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The many fold capacity magnification promised by dense 5G networks will make possible the
provisioning of broadband multimedia services, including virtual reality, augmented reality, mobile
immersive video, to name a few. These new applications will coexist with classic ones and contribute
to the exponential growth of multimedia services in mobile networks. At the same time, the different
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In response to these challenges, a novel Stochastic Optimization framework for Green Multimedia
Services (SOGMS) is proposed hereby that targets the maximization of system throughput and
the minimization of energy consumption in data delivery. In particular, Lyapunov optimization
is leveraged to face this optimization objective, which is formulated and decomposed into three
tractable subproblems. For each subproblem, a distinct algorithm is conceived, namely Quality of
Experience (QoE) based admission control, cooperative resource allocation, and multimedia services
scheduling. Finally, extensive simulations are carried out to evaluate the proposed method against
state-of-art solutions in dense 5G networks.
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1 INTRODUCTION

Video streaming is increasingly dominant in mobile traffic and undergoing an explosive
growth [1] [2]. According to the latest visual network index by Cisco [3], the proportion
of mobile video traffic grew more than 60 percent of global mobile traffic in 2016, and is
expected to account for over 78 percent of the world’s mobile data by 2021. This large
amount of mobile traffic will bring a huge pressure to the currently available access network
infrastructures.

Luckily, the fifth generation (5G) of mobile communications technologies is behind the
corner and promises a 1000-fold magnification of the system capacity and millisecond
latencies [4] [5]. Thanks to this renewed availability of resources, the ongoing exponential
increase of multimedia traffic in mobile networks will be enforced by broadband multimedia
services [6] including: mobile immersive video [7], Virtual Reality (VR) [8], and Augmented
Reality (AR) [9].

At the same time, it is worth to note that with the ultra dense Base Stations (BSs)
deployment expected in 5G networks, a higher degree of complexity and heterogeneity will
be injected in the communication system [10] [11]. In particular, it will be necessary to
coordinate the activities of the many available BSs to attain an efficient usage of the system
capacity while providing a satisfactory Quality of Experience (QoE) to end users [12] [13].
On top of these peculiar facets, the introduction of broadband multimedia services will
strengthen the need of green communication schemes [14], so that a complex multidimensional
optimization problem will arise to accommodate the contrasting requirements on efficient
usage of spectrum, low energy consumptions, and provisioning of satisfactorily QoE levels.

In this context, stochastic oriented optimization methods are receiving increasing attention,
because of their inherent capability to embrace complex and not deterministic scenarios as
the one considered herein [15] - [17]. However, existing stochastic optimization methods
[18] [19] mainly consider the data scheduling process of a single BS in 5G networks, which
is quite a restrictive hypothesis (a complete overview of the state of the art is detailed in
Sec. 2). For this reason, a novel Stochastic Optimization framework for Green Multimedia
Services named “SOGMS” over dense 5G networks is proposed hereby. In particular, the
main contributions of this paper are summarized as follows:

1) Mathematical formulation of the multimedia stochastic optimization problem: we
first formulate the scheduling of 5G multimedia services as a novel stochastic opti-
mization problem which aims to jointly optimize the system throughput and energy
consumption in data delivery under the constraints of request queue stability. After-
wards, the formulated optimization problem is decomposed into three independent
and tractable subproblems.

2) SOGMS mechanism and implementation: three distinct algorithms are conceived to
efficiently solve the three subproblems in the SOGMS mechanism, which target QoE
based admission control, cooperative resource allocation, and multimedia services
scheduling, respectively. Based on these algorithms, the SOGMS mechanism is
implemented in a three-layer architecture.

3) SOGMS performance evaluation: we evaluate the proposed SOGMS-based method
against the state-of-art solutions: Buffer-driven Dynamic Bitrate Adaptation (BDBA)
[20] and Green Information-Centric Multimedia Streaming (GrIMS) [22]. The
comparisons show that SOGMS outperforms BDBA and GrIMS, in terms of queue
stability, total utility and energy consumption in data delivery.
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The remainder of this paper is organized as follows. Section 2 describes the related work
of our research. Then, the system model of SOGMS is presented in section 3. Afterwards,
the optimization problem is formulated and decomposed into three tractable subproblems
in section 4. Moreover, the optimal algorithms in SOGMS mechanism are proposed and
successfully cast in a three-layer architecture in section 5. In addition, numerical evaluations
are presented in section 6. Finally, the conclusion and future work are described in section 7.

2 RELATED WORK

Admission control optimization and multimedia resource allocation methods in 5G systems
recently received increasing attention from the scientific community. In this section, related
works on those subjects are summarized and qualitatively compared to our approach (see
also Tab. 1).

2.1 Admission Control Optimization

There is a rising number of research on admission control problems in 5G networks. The
representative works [18] - [22] are introduced as follows:

Liu et al. [18] designed a resource allocation and rate control algorithm, based on the
heavy ball stochastic optimization method. The authors first propose a congestion control
and scheduling framework in cellular networks. Based on this framework, they pursue
the trade-off among the utility of throughput, transport latency, and convergence rate of
optimization algorithm by using the second-order drift of the virtual service queues in a
single BS. Unfortunately, this paper does not consider the presence of multiple and hopefully
cooperating BSs, which is quite a common scenario in 5G.

Bao et al. [19] proposed a Lyapunov optimization approach for non-orthogonal multiple
access (NOMA) system, which jointly consider data rate control and resource allocation
at network and physical layers, respectively. In addition, this method transforms the
optimization control problem into two subproblems of rate control in a single BS and power
allocation among multiple users. Based on this method, both data transmitting rate and
delivery delay are efficiently improved. However, also this optimal strategy does not account
for the presence of multiple BSs, thus becoming unfitted to dense 5G scenarios.

