An Open Source and System-Level Simulator
for the Internet of Drones

Giovanni Grieco*, Roberto Artuso*, Pietro Boccadoro**, Giuseppe Piro**, and Luigi Alfredo Grieco*
*Dept. of Electrical and Information Engineering (DEI), Politecnico di Bari, Bari, Italy,
iCNIT, Consorzio Nazionale Interunivesitario per le Telecomunicazioni
Email:{giovanni.grieco, roberto.artuso, pietro.boccadoro, giuseppe.piro, alfredo.grieco} @poliba.it

Abstract—The Internet of Drones (IoD) represents a key
enabling paradigm for the Internet of Mobile Things. By of-
fering smart interactions among unmanned aerial vehicles,
i.e., drones, it promises to support many advanced services,
spanning from control signaling and traffic management
to real-time applications and multimedia streaming. From
the networking perspective, IoD should face heterogeneous
architectures and extremely dynamics topologies, while
ensuring the different levels of quality of service expected
for the enabled applications. In this context, the definition
of novel communication protocols and algorithms must be
properly supported by valid instruments able to model the
overall network architecture, as well as to evaluate and
to improve its performance in many operating scenarios.
To meet this goal, this work presents an open source and
system-level simulator for the IoD. Developed on top of
the well-known Network Simulator 3, it implements the
key networking elements (drones, network access points,
and Zone Service Provider), a standard-compliant com-
munication stack based on the IEEE 802.11 technology,
and scenarios with various mobility model. Thanks to its
native modularity, the simulator is ready to be used for
investigating the performance of customizable scenarios
with a variable number of drones, as well as to be easily
extended with new functionalities.

Index Terms—Internet of Mobile Things, Internet of
Drones, system-level simulator, Network Simulator 3

I. INTRODUCTION

While the Internet of Things (IoT) is continuously
evolving, the scientific community is currently investi-
gating new approaches to offer a seamless connectivity
to mobile objects. Hence, new research frontiers are
converging towards the so called Internet of Mobile
Things (IoMT) [1]. In this context, the IoD is emerging
as a key enabling paradigm for the IoMT. Conceived as
a layered network control architecture for flying objects,
with autonomous driving capabilities, namely Unmanned
Aerial Vehicles (UAVs) or drones, the IoD promises to
offer continuous, dynamic, distributed, and fine-grained
control of the airspace [2]-[5], thus supporting a plethora
of applications, spanning from public safety [6] to smart
cities [7], and Intelligent Transportation Systems [7], [8].
In the context of disaster management, both military
and civil drones may be involved [9]. While each of
these application is evolving, the need for the massive
employment of drones is promoting the advance func-
tionalities [10], such as advanced mission scheduling,

and coordinated flight and collaboration between UAV
forming swarms [11].

The development of the IoD networking paradigm is
mandatory for drone-based civil and military applica-
tions and services [12], [13]. However, while the IoD
tends to upgrade the current Internet environment in
order to become more pervasive and ubiquitous, several
challenging issues emerge from the communication point
of view: IoD should face heterogeneous architectures and
extremely dynamics network topologies, while ensuring
the different levels of quality of service expected for
the enabled applications [5], [14], [15]. Indeed, while
novel communication protocols and algorithms should
be properly conceived, the upcoming research activities
will soon require the support of flexible tools able
to investigate and optimize the performance of IoD
solutions for various operating scenarios, before their
actual deployment. Unfortunately, the current scientific
literature does not offer any thorough answer to this
need, yet.

To bridge this gap, this work presents an open source
and system-level simulator for the IoD. Developed on
top of the well-known Network Simulator 3 [16], it
implements the main networking elements (drones, net-
work access points, and Zone Service Provider (ZSP)),
a standard-compliant communication stack based on the
IEEE 802.11 technology (already available within the
Network Simulator 3 framework), and four different
scenarios, each one with its specific mobility model.
Moreover, example scripts allows to simulate a variable
number of drones that: move according to the mobility
model associated to the reference scenario and exchange
messages with network access points deployed on the
Earth surface. The simulation generates log and PCAP
files, useful to investigate the network behavior during
the time and extract its performance. Thanks to its
native modularity, the simulator is ready to be used for
evaluating the communication performance in custom
scenarios with a variable number of drones, as well as
to be easily extended with new functionalities. The code
is freely available at https://telematics.poliba.it/iod-sim.

