shown in Fig. 5.
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Fig. 5. Outputs of the Kolmogorov—Smirnov test on the overall distributions

achieved from the CAIDA data sets.

Given the optimal value of k obtained in the previous section (i.e.,
k = 11), it is possible to observe that the resulting distance between
real and modeled distributions falls within the range [0.246, 0.484]. On
the contrary, the Weibull model registers a distance that falls within the
range [0.165,0.173].

At a first glance, the Kolmogorov—Smirnov test highlights that the
Weibull model guarantees the highest level of accuracy and that the
proposed models obtain a satisfactory level of accuracy only in real
Internet topologies with a limited number of nodes. Anyway, to con-
cretely quantify from a pragmatical perspective, the loss of accuracy
incurred by the proposed models, the errors associated to the 50th and
90th quantiles of the CDFs of the shortest paths are reported in Table I.
Also, in this case, it emerges that the error is always lower than 1 hop.
Therefore, the proposed methodology can be safely adopted also in
real Internet topologies, because it offers a good tradeoff between the
level of accuracy and the model’s complexity.

IV. CONCLUSION

To the best of the authors’ knowledge, this paper demonstrates, for
the first time, that it is possible to create simple and effective Gaussian-
based models of the shortest path distribution in scale-free network
topologies by accounting for the number of nodes only. The accuracy
of the proposed models has been further investigated by considering
real Internet network topologies, learned from reference data sets. This
work represents a strong advancement of the state of the art because
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currently available approaches require a case-by-case fitting to catch
the properties of the network scenario of interest. For future works, we
plan to apply this approach to other distributions, such as Weibull, in
order to achieve even better accuracy.
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