Zhao et al. [20] proposed to maximize the uses’ QoE utility of multimedia admission
services in heterogeneous wireless networks, based on the stochastic dynamic adaptation
streaming over HTTP (DASH). This method faces the dynamic bitrate selection based on
the network congestion state and realtime throughput of users’ requests. In addition, the
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Fig. 1. The multimedia services scenario in dense 5G networks.

experiments based on a testbed validate the efficiency of this method in a real scenario.
Unfortunately, this paper lacks considering the resource allocation for multimedia services
in BSs, which is necessary for dense 5G networks.

Zheng et al. [21] proposed a mechanism for admission rate adaptation and power control
in wireless networks. This method decomposes the weighted based maximum-minimum rate
fairness problem into the fair sub-problems of traffic and power control. In addition, the
method calculates the optimal rate of service through nonlinear Perron-Frobenius theory.
However, the authors only consider the optimization of end-to-end source rates, and also
this paper does not account for indispensable multimedia resource allocation of BSs in 5G
access networks.

In our previous work GrIMS [22], we proposed a Markov queuing model to control
multimedia service rates on resource providers (e.g BS, roadside unit, etc.) in wireless
heterogeneous networks. Furthermore, a joint price optimal problem was formulated to
guarantee the maximization of users’ QoE and minimization of energy consumptions of the
network.

Although the above studies provide important insights for multimedia request admission,
most of them lack analyzing the collaborative process between the heterogeneous BSs in
dense 5G networks. Therefore, in this paper, we mainly focus on multimedia admission
service by integrating the Lyapunov stochastic optimization and multi-BSs collaboration in
dense 5G networks.

2.2 Resource Allocation Strategy

A number of resource allocation strategies have been investigated in 5G networks. Pervez
et al. [23] proposed a radio resource management scheme that integrates the millimeter
Wave (mmWave) in vehicular networks to increase the utilization rate of spectrum resources.
Khalek et al. [24] proposed a resource allocation policy based on the hypothesis that multiple
users have different delay requirements in cellular networks. They first establish the maximal
user subsets, where the users have the same delay constraint. Then, the minimization
of resource allocation is formulated for each subset. In this way, each BS realizes the
maximization of video quality for all scheduled users. Ho et al. [25] propose to effectively
offload the video traffic to WiFi networks to alleviate the congestion of cellular networks,
based on a game theoretic method. Moreover, a cost-effective fountain encoding technology
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is utilized to achieve the multi-path transmission through cellular and WiFi, which can
improve video service efficiency. Cui et al. [26] propose a branch and bound approach to
address the user scheduling and power allocation problems in mm-Wave communications by
non-orthogonal multiple access. In [27, 28], the author puts forward valuable research results
for the resource allocation from the perspective of physical layer in 5G dense networks. In the
case of dense cloud radio access networks (C-RAN), the authors jointly optimize the remote
radio head (RRH) selection, user equipment (UE)-RRH associations and the downlink beam
vector to realize the minimization of the energy consumption of the multi-channel downlink
C-RAN. On this basis, a C-RAN framework centered on multiple-antenna users is further
studied, in which the precoding matrices and the set of active RRHs are optimized so as to
minimize the network power consumption. Based on the proposed methods, both user rate
requirements and per-RRH power consumption are efficiently improved.

The aforementioned solutions introduce many strategies for resource allocation in mobile
5G networks, but almost ignore the stochastic arrival of multimedia services in dense 5G
networks, which may impair the system stability and service efficiency. In comparison, our
work specially focuses on stochastic oriented resource allocation in 5G networks to attain
green multimedia services and satisfy users’ expectations on QoE.

3 SYSTEM MODEL

In this section, the SOGMS model is presented along with its admission control, resource
allocation and multimedia services scheduling functionalities. For sake of clarity, Tab. 2
briefly summarizes the key notations of this paper.

3.1 SOGMS Model

3.1.1 Network model. We assume the SOGMS Framework consisting of a platform de-
ployed in the 5G network, serving a large number of mobile users that ask for video services.
Due to the ultra dense characteristics of BSs in 5G networks [29], a large number of BSs,
such as small cells, Pico cells, Femto cells, WiFi and so forth, will be deployed as roadside
infrastructures (see Fig. 1).

We consider the system has continuous video requests by mobile users. Since different
video types have different arrival rates, the video type is denoted by M = {1,2,...,4,...m}.
Furthermore, we suppose that video contents are split in chunks, and all chunks are assumed
to be with equal size [30]. Let C' denote the unit size of a video chunk. Each video chunk
needs to be processed separately, thus the number of requests is proportional to the number
of chunks processed. At the same time, we also assume that the system includes a set of BSs,
denoted by N = {1,2,...,4,...n}. In addition, we divide the time into equally sized slots,
and each time slot ¢ belongs to T'= {0, 1, ..., 7, ...}, where 7 is a nonnegative integer number.
In addition, it is assumed that our optimizing control system tries to actively satisfy the
multimedia service requests of mobile users.

With SOGMS, we assume that each BS can provide all kinds of video services to mobile
users. Meanwhile, various types of video requests arrive at the 5G network at every time
slot t. Let A;(t) denote the number of arrived requests in the entire 5G network for video
type i during time slot ¢, where the number of A4;(¢) can actually be understood as the
number of chunks of requested video type ¢ during the time slot . To simplify our model,
we assume that one user can only request one type of video service during each time slot'
[31]. Meanwhile, one BS can serve several users in the same time slot.