The remainder of this work is as follows: Section II
discusses possible application scenarios and introduces

related research issues. Section III describes the imple-
mented simulator. Section IV presents the usage of tool
through a concrete example. Section V concludes the
work and draws future research activities.

II. WHY DO WE NEED AN I0D SIMULATOR?

L wiri %
4Gor T L
- COMSAT .~

WiMAX L)

"
¥

= e af
{ = i [101011 o] (G
Storage Computing Cloud
- nE
=20
User User User

Fig. 1. High-level description of an IoD architecture.

The IoD can be defined as a heterogeneous and large-
scale communication architecture that supports complex
tasks management and coordination. Here, some of the
challenges are related to airspace awareness, Non-Line
of Sight (NLoS) and augmentative control and collision
avoidance. The operational landscape and applicability
of the IoD paradigm is described in Figure 1. Regardless
of the reference application field, instead, a common
concern regards wireless communication ranges: as long
as they increase (i.e., over long distances) drones may be-
come difficult to be controlled. More in general, the main
questions that were formulated by the IoD researchers
are summarized in what follows. What technological
solutions are currently able to simulate communications
between Drones? Are the protocol solutions we have
today sufficient or do we need new ones? What are the
limits of the applicability of the technological solutions
currently available to this technological scenario? With
which protocol solutions are we able to support the
mobility that the drone expresses during its operation?
Is this capacity actually supported even in realistic
scenarios?

Turning from theory to practice, there is the need to
validate both the concept and the modeling and design
of the IoD. To this aim, a number of questions are still
open for comments. For instance, it has still to be defined
whether the system is autonomous or not. Moreover, the
IoD has not been characterized in terms of network and
service efficiency, yet. It is worth specifying that such
an evaluation could be reviewed in strict correlation with
the specific application and or operational condition.
Another verification asset could be the overloading. For
instance, which are the operational conditions and/or
case in which the system does not withstand the data
load. The investigation could be of relevance if it could

be possible to establish a correlation between the break-
even point and the specific application/user. Further, a
number of question are still left unspoken. In particular,
in terms of telecommunications technologies, their inte-
gration should be evaluated as for their relevance and
suitability to the typical IoD constraints.

The number and kind of open issues clearly suggest
that there is the need for a dedicated platform that allows
to evaluate different technological solutions. Hence, the
preliminary assessments on the suitability of each of the
proposals could be stated properly analyzing the results
of the simulations conducted in functionally specified
operational scenarios. All these considerations are of
greater relevance in the IoD context, in which a simulator
is highly desirable.

III. THE DEVELOPED SIMULATION TOOL

The IoD simulator proposed herein has been devel-
oped on top of Network Simulator 3 [16], a well-known
software solution widely conceived as a reliable open-
source, discrete-event network simulator. The choice is
motivated by the fact that, as a main design criteria,
Network Simulator 3 proposes itself as a modular soft-
ware solution modeling various communication proto-
cols, while offering the possibility to be easily extended
and enhanced. Moreover, it was licensed according to
the GPLV2 licenses, which is a non-negligible pro as
to be able to guarantee its diffusion within the research
communities in the future.

Among the many proposed design challenges, it was
first needed to characterize the drones’ mobility model.
For example, it had to be designed the number of
directions a drone can follow. Nevertheless, moving is
not only a matter of direction and it can be described
relying on laws, models, and equations. The topic has
been studied considering that the reference coordinates
system is no longer a bi-dimensional one, but a 3D space.
Consequently, concrete IoD scenarios where drones can
move by following the aforementioned mobility models
have been conceived. Then, the communication stack
already available in the Network Simulator 3 has been
harmoniously integrated within all the network elements.
As a result, the proposed simulator already implements
the fundamentals of data transmission and communica-
tion of a typical IoD scenario and can be easily extended
in the future.

To make the simulation environment as portable as
possible, the whole project has been released as a
Docker container and the code is freely available at
https://telematics.poliba.it/iod-sim.

To conclude, Figure 2 shows the Unified Modeling
Language (UML) description of main classes involved
in the simulator, whose functionalities will be described
in what follows.

+ GetRestTime ()

‘ FlightPlan
- m_protoPoints
DroneClient DroneServer Begin ()
+ Begin
-m_destPort -m_port + Eng‘()(
<<enum >> - m_duration - m_duration <<enum >> +Add ()
ClientState - m_txTrace - m_txTrace ServerState +Get ()
+CLOSED [~ StartApplication () | |- StartApplication () 1+ CLOSED +GetN ()
+ HELLO_SENT - StopApplication () | |- StopApplication () + HELLO_SENT + GetFront () —
+ CONNECTED - SendPacket () - ReceivePacket () + CONNECTED + GetBack () ns3::MobilityModel
- ReceivePacket () | |- SendHelloAck ()
- CourseChange () | |- SendDummyAck ()
S endD 0
ScenarioConfigurationHelper
- m_configFilePtr
- m_config SpeedCoefficients
-m_out - m_speedCoefficier |
- m_name
! N Planni Curve
- m_dateTime +Begin ()
+End () #m_acceleration #m_acceleration -m_step #m_step
+GetName () +Add () #m_maxSpeed #m_maxSpeed - m_simulationDuration + Generate ()
+ GetCurrentDateTime () +Get () # m_simulationDuration # m_simulationDuration - m_fiightParams # GetPoint ()
+ GetResultsPath () +GeiN () #m_curveStep #m_curveStep - m_flights # Factorial ()
+ GetLoggingFilePath () + GetFront () Dolnitalize () _ Dolnitalize () - m_timeWindows
+ GetPhyMode () + GetBack () - Update () - Update () +Update ()
+ GetDuration () - DoSetPosition () - DoSetPosition () + GetPosition ()
+ GetCurveStep () - DoGetPosition () - DoGetPosition () + GetVelocity ()
+ GetDronesN () << enum >> - DoGetVelocity () - DoGetVelocity () + GetTimeWindow ()
+ GetDroneFlightPlan () Intent - SetSpeedCoefficients ()
+ GetDroneAcceleration () +NEW
+ GetDroneMaxSpeed () +ACK i i
+ ColbroneSpeetosefitients ConstantAccelerationParam ParametricSpeedParam
+ GetD i Time () #m_acceleration - m_speedCoefficients
+ GetDroneApplicationStopTime () << enum >> #m_maxSpeed —hdd0
+GetZspsN () PacketType + GetAcceleration () + GetSpeedCoefficients ()
+ GetZspsPosition () +HELLO + GetMaxSpeed () ParametricSpeedFlight ConstantAccelerationFlight
+ GetZspsApplicationStartTime () +HELLO_ACK "
; . # m_currentDistance #m_length
+ GetZspsApplicationStopTime () + DUMMY i
- InitializeConfiguration () #m_currentSpeed #m_acceleration
[+ DUMMY_ACK | #m_length
- InitializeLogging () #m 9 :'“J"ax?“?d ZonsLength
- GetLogOnFile () 5P CurvePoint m_accelerationZoneLeng
- EnableLogComponents () + Generate () Tt : m Time
. " - m_currentDistance
m_ineres + GetTime e atepisance # m_eureniisa
+ SetPosition () # Z""P“'“e 0 0 - m_absoluteDistan: o
, + GetPosition + Generate (
+ GetPosition () + Getvelocity () + GetRelativeDistanceVector () + GetTime ())
+ zetlnleresl 0 + Update (+ GetRelativeDistance () #FindTime ()
:Se::‘e‘rist 0) # UpdateDistance () + GetAbsoluteDistance () + GetPosition ()
etRestTime (# Up 0 —+ GetPosition () 4)

+ Update ()

UpdateDistance ()
UpdatePosition ()
#1 0
UpdateVelocity ()

UpdateSpeed ()
UpdateVelocity ()

Fig. 2. UML diagram of the main classes involved in the implemented IoD simulator.

A. Mobility Model

In this simulator, the flight of a drone has been
modeled according to linear and non-linear trajectories.
In the former case, the trajectory simply results from
the interpolation of two consecutive waypoints. The
assumption resulted in two mobilitiy models:

o Waypoint Mobility Model: it allows to specify a
number of waypoints that will be part of the flight
plan of the drone. The trajectory will be linear from
one point to the other.

e Random Waypoint Mobility Model: it extends the
previous models by assuming that the waypoint
list is generated with a uniform distribution. Once
again, the trajectory is linear from one waypoint
and the following one.