1This hypothesis becomes more and more realistic as the slot size is made smaller.
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3.1.2 Users’ QoE Constraint Model. The higher quality video corresponds to the more
number of the video chunks. To achieve the satisfying QoE requirements of users, more video
chunks need to be requested in order to provide high quality video services [32]. However,
due to the limitation of the capacity of 5G network system, it is impossible to meet the
user’s demands without restriction. Therefore, the QoE of the user needs to be constrained
and optimized. The typical QoE utility is non-decreasing and concave. Moreover, the QoE
has a diminishing property with the incremental increase of the video chunks at each time
slot. Therefore, the users’ QoE utility can be calculated as U(A;(t)) = win (14++vA4; (1)) [33],
where w and v are positive factors tuning. To optimize the QoE efficiency of multimedia
services, the QoE constraint can be expressed as the maximization of the users’ requests,
which is shown in Eq (1):

U(A;(t)) > Ui e M, (1)

where the notation of U(A;(t)) denotes the time average of QoE function, that is
limg— o0 % Zi_:lo U (A; (7). U is a constant representing the average QoE of the requests
of video type 1.

3.1.3 Radio Resource Model. For dense 5G communication networks in SOGMS, to
further improve the spectral efficiency, the sharing and reuse of resources, Orthogonal
Frequency-Division Multiple Access (OFDMA) [34] is considered as a candidate technology
to transmit the data, which utilizes Signal-to-Noise Ratio (SNR) model to guarantee
simultaneously wireless access of multiple users and avoid the interference among the users
in data transmission. Therefore, for the generality of our system model, the transmission
rate of the BS link over each time slot is calculated as follows:

W’.
Rij (dij,t) = 3 ¢ylogs (1 + SNRi; (dij)) (2)

where W) denotes the link bandwidth of BS j. h;(t) denotes the number of users sharing
bandwidth of BS j during time slot t. SNR;; (d;;) is mainly affected by the data transmission
distance d;; between the mobile user and the BS.

3.2 SOGMS Control Decisions

In every time slot, the SOGMS system model needs to undertake the following control
decisions (see Fig. 2 ):

1) Admission Control of Video Requests: The video requests of mobile users bring a large
amount of data which needs to be transmitted at each time slot. In this case, the admission
control is necessary to maintain the network stability, by determining how many video
requests can be admitted to the 5G system.

It is noteworthy that the SOGMS model does not enforce any special requirement on the
arrival distribution of requests A;(t) [37]. And the maximum value of A;(t) is denoted as
A**. To prevent network congestion, only a subset of requests for each video type can
be admitted to the 5G networks. We denote the admitted number of videos of type i as
D;(t) at each time slot, with 0 < D, (t) < A;(t). Then, we define the queue backlog Q;(t)
as the requests awaiting to be admitted to the 5G network for video type 7 at the time slot
t. When a request of video type i is issued in time slot ¢ and not admitted, it will be added
to the queue Q;(t) and delayed to be processed in next time slot.

2) Resource Allocation of Cooperative BSs: For each video type i, after D;(t) requests
have been admitted to the 5G system, it is necessary to allocate them to available BSs.
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Table 2. Table of Key Symbols

Param. Definitions
M Set of mobile video types
N Set of base stations
T Set of time slots
A;i(t) Total number of requests of video type i
arrived at the 5G network during time slot ¢
U (A;(t)) QoE utility of video type ¢ during time slot ¢
D;(t) Number of requests of video type i
admitted by the 5G network during time slot ¢
E;;(t) Number of requests of video type ¢
processed by BS j during time slot ¢
Qi(t) Admission control queue of requests of
video type ¢ at the beginning of time slot ¢
K;(t) QoE constraint queue of requests of
video type i at the beginning of time slot ¢
Hj(t) Resource scheduling queue of video type i
processed by BS j at the beginning of time slot ¢
a(t) Throughput utility of system during time slot ¢
e;(t) Energy consumption of BS j for video

services during time slot ¢

10) Utility function of the optimization objective
V Weight of the optimization objective
I Weight of throughput in utility function ¢
C Unit size of a video chunk
W; Link bandwidth of BS j
hj(t) Number of users sharing bandwidth of BS j
during time slot ¢
P; Transmission power of BS j
dij Distance between the user requesting type ¢ and BS j

R;; (d;j,t) | Data transmission rate of video type ¢ processed by BS j

Let D;;(t) denote the number of ith type requests allocated to BS j. During time slot t, it
yvields: D; (t) = ;¢ Dij (t). Therefore, each BS maintains a queue of video requests for
each type of video in which the requests are awaiting to be processed. Then, we define the
queue backlog H;;(t) of total video requests for the ith type on the jth BS at the beginning
of time slot t.

3) Multimedia Service Scheduling for Different Users: After resource allocation decisions,
each BS is dynamically allocated a set of different video services D;; to process. We further
denote E;;(t) as the number of video requests of type i processed by BS j during the time
slot t. F;(t) denotes the number of video services of type ¢ provided by the 5G network
system during the time slot ¢, with 0 < E; (t) < D;(t). During time slot t, also it yields:
E; (t) =3 cn Eij (t). Then, we need to schedule the different multimedia services E;(¢) for
different users at each time slot.

ACM Transactions on the Web, Vol. 1, No. 1, Article 1. Publication date: September 2018.
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Fig. 2. The SOGMS control framework.