The latter case, instead, is referred to non-linear tra-
jectories. In this case, trajectories haves been realized
as Bézier curves. Each point, stored in a CurvePoint
object, is linked to the relative euclidean distance with
the preceding point. Moreover, the object considers the
absolute distance as in the sum of relative distances of
each curve point starting from the origin of the curve.
Lastly, it is used the parameter that generated such
point using Bézier equation. Then, Bézier knots, also
referred to as Proto Points, and the curve steps used
to generate the trajectory are stored in a FlightPlan
object. Moreover, multiple Flights can be sequentially

managed through a Planner, which can be configured by
using auxiliary objects, Flight and Param. Each trajectory
has its own time window that specifies its validity in
time. The non-linear trajectories have been implemented
through the following mobility models:

o Constant Acceleration Mobility Model: allows to
simulate a uniformly accelerated drone motion. It
is initialized by passing its auxiliary configuration
object named ConstantAccelerationParam, embrac-
ing two mandatory properties: acceleration and
maxSpeed (see Table I).

e Parametric Speed Mobility Model: the flight of
drones is described in terms of speed through a
couple of properties: ParametricSpeedParam and
SpeedCoefficients (see Table II).

B. Reference loD scenarios

The main network elements modeled within the im-
plemented IoD simulator are: drones, access point and
ZSP. Drones and access point communicate each other
through wireless links. For simplicity, the ZSP is directly
connected to the access point.

Network elements can be deployed according to four
possible scenarios. In Scenario 1, drones move accord-
ing to the Waypoint Mobility Model, which foresees a
set of preassigned waypoint positions used to define
a trajectory. In Scenario 2, drones move according to
the Random Waypoint Mobility Model. In particular, the

TABLE I

ATTRIBUTES FOR CONSTANT ACCELERATION MODEL

TABLE III
PARAMETER SETTINGS OF IMPLEMENTED [0D SCENARIOS.

Attribute | Type | Description
Acceleration| Double precision | Constant drone
floating point number | acceleration
[m/s?]
MaxSpeed Double precision | Drone speed
floating point number | limit [m/s]
FlightPlan ns3::FlightPlan Set of points of
interest
Simulation- | Double precision | Simulation dura-
Duration floating point number | tion [s]
CurveStep Single precision float- | Step of the

ing point number

curve being
generated. Values
near 0 mean
more points to
generate, hence
an to improved
resolution

TABLE I

ATTRIBUTES FOR PARAMETRIC SPEED MODEL

Attribute | Type | Description
Speed Co- | ns3:Speed- Coefficients of
efficients Coefficients the polynomial

velocity
FlightPlan ns3::FlightPlan Points of interest

points
Simulation- | Double precision | Simulation dura-
Duration floating point number | tion [s]
CurveStep Single precision float- | Precision of gen-

ing point number erated curve

set of waypoints are generated according to a uniform
distribution. Generated coordinates are included in a
cubic 3-D space 1 km? wide. In Scenario 3: drones move
according to the Constant Acceleration Drone Mobility
Model. Finally, in Scenario 4, drones move according to
the Parametric Speed Drone Mobility Model. 1t is im-
portant to note all the aforementioned IoD scenarios can
be configured by the user. The list of input parameters
is summarized in Table III.

C. A buttom-up description of the protocol stack

The current version of the IoD simulator integrates
a standard compliant communication stack, based on
the IEEE 802.11 specifications. The network level is
based on Internet Protocol version 4 (IPv4). Moreover,
to guarantee the effective transport of information and
data, the transport layer of the protocol stack employs the
User Datagram Protocol (UDP) protocol. The choice is
motivated by the fact, that in the IoD context, high com-
munication speed could be privileged instead of ensuring
that every single packet is received. And, it is widely
known that the UDP protocol is used by applications
requiring high speed communication techniques.

Attribute Type Description
Scen. 1 numDrones uint32 Number of drones
Scen. 2 numDrones uint32 Number of drones
: duration double Simulation duration
acceleration double Drone acceleration
maxSpeed double Drone max speed
applicationStartTime ~ double Start time
applicationStopTime double Stop time
trajector Array of Drone trajector:
J y Objects J y
Scen. 3 logOnFile bool Enable file logging.
phyMode string Transmission mode
duration double Simulation duration
drones Array of Drones properties
Objects prop
Zone Service Array of Zonq Service
. . Provider
Provider Objects .
configuration
Array of
logComponents Strings Log enable
applicationStartTime double Start time
applicationStopTime double Stop time
. Array of Velocity
speedCoefficients double coefficients
. Array of .
trajectory Objects Drone trajectory
logOnFile bool Enable file logging
Scen. 4 phyMode string Transmission mode
duration double Simulation duration
Array of .
drones Objects Drones properties
Zone Service Array of Zone. Service
. . Provider
Provider Objects .
configuration
) Array of .
logComponents Strings Log enable

D. A customized client-server application

At the application layer, the interaction among drones
and access points has been modeled according to the typ-
ical client-server pattern. The two communicating peers
are: ns3::DroneClient and ns3::DroneServer, installed
on drones and network ZSP, respectively.

To assess network initial state at simulation startup, a
rendezvous process is triggered in order to auto-discover
network clients (i.e., drones) and the server (i.e., ZSP).

Communication is simulated in an event-driven fash-
ion. In particular, the models implements dedicated Ap-
plication Programming Interfaces (APIs) and manages
packet transfer via specialized methods, such as Send-
Packet() and ReceivePacket(). The application message
has been designed to encode data using the JavaScript
Object Notation (JSON), which is then encapsulated and
transported as an UDP payload. Note that JSON format
files require a simple structure with a minimum number
of tags.

The JSON message contains the following fields:
drone identified (32 bit), a packet sequence number (32
bit), a command field (string), the drone localization in-

formation (object). Moreover, latitude (64 bit), longitude
(64 bit), altitude (64 bit) and speed (32 bit)are included
too. The command (cmd) field is used to describe what
the message content and how it should be interpreted.
Such values can be set to HELLO, HELLO_ACK, UP-
DATE and UPDATE_ACK.

The former couple is used for the rendezvous process.
In particular, the HELLO message is sent by the drone
in broadcast. The reply, that is the HELLO_ACK, is sent
by the ZSP to the drone. A typical example of this
communication are related to the transmission of the
Global Position System (GPS) signal, which offers drone
geographic coordinates and its velocity in a structured
way. Such coordinates are relative to the simulated space,
which can be assumed a 3-D space.

UPDATE and UPDATE_ACK packets, instead, are
used in the periodic data exchange between drones and
ZSPs. In details, a drone periodically sends a UPDATE
and gets the related UPDATE_ACK from the ZSP, which
represents the confirmation of receipt of the message.
As a design criteria, drones are, de facto, conceived
as data producer data. This is because their monitoring
activities implies that, once they reach the points of
interest, they are suppose to carry out some task, such
as monitor environmental parameters or taking pictures
of a desired place. To this aim, the transmission period
and the overall amount of packets to be sent have been
implemented as drones properties and can be set in each
and every scenario.

E. Log files

During the simulation, three types of log files are
generated: summary-scenario, PHY log, and PCAP file.
First, the summary-scenario file contains information
on the simulated scenario, together with date and time
of execution. This log also presents useful information
about the number of drones, the number of ZSPs and the
total duration of the simulation. The PHY log records all
the simulation details related to the message exchanged
at the physical layer, during the time. Each line of the file
contains: a marker ¢ of r, to indicate if the frame is trans-
mitted or received, a timestamp, the unique identifiers
of the involved network elements and other information
related to the simulation of the involved objects. The
PCAP file records exchanged packets and their details
at different levels of the protocol stack. Specifically,
for each exchanged packet, the PCAP file contains a
timestamp, an indication of the data source, an indication
of the receiver of the message, the reference protocol
for the message, the length of the message (expressed
in bytes), and the message itself. This is useful for the
analysis of network functionality and the diagnosis of
any problems encountered during transmissions.

00/0
30 o i
= oad
) o
025 ¥os 4
X poy
5] g
@ QO
S0t o 1
1} Woad
5 o°
215 og Bl
[<)
3 I
< &
3 10+ gg 4
3 ¥
S sl 3,6 =¢-Broadcast from AP
g o -=-Broadcast from D1
[s) - | [©-Data from D1 to AP

o

. . .
0 50 100 150 200 250 300
Time [s]

Fig. 3. Cumulative number of packets exchanged throughout the
simulation.