3.3 Dynamic Queues Setup

Based on the SOGMS model introduced previously, the dynamics of the queues for admission
control, Request Allocation and QoE constraint over time can be obtained as follows:

1) Admission Control Queue: The dynamic updating queue Q;(t) for each video type i
can be modeled as:

Qi (t+1) = Qi (t) — Di (t) + Ai (1), Vi, Vt, (3)
where D;(t) < A4; (t),Q;(0) = 0,Vi € M. We further define the queue stability, which is also
as the constraint of admission control (see in Def. 3.1).

Definition 3.1. A queue Q;(t) is strongly stable if and only if
1
lim sup— E(Q; 4
im_sup Y E(Q: (7)) < oo, (®)
where it indicates that the upper bound of time averaged queue length should not be
infinite.
2) Resource Allocation Queue: When jth BS serves the video request type ¢, the dynamic

queues over time [38] can be modeled as:
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Hij (t+1) = Hi; (t) — Eij (t) + Dij (1), (5)
where H;;(0) = 0, E;; < Dy;,Vi € M,Vj, € N.
3) QoE Constraint Queue: The virtual queue K;(t) over time [39] is established to
transform the QoE constraint from Eq. (1), which can be modeled as:
Ki (t+1) = max [K; () — U(Aq(t)), 0] + U™, (6)

where K (0) denotes a finite nonnegative value. Then, the QoE constraint requirement can
be satisfied through maintaining the stability of this virtual queue K;(t).

LEMMA 3.2. The constraint lim;_, o Zt;:lo U(A; (7)) > U holds when the virtual
queue (6) is strongly stable, i.e., when lim;_~o sup} th_:lo E (K; (1)) < c0.

Proof of Lemma 3.2: Based on the virtual queue (6), we can derive the inequality
Ki(t+1)—K; (1) > U — U (A; (7). By summing this inequality over 7 € {0, ...,t — 1},
we further derive the inquality as:

Ki(t) Ki(0) 15~ LS v
B D AN ) e 7)
7=0 7=0
Since the initial queue length, i.e. K; (0) has finite nonnegative value, tlim K"’t(o) is always

E(K, (1)
t

zero. Only if the queue K;(t) is stable, we have tlim = (0. Combining with inequality

— 00

t—1
(7), the constraint in Eq. (1): tlim 13 U (Ai (1)) > U™ is satisfied.
=0 " =0

t—1
Now, we prove that tligl supt 3 E (K; (7)) < oo implies 75lim w =0.
—>00 =0 bde el

Since K;(t) satisfies independent and identically distributed over time slot ¢ [37], E(K;(t))
is a constant. Then we have:

t—1
Jim_ sup% SR (K () = supE (K, (7)) < . (8)

From Eq. (8), we can always find a constant A, that A = supE (K; (7)) < co. Then, we
can derive the Eq. (9):

lim = lim A = 0. (9)

t—o0 t t—o0 t t—oo t

t—1

Now, we proved the conclusion: tliﬁn sup+ i E (K; (7)) < oo implies tlim w =0.
—>00 =0 —00

Therefore, Lemma 1 is proved.

4 PROBLEM FORMULATION

In this section, we formulate our SOGMS model in dense 5G network system. We first
describe the utility function by jointly considering the maximization of system throughput,
and the minimization of energy consumption in data delivery. Second, we propose a
stochastic optimal mechanism based on Lyapunov function [33] to solve the multimedia
service optimization.
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4.1 Utility Function

4.1.1 Maximizing Throughput Utility. It is intuitive that the more the successful number of
video services, the more the utility can be gained by the 5G network system. We consider that
the throughput utility is linearly related to the total admitted number of multimedia services.
Let a(t) denote the sum of satisfied requests of video type ¢ in time slot ¢. Therefore, we have
a(t) = >_,c Di (t). Moreover, since the requests of multimedia services are time-varying
and unpredictable, we define the utility of throughput as a time-averaged function over time
slots. Then, we have the utility of throughput @ in Eq. (10):

t—1
a:tliinooizﬁ(z: D; (r)) Vi€ M. (10)
=0 \ieM

4.1.2 Minimizing Energy Consumption. In order to provide the mobile users with high
quality services, the BSs will consume a certain amount of energy. Let e;(¢) denote the energy
consumption of BS j for providing services in time slot . We have e; (t) = >,y Pj - Tij
[35], where P; represents the transmission power of BS j. 7;; indicates the time taken by the
BS j to process the requests of the video type i, depended on the number of video requests
to process and the data transmission distance. According to [36], we have 7;; = % .
Thus, the energy consumption equation can be expressed as follows:

-C
=> P . (11)
ieM Rij (dij, t)
where E;; (t) - C and R;; (d;j;,t) represent the total data size and data transmission rate of
video type i processed by BS j during time slot ¢, respectively (see Eq. (2)). Similarly to
time-averaged @, we calculate the energy consumption utility €; in Eq. (12):

t—1
?j:lim El> P Ol Ei; (1) Vie M,VjeN. (12)
’Lj d’Lj7 )
€M
4.1.3 Optimization Objective Function. Based on the previous definitions of throughput
and energy consumption, we further define the optimization objective function by Eq. (13):

maxqbzmax{u-a— Zej}
JEN
(13)
s.t. ZEU() E;(t),Yie M\Nje N

Ql( ), K;(t), H;; (t) are strongly stable.

The optimization objective function (13) is nonlinear and involves time-average problem.
Thus, traditional optimization methods can hardly be applied to this problem. In the next
subsection, we will exploit a stochastic optimization method to solve this objective utility
function.