IV. USING AND EXTENDING THE I0OD SIMULATOR
A. Simulation example

The concrete usage of the implemented oD simulator
is herein presented. The simulation example is based on
Scenario 2. The overall simulation duration has been set
to 300 seconds. During this period of time, the scenario
foresees 1 ZSP and 9 drones moving all around a certain
area. During the simulation, drones move according to
the random position model; in this case, in fact, drones
are moving from one point to another in a straight
way. The speed of a drone is not constant and can be
calculated through its definition, hence as the ratio be-
tween the final and starting positions over the reference
time, indicated through the respective timestamps. At the
beginning of the simulation, the ZSP is communicating
with drones by sending them broadcast messages at
a fixed pace, i.e., every 30 seconds. These messages
are related to rendezvous process, which happens in
the startup phase. Drones periodically send data to the
ZSP, e.g., every 10 seconds. The PHY log file has been
properly processed in order to generate Figures 3 and
4. In details, Figure 3 shows the cumulative amount of
packets sent by a one single drone over time. In this
graph it is clearly reports an initial messages exchange
between the drones and the ZSP. During the first seconds
of the simulation, the drones generates broadcast traffic.
After the startup phase is concluded, the simulation
continues with a periodic message exchange that fits
the aforedescribed settings. Figure 4, instead, highlights
the impact of packet loss (due to drones’ mobility) on
network performance. Further, it is worth noting that
the conducted simulation refer to communications that
are occurring without losses. Nevertheless, the mobility,
together with channel access policy and physical losses
lead to a reduction in performance.

B. The road ahead

Future research efforts will be devoted to enhance
simulator functionalities. In particular, the presented tool
will be extended to support for swarm flight coordi-
nation, thus investigating collision avoidance solutions,

100

0

Drone ID

N @ @®
o o o

Packet Delivery Ratio [%)]
n
o

Data from D1 to AP

Fig. 4. Packet Delivery Ratio for each drone in the network.

with specific reference to Particle Swarm Optimization
and Genetic Algorithm [17]. As for communications,
the simulator will soon support a larger number of
ZSPs. The communication protocols will include routing
protocols for UAVs [18]. The presented module can be
extended integrating graphical (i.e., NetAnim') and data
visualization tools such as (i.e. gnuplot® or pyviz’. The
simulator will also support Python bindings, as to easily
develop the upcoming scenarios. Lastly, the simulator
could be used to evaluate security and privacy issues
[19].

V. CONCLUSION

The present contribution proposed an open source and
system-level simulator for the IoD. The tool has been
developed on top of the well-known Network Simulator
3 and foresees a number of networking elements, a
standard-compliant communication stack, and four dif-
ferent scenarios, each one with its specific mobility
model. The proposal has been proven to be modular
by design, which implies its readiness for evaluating
communication performance in custom scenarios with a
variable number of drones. Further, it could be easily
extended with new functionalities and protocol stack
support. In the future, the simulator will be extended in
order to evaluate and include swarm flight coordination,
multiple ZSPs, and energy consumption models.

ACKNOWLEDGMENT

This work was partially founded by Italian MIUR
PON projects Pico&Pro (ARSO1 01061) AGREED
(ARSO1 00254), FURTHER (ARSO1 01283), RAFAEL
(ARSO1 00305) and by Apulia Region (Italy) Re-
search Projects E-SHELF (OSW3NO1) and INTENTO
(36 A49H6).

Uhttps://www.nsnam.org/wiki/NetAnim
Zhttps://www.nsnam.org/docs/manual/html/gnuplot.html
3https://www.nsnam.org/wiki/Py Viz

[1]

—_— =
o8] [\
= =

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

K. Nahrstedt, H. Li, P. Nguyen, S. Chang, and L. Vu, “Internet
of mobile things: Mobility-driven challenges, designs and imple-
mentations,” in IEEE First International Conference on Internet-
of-Things Design and Implementation (loTDI), Apr. 2016, pp.
25-36.

M. Gharibi, R. Boutaba, and S. L. Waslander,
drones,” IEEE Access, vol. 4, 2016.

N. H. Motlagh, T. Taleb, and O. Arouk, “Low-altitude unmanned
aerial vehicles-based internet of things services: Comprehensive
survey and future perspectives,” IEEE Internet of Things Journal,
vol. 3, no. 6, pp. 899-922, Dec. 2016.