4.2 Problem Formulation Based on Lyapunov Optimization

To maximize the optimization objective function, a stochastic optimal mechanism based
on Lyapunov optimization [33] is proposed hereby. We first consider the tradeoff between
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the system stability and the maximization of objective utility, and then formulate the
optimization objective based on this tradeoff.

To solve optimization objective problem (13), we define the Lyapunov function L(t) as
shown in Eq. (14):

DRI+ K+ YD HAEM) (14)

icM ieM i€M jEN
where L(t) is a queue matrix, which denotes the congestion situation of the optimization
objective queue. In general, the smaller value of L(t), the fewer backlogs in all queues.
Otherwise, it implies existing at least one queue with massive backlogs in L(t). If and only
if L(t) maintains a small value at all time slots, the situation is named as strong stability,
which is the final optimization objective.
In the following, the conditional Lyapunov drift [33] can be defined as Eq. (15):

AL(t) = L(t + 1) — L(t), (15)

where AL(t) represents the changed queue backlogs based on the Lyapunov function at each
time slot. In general, the smaller numerical value of AL(¢), the more stable of all queues.
Meanwhile, we define the value of AL(t) is non-negative.

Then, AL(t) can be further calculated by Eq. (3, 5 and 15 ) as following:

QF(t+1) = QF(t) < 2AP™)” —2Qu(t) - [D; (1) — Ai ()],
K2 (t+1) = K7 (t) < 2U% (A (1) — 2K, () - (U (Ai (1) = U™) (16)
HE(t+1) = H (1) < (B (1) + (Dij ()" = 2Hi; (1) - [Ei; (1) = Di; (1)].
S By ()= B (). Y Dy ()= Dit). a7)
JEN JEN
Next, we can combine the formulas (16 - 17) to get AL(t):

AL(t) < B

- {Z Qi(t) - [Di(t) — A, (t)]}

ieM

- {Z Ki(t) - [U (As(t) — U (t)]} (18)

ieM

> H; ()Y By (t) — Dy (1))

ieM JEN
The first term of Eq. (18) can be proven existing an upper limit value, which is denoted
by B in Eq. (19):

B=2Y (A" +w) (1n1+VA?‘“)2. (19)

ieM ieM
In order to minimize the Lyapunov drift and maximize the system optimization objective,
we define the Drift-Plus-Penalty function by joining the two parts as shown in Eq. (20).
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ALt -v-du-a-S ey, (20)
JEN
where V is a weight factor of constant.

With the conclusion of formula (18, 19), the upper limit of the Drift-Plus-Penalty will be
drew at last. The goal of system optimization objective is to realize the admission control,
resource allocation and multimedia service scheduling by minimizing the Drift-Plus-Penalty.
Then, we can get the result of Drift-Plus-Penalty as:

AL(t) =V -{p-a— Y & <B-

JEN
= AK (1)U (Ai(t) — K; () U — Qa(t) - A; (1)}
ieM
(21)
_ Z V 1% -+ Ql Z H’L] ij )
- Z Hi] ( -V.C Z R Z EZ]
ieM dij ¢ JeEN

5 SOGMS OPTIMAL MECHANISM AND IMPLEMENTATION

In this section, we first propose a novel optimal mechanism composed by three sub-algorithms
to accomplish the optimization objective of SOGMS in dense 5G networks. Secondly, we
implement the three sub-algorithms in a three-layer architecture, inspired by [40], [41]. The
design of optimal algorithm is shown in the following subsection.

5.1 Design of The Optimal Mechanism

Based on the requirements mentioned in last section, our basic idea is to maximize the right
terms of inequality (21) to realize the minimum of Drift-Plus-Penalty at each time slot. We
can easily know that the variables between three right terms are not coupled. Therefore,
we divide inequation (21) into three sub issues (each term denotes a issue). To solve these
issues, we consider each issue exactly belongs to one of three distinct optimal algorithms,
named QoE-based admission control, cooperative resource allocation, multimedia services
scheduling, respectively. By executing the three algorithms, we can obtain the optimization
objective result of Eq. (13). Then, we explain the three algorithms in the following:

5.1.1 QoE Based Admission Control Algorithm. Through maximizing the first term in (21),
we decouple the QoE based admission control issue, as shown in Eq. (22):

max K; (t) U (Ai(t) — K () U — Qq(t) - Ai (t). (22)
To obtain the maximum of (22), we transform this problem by introducing an auxiliary

variable x for A;(t), where = belongs to the real number field. Then, let F'(x) represent Eq.
(22), we can transform the problem 22 as:

F(z) = K; () wIn™™"" — Qu(t) - & — K; (t) U, (23)
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Algorithm 1: QoE Based Admission Control

Input: Queue Q; (¢) in 5G network at time slot t;
Output: A; (t) videos are admitted to 5G network system;

At the beginning of each time slot;
fori=1tom do
if F'(z) =0, and derive z*;
then
v = A
Let A; (t) = z™;
end
return A4; (t);
end

The purpose of this algorithm is to calculate the value of 2 to maximize F(x), which
denotes as x*. Since the second derivative of F'(x) with respect to x is calculated as in Eq.
(24).

2
K (t
F' (z) = Badl B A4 1(2)
(1+ )
Obviously, F” (x) < 0, therefore, the function F' () has a maximum value. According to
the knowledge of derivative, £* can be obtained as:
K (t 1
ol 1 (25)
Qi(t) v

Then, let A; (t) = x*, we can get the maximum value of the Eq. (22), where Q;(t)
represents the queue backlog of video type i requested by mobile users. If the backlog
of Q;(t) is few, the 5G network system is relatively stable, thus it needs to enlarge the
throughput of the 5G network system. On the contrary, it means that the 5G network system
is tending to congestion, therefore it needs to control the number of admitted multimedia
services. The admission control algorithm is shown in Algorithm 1.

(24)

5.1.2 Cooperative Resource Allocation Algorithm. Through maximizing the second term in
(21), we decouple the cooperative resource allocation problem in Eq. (26):

(IS (Vopu+Qi(t) Di(t) — ]%:V Hij (t) - Dij (1), (26)
s.t Z Dij (t) :DZ‘ (t) . (27)

JEN

To address this problem, we assume D;(t) is a fixed value. Thus, when and only when

H,;(t) takes the minimum, the overall optimization will be the largest. The shortest queue

of H;;(t) denotes the BS j can process more requests than others. Obviously, the resource

allocation can accelerate the tradeoff of all BSs. At the same time, it can reduce the

processing delay of multimedia services. Built upon the above analysis, we can redefine the
resource allocation to the following Eq. (28):

min j;\r H;j (t) - Dyj (1). (28)
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Algorithm 2: Cooperative Resource Allocation
Input: Q; (t), Hi; (t) in 5G network at time slot ¢;
Output: D; (t) videos are allocated to queue H}j (t);
At the beginning of each time slot;

Initialize i = 0,5 = 0,5 = 0;
for j=1ton do
if Hija(t) < Hij(t);
then
it =17
end
end
fori=1tom do
if Vop+Qi(t)— Hj(t) >0;
then
D; (t) = Ai (t);
else

In the following, we calculate the minimum of Eq. (28) to obtain the optimal solution by
Eq. (29):
N | D;(t),ifj =argminjen (H;j (1))
Dy (1) = { 0, otherwise ’ (29)
Based on the constraints of admission control in Eq. (3), we obtain that 0 < D; < A;(t).
Hence, the optimal solution of D;(t) can be calculated by Eq. (30):

Ai (), (V- p+ Qi (1) — Hj5 (t) > 0

0, otherwise ’ (30)

D; (t) = {
where H; (t) denotes the minimum queue backlog of video type ¢ on BS j. From the formula
30, we can obtain the optimal cooperative scheduling of BSs. The resource allocation
algorithm is shown in Algorithm 2.

5.1.3 Multimedia Service Scheduling Algorithm. Through maximizing the third term in
(21), we decouple the multimedia service scheduling problem, as shown in Eq. (31):

max Hij (t)- > By (t) =V -C- 3 =7 2 By (©). (31)
ij (t) JEN jeN N GeN

It can be observed from Eq. (31) that the larger the R;; (d;j;,t), the higher the overall
multimedia scheduling efficiency. In general, the data transmission rate R;; (di;,t) will
encounter more noise as the transmission distance d;; becomes larger, thus the closer the BS
is, the greater the revenue will be to the transmission service. Similarly to the last problem,
we calculate the maximum of Eq. (31) to obtain the optimal solution by Eq. (32):

D;(t),H;; £)—V-C- Y —F >0
ZEij(t){ s & i

JEN

JEN 5 (32)
0, otherwise
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Algorithm 3: Multimedia Services Scheduling

Input: Queue H;; (t) in 5G network at time slot ¢;
Output: .y Eij (t) video services are provided by 5G network system;

1 At the beginning of each time slot;

w N

© 0 N O s

10

fori=1tom do
if Hyj(t)—V-C- Y —i—>0;
i i (1) j;v Rij (di7.0)
then
> jen Eij (t) = Di (t);
else
djen Eij (1) =0;
end
return ).\ Eij (t);
end

where >, v Eij (t) denotes the total services number of videos type i provided by the 5G
network system. Then, the multimedia service scheduling algorithm is shown in Algorithm
3.

5.2 SOGMS Implementation

In this subsection, we implement the previous optimal algorithms in the SOGMS architecture
(see Fig. 3), which is divided to three layers, named User Access Layer(UAL), Resource
Schedule Layer(RSL) and Network Infrastructure Layer(NIL), respectively.

1) UAL: User Access Layer is at the left layer, which consists similarly to the application
layer of existing networks. The mobile users from UAL can request multimedia services
from 5G network system, and measure the QoE of video streaming services.

Video Service Request

Time Varying Arrive [W
Time

User Access Layer Resource Schedule Layer Network Infrastructure Layer

request type  resource process

Pico BS
_ Pico BSA

" Network Function
Virtualization

Multimedia Resource Provide

Fig. 3. The SOGMS three-layer architecture in 5G networks
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Input lmmalize Iteration
Queue O(1) Queue Oft+1)
Queue Ki(7) aa Queue Ki(t+1)
Queue H(1) Queue H(t+1)

Update

Ai(0)
System Congestion Input = 9o Based Admission | Output — As(r)
Status O(1) K1) Control by Algorithm 1

Ai()

Input Cooperative Resource Output 3‘8
2

Dense BS Status Hy(f) — Allocation by e —
Algorithm 2 D"(‘t)

- 8 E\(1)
put  Multimedia Services Output Bt

Inj
Link Quality Detection = Scheduling by f——> !
Algorithm 3 E .(;)
i

Fig. 4. The optimal control algorithm process

2) RSL: Resource Schedule Layer is at the middle layer, which plays the role like a decision
controller. It’s in charge of scheduling the network resource. Thanks to the RSL, each edge
BS can provide the balanced and green multimedia services for mobile users.