T. Long, M. Ozger, O. Cetinkaya, and O. B. Akan, “Energy
neutral internet of drones,” IEEE Communications Magazine,
vol. 56, no. 1, pp. 22-28, Jan. 2018.

S. Dhingra, R. B. Madda, A. H. Gandomi, R. Patan, and
M. Daneshmand, “Internet of things mobile - air pollution moni-
toring system (iot-mobair),” IEEE Internet of Things Journal, pp.
1-1, 2019.

X. Li, D. Guo, H. Yin, and G. Wei, “Drone-assisted public safety
wireless broadband network,” in 2015 IEEE Wireless Communi-
cations and Networking Conference Workshops (WCNCW), Mar.
2015, pp. 323-328.

H. Menouar, I. Guvenc, K. Akkaya, A. S. Uluagac, A. Kadri, and
A. Tuncer, “Uav-enabled intelligent transportation systems for the
smart city: Applications and challenges,” IEEE Communications
Magazine, vol. 55, no. 3, pp. 22-28, Mar. 2017.

M. A. Khan, W. Ectors, T. Bellemans, D. Janssens, and G. Wets,
“Uav-based traffic analysis: A universal guiding framework based
on literature survey,” Transportation Research Procedia, vol. 22,
pp. 541 — 550, 2017, 19th EURO Working Group on Transporta-
tion Meeting, EWGT2016, 5-7 September 2016, Istanbul, Turkey.
A. Restas, “Drone applications for supporting disaster manage-
ment,” World Journal of Engineering and Technology, vol. 3, pp.
316-321, 2015.

A. Koubda, B. Qureshi, M. Sriti, Y. Javed, and E. Tovar,
“A service-oriented cloud-based management system for the
internet-of-drones,” in 2017 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC), 2017,
pp. 329-335.

A. Koubaa, B. Qureshi, M.-F. Sriti, A. Allouch, Y. Javed, M. Ala-
jlan, O. Cheikhrouhou, M. Khalgui, and E. Tovar, “Dronemap
planner: A service-oriented cloud-based management system for
the internet-of-drones,” Ad Hoc Networks, vol. 86, pp. 46 — 62,
2019.

A. Koubaa, B. Qureshi, M. F. Sriti, Y. Javed, and E. Tovar, “A
service-oriented cloud-based management system for the internet-
of-drones,” in [EEE International Conference on Autonomous
Robot Systems and Competitions (ICARSC), 2017, pp. 329-335.
M. A. Ma’sum, M. K. Arrofi, G. Jati, F. Arifin, M. N. Kurni-
awan, P. Mursanto, and W. Jatmiko, “Simulation of intelligent
unmanned aerial vehicle (uav) for military surveillance,” in
International Conference on Advanced Computer Science and
Information Systems (ICACSIS), Sep. 2013, pp. 161-166.

V. Sharma, G. Choudhary, Y. Ko, and 1. You, “Behavior and
vulnerability assessment of drones-enabled industrial internet of
things (iiot),” IEEE Access, vol. 6, pp. 43368-43 383, 2018.

J. Liu, H. Shen, H. S. Narman, W. Chung, and Z. Lin, “A survey
of mobile crowdsensing techniques: A critical component for the
internet of things,” ACM Trans. Cyber-Phys. Syst., vol. 2, no. 3,
pp. 18:1-18:26, July 2018.

G. Carneiro, “Ns-3: Network simulator 3,” in UTM Lab Meeting
April, vol. 20, 2010, pp. 4-5.

X. Li, T. Zhang, and J. Li, “A particle swarm mobility model for
flying ad hoc networks,” in 2017 IEEE Global Communications
Conference (GLOBECOM), Dec. 2017, pp. 1-6.

J. Jiang and G. Han, “Routing protocols for unmanned aerial
vehicles,” IEEE Communications Magazine, vol. 56, no. 1, pp.
58-63, Jan. 2018.

C. Lin, D. He, N. Kumar, K. R. Choo, A. Vinel, and X. Huang,
“Security and privacy for the internet of drones: Challenges and
solutions,” IEEE Communications Magazine, vol. 56, no. 1, pp.
64-69, Jan 2018.

“Internet of