3) NIL: Network Infrastructure Layer is at the right layer, consists of dense BSs and routers.
Moreover, the network infrastructure is divided into several individual networks through
virtualization and network slice [42] and provides the resources through programmable
interfaces to RSL.

According to the function description of SOGMS architecture, we notice that the admission
control can be addressed between UAL and NIL, the resource allocation can be addressed
between NIL and RSL, meanwhile, the multimedia service scheduling can be addressed
between RSL and UAL. Furthermore, we implement the optimal algorithms including QoE
based admission control, cooperative resource allocation and multimedia service scheduling
on the SOGMS architecture.

After accomplished the implementation of three algorithms in SOGMS architecture, we can
address the system optimization problem (13) efficiently. The process of optimal algorithm
in SOGMS architecture is shown in Fig. 4. According to the optimal process, the backlogs of
three queues need to be updated iteratively by Eq. (3, 5 and 6), to maintain the optimization
performance and stability of 5G network system.

6 NUMERICAL EVALUATION

In this section, we first introduce the simulation environment setting and the benchmark
algorithms. Then we provide a detailed performance evaluation of the algorithms and
demonstrate the superiority of our method.

6.1 Simulator Parameter Setting

To evaluate the performance of the approach proposed hereby, two benchmark algorithms
have been selected for comparison, namely BDBA [20] and GrIMS [22].

With BDBA: The system can pursue the maximization of QoE utility by realizing the
balance between the network congestion state and realtime throughput of users’ requests.
Since this method does not consider the resource allocation of BSs for multimedia services,
we assume the resource allocation in BDBA obeys randomized strategy.

With GrIMS: The network system pursues the maximum gain of bandwidth by realizing
the balance between resource allocation of service providers and video requests of mobile
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users, which the resource allocation strategy is based on the greedy selection. Only when
the obtained gain is positive and the service queue of providers is stable, the new requests
can be admitted to the system for processing.

During the simulation, we assume there are about 1500 mobile users communicating with
10-60 BSs in 5G network system. We assume there are 5 types of video requests, which
denote different quality of services. The number of multimedia categories is similar to today’s
playback requests, such as ultra-high resolution, high resolution, standard definition, etc.
The requests of video type ¢ arrive at the network system according to a Poisson process
[43] with the distribution of intensity A; € {5, ...,10}. All simulations are performed over 50
iterations, which is equal to 1000 time slots. Each of the 50 iterations is repeated 10 times,
and the average of 10 repeated times is taken as the final experimental result. The initial
queue backlogs of all BSs are null. The mainly parameter setting is shown in Table 3.

We use the queue backlog and utility as the parameters to evaluate the performance of
three methods.

Average queue backlog: the unprocessed quantity of requests of service by mobile users.

Average utility: the average gain of the 5G network system, which means the larger the
system utility, the larger the system throughput and the less energy consumption of all BSs.

6.2 System Stability Analysis

We first perform the analysis of system stability on varying arrival rates, which is shown in
Fig. 5 and Fig. 6.

Fig. 5 shows the system stability of different users number through five cases when the
number of BSs is set to 12, the value of V is set to 50 and the number of users is set to
500-1500 respectively. The results are concluded from three phases. First of all, each curve
abruptly rises up during the transient, starting from an empty queue level. Then, all the
curves converge to a constant steady state value, thus demonstrating queue stability. Finally,
the steady state queue level depends on the number of users: the higher the number of user
the higher the steady state queue level.

Fig. 6 shows the average queue backlog on varying requests during different time slots
using the three methods. In this case, the number of BSs is set to 12, the value of V' is set
to 50, the simulation time is enlarged to 500 iterations to better reflect the changes of the
queue backlog. Fig. 6 reports that when the arrival rate of requests changes with unfixed
time slots, three methods can quickly achieve stability, indicating that the three methods
have superior adaptability to the time-varying requests of service. Meanwhile, the queue
backlog of SOGMS is always smaller than the other two methods due to the better system
stability.

Table 3. Simulator Parameter Setting

Parameter Value Parameter Value
Simulation time 1000s Transmission distance 100-500 m
Number of users 500-1500 Number of BSs 10-60
Number of types 5 Possion \; [5,10]
Weight 10 v 50-150
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Fig. 5. Queue backlog of diff. users by SOGMS Fig. 6. Queue backlog of varying requests

6.3 Effect Under User Request Rates

We second analyze the effect of the three approaches under different user request rates. The
number of users are respectively set as 500, 1000 and 1500 to guarantee the different request
arriving rates. The number of BSs is set to 12. The value of V is set to 50. The results of
average queue backlog and average utility are shown in Fig. 7 and Fig. 8.

Fig. 7 shows that the average queue backlog of SOGMS (red curve) is smaller than both
GrIMS (black curve) and BDBA (green curve) under the three types of request rates. Notes
that curves la, 1b and lc represent the requests of 500 users, curves 2a, 2b, 2c represent the
requests of 1000 users and curves 3a, 3b, 3¢ represent the requests of 1500 users, respectively.
We can get the conclude that the average queue backlog of three methods significantly
depends on the number of users. The larger the number of users, the higher the backlogs
of three methods. And with the same number of users, the system stability of SOGMS is
superior to the other two methods.

Fig. 8 shows the average utility of SOGMS is much higher than both GrIMS and BDBA
under the three types of request rates. When the number of users reaches 1000, the average
utility of SOGMS is nearly 1.5 times higher than GrIMS and BDBA. The reason is that
SOGMS can both pay attention to the overall throughput of the system and the average
processing capability of the BSs in the 5G network. Then, the average utility of three
methods tends to settle when the number of users exceeds 1400.
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250 - 4000009000000 00900 b Utilit BDBA
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Fig. 7. Queue backlog vs. Diff. users Fig. 8. Average utility vs. Diff. users
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6.4 Effect Under Different Numbers of BSs

In order to further analyze the effect of the number of BSs, we first compare the average
queue backlog achieved by the three methods. As shown in Fig. 9, the number of BSs is
set to 20 (curves la, 1b, 1c), 18 (curves 2a, 2b, 2c) and 15 (curves 3a, 3b, 3c), respectively.
The larger the number of BSs, the stronger the capacity for requests process, the smaller
the queue backlog of three methods. Meanwhile, the average queue backlog of SOGMS
(red curve) is much smaller than both GrIMS (black curve) and BDBA (green curve) with
different number of BSs. Especially when the number of BSs is 18, the queue backlog of
SOGMS is 45 percent smaller than the other two methods due to the better process capacity.

We also study the average utility with different number of BSs in Fig. 10. In order to
better reflect the experimental results, we gradually expand the number of BSs from 10
to 60. Fig. 10 shows SOGMS has much higher utility than the other methods. When the
number of BSs reaches 60, the utility of SOGMS is nearly 1.3 times higher than GrIMS and
BDBA. Moreover, the average utility of the 5G network will gradually increases and tends
to settle when more and more BSs join in the 5G network. This is because that the larger
the number of BSs, the more the addressed requests of service, the more the utility of the
5G network.

6.5 Tradeoff Between Utility and Queue Backlog

Besides, we perform simulations to validate how parameter V tradeoffs the utility and queue
stability. For the case of queue stability, the number of users and BSs are first set to 1000
and 15, respectively. Then, the value of V is set to 50 (curves la, 1b, 1c), 80 (curves 2a,
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Fig. 11. Average backlog vs. Tradeoff para. V' Fig. 12. Average utility vs. Tradeoff para. V'
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2b, 2¢), 110 (curves 3a,3b, 3c), respectively. As shown in Fig. 11, each queue increases and
gradually settles over the time. And the queue backlog becomes larger with the increase of
V. This is because the greater the value of V' in Lyapunov function, the more the attention
payed to the benefits of the 5G network. Since the benefit is proportional to the number of
processed requests, more requests will be admitted to the 5G network. Then the increased
amount of requests will also lead to the increased queue backlog.

For the case of utility, Fig. 12 shows the tendency of averaged utility with different values
of V. It can be observed that the utility grows continuously when the parameter V increases.
Meanwhile, SOGMS has better utility than the other two methods. When V' equals to 100,
the utility of SOGMS is 26.5 and 37.5 percent higher than GrIMS and BDBA, respectively.

According to the above analysis, parameter V is the tradeoff between the utility and
queue backlog. Since the utility increases when V' enlarges. However, the improved utility
would incur more queue backlog need to be processed, which may lead to the congestion of
the network. Therefore, a suitable value of V' should be chosen to balance the utility and
queue backlog.

6.6 Effect Under Energy Consumption

Finally, we perform simulations to calculate the summation of Energy Consumption by
three methods, which is one of the significant goals in this paper.

For the case of energy consumption, we assume that all users request multimedia services
in same way. The number of BSs is set to 15, the value of V is set to 50, respectively. The
baseline number of users is first set to 1000. Then, the value of transmission distance is
set to 100 m (curves 1a, 1b, 1c), 300 (curves 2a, 2b, 2¢), 500 (curves 3a, 3b, 3c), respectively.

As time goes on, the number of users fluctuates, indicating the stochastic requests of the
video service. In order to better verify the experimental results, we conduct a long-term
simulation. The simulation time is set to 5000 seconds. The energy consumption is defined
as the unit consumption for processing a video chunk x the number of the video chunks x
the data transmission distance, it yields: e; (t) = > ;5 Pj - % in Eq. (11). The total
number of service includes the provided video services and current backlogs of the BSs.

As shown in Fig. 13, the ordinate represents the cumulative value of energy consumption,
hence the total energy consumption continues to increase with the extension of simulation
time. It is observed that the SOGMS consumes less energy than GrIMS and BDBA with
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the same data transmission distance. As the transmission distance increases, the energy
consumption of SOGMS will maintain a relatively low level. Namely, the advantages of
SOGMS are more obvious in the case of larger data transmission distances and more video
requests. Especially the consumption increment of SOGMS is 36 percent smaller than the
other methods when the simulation time is at 2000 second, indicating that SOGMS has the
better stability for the dynamic changes of users’ request. This is because SOGMS integrates
considering the energy consumption of the requests of service and the cooperative process of
the BSs, which is more beneficial to the 5G network performance and the users’ QoE.

7 CONCLUSIONS

In summary, according to the dynamic and complexity features of multimedia services
in dense 5G networks, a novel SOGMS method is proposed for the multimedia service,
aiming to face the challenges of efficient usage the system capacity and the requirement of
the green communication. Then, the stochastic optimization based on Lyapunov stability
theory is adopted to formulate the SOGMS mechanism, which targets the maximization
of system throughput and minimization of energy consumption. Through optimizing the
system performance and the queue stability, the problems can be efficiently addressed by
three distinct sub-algorithms, and further implemented in SOGMS three-layer architecture.
At last, the simulation results demonstrate the effectiveness of our proposed method.

In this paper, we have considered multimedia optimizing method only in dense 5G network.
Future work will consider employing the proposed method in conjunction with proactive
edging caching with video popularity [44] [45] to further improve the users’ QoE during the
video delivery in future 5G networks.
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