ASAP: a decentralized slot reservation policy for
dynamic 6TiSCH Networks in Industrial IoT

Gianfranco Micoli(l), Pietro Boccadoro(l’?’), Giovanni Valecce(m), Antonio Petitti@), Roberto Colella@),
Annalisa Milella®, Luigi Alfredo Grieco(!:3)
(UDep. of Electrical and Information Engineering (DEI), Politecnico di Bari, Bari, Italy,
Email:name.surname @poliba.it
(nstitute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing,
National Research Council, Bari, Italy, Email: name.surname @stiima.cnr.it
() CNIT, Consorzio Nazionale Interuniversitario per le Telecomunicazioni, Politecnico di Bari, Bari, Italy.

Abstract—In Industrial Internet of Things (IIoT) networks, end-
nodes may disconnect or become no longer reachable, due to
manifold causes, such as battery discharge, network interference
and/or packet collisions. Overall, this could lead to low Quality
of Service (QoS) levels. To satisfy application requirements, i.e.,
reliability, it is mandatory to continuously monitor connectivity and
properly managing disconnections, without causing signaling over-
head. The optimization of the exchange of messages can be pursued
thanks to dedicated communication slots, eventually rescheduled
in cases of deletion, replacement or dynamic reassignments. This
solution lowers energy consumption while accounting for a number
of improvements in network operative conditions. In this work,
network formation optimization mechanisms for IPv6 over the
TSCH mode of IEEE 802.15.4 (6TiSCH) networks are analyzed in
real use cases in which the number of nodes in the network varies
over time. Once the network was fully connected, a performance
analysis has been carried out in order to measure typical networks
parameters, such as latencies and Packet Loss Ratio (PLR). The
study has proven the effectiveness of dedicated slots dynamic
assignment. In particular, it has been measured a sensible reduction
of latencies and losses of information. The obtained results pave
the way towards robotics-aided set up of Internet of Things (IoT)
networks in industrial contexts.

Index Terms—Internet of Things, Medium Access Control,
scheduling, Quality of Service

I. INTRODUCTION

Nowadays, IoT technologies are considered as the angular
stone of the industrial digital innovation process that will lead
to the so called Industry 4.0 [1]. In this context, two key
challenges to face are cooperation among dynamic systems
and resource sharing. The automated deployment of industrial
IIoT networks may represent an enabling perspective, especially
in harsh and/or large scale environments. Communications re-
liability is one of the mandatory requirement to ensure the
employability of IoT networks in industrial applications, i.e.,
control, telemetry, and prognostics. Typical reference scenarios
may be related to (i) monitoring vines in a vineyard or (ii)
trees in a reforestation project, (iii) studying traffic and/or
pollution levels on city streets with real-time traffic, (iv) mea-
suring humidity and temperature at regular intervals on library
shelves, (v) performing acoustic testing at each of the seats in
a theater [2]. In wide scenarios, deployment/maintenance/re-
placement/(re)configuration of multiple IoT nodes (known as

motes) should be automated as much as possible. To reach this
goal, the IIoT network deserves to be optimized, connected and
has to guarantee reliable connections among nodes, minimizing
disconnections and data losses.

Upon deployment, each mote should be fully configured in
order to exchange data with the rest of the network. Once
IoT devices are released, the scheduling function will arrange
and orchestrate all the timeslots in a slot frame as to avoid
overlapping and/or collision phenomena [3][4].

In this work, a slot reservation policy, called ASAP, operates
in order to link creation requests for (a) new parents, (b) new
children, together with (c) multicast message. The resulting
slotframe demonstrates a correspondence between the dedicated
links and the reserved timeslots. As a proof, the function
has been experimentally evaluated on a real 6TiSCH network,
increasingly populated by IoT devices dynamically joining the
network. Once deployed, the IIoT network has been tested
with the aim of verifying typical QoS parameters, such as: (i)
Destination Advertisement Object (DAO) reception time, (ii)
PLR, (iii) Round Trip Time (RTT), (iv) average slot usage, and
(v) queue filling. Results demonstrated a messages exchange
improvement in a measure of the 92%, and a reduction of
packet queues by the 50%. The most thrilling outcome is that
the road ahead towards robotics-aided automated deployment of
IoT networks in industrial context [5] has been proven feasible.

This work is organized as follows: Section II is dedicated
to 6TiSCH technology and scheduling functions. Section III
presents both the network switching function and the decentral-
ized policy. The experimental campaign and the obtained results
are discussed in Section I'V. Section V highlights achievements
and proposes future works.

II. IOT BACKGROUND

The Internet Engineering Task Force (IETF) 6TiSCH tech-
nology [3][4] is a well known protocol stack specifically aimed
at enabling short range communications over constrained IoT
devices in IIoT applications [6][7]. The 6TiSCH technology
does not standardize any Medium Access Control (MAC) layer
scheduling function or policy for time-slot management. Gen-
erally speaking, a schedule can be designed to better serve net-

work topologies, especially in multi-hop scenarios. Scheduling
functions can optimize schedule dissemination, thus, facilitating
dynamic slot allocation and network joining procedures, opti-
mizing communication efficiency, latencies, duty cycling, and
energy consumption [8][9]. A scheduling solution can either
be centralized or decentralized [8]. In the former approach, all
scheduling tasks are carried out by the network coordinator. In
the latter approach, instead, nodes can negotiate links amongst
themselves, communicating directly to the neighboring nodes.
The gap between the two can be filled by an hybrid solution, the
hierarchical approach, in which a routing tree is formed before
scheduling links between node.

In [8] a thorough survey of such solutions is proposed. Among
them, it is important to mention Scheduling Function Zero
(SF0) [10] and Low Latency Scheduling Function (LLSF) [11],
both specifically designed for 6TiSCH Networks. SF0O, which is
currently under development, dynamically allocates dedicated
Transmission timeslot (TX) for direct communications between
nodes. A device in a 6TiSCH network executing SFO, mainly
performs two operations: (i) Cell Estimation Algorithm (CEA)
to estimate how many timeslots are required for communication
towards neighbor and (ii) Allocation Policy (AP) to adapt
the number of required timeslots to the number of currently
number of allocated timeslots. LLSF, instead, is a scheduling
function that builds upon SFO and improves it as to reduce
latency during packet exchange. It optimizes allocation in the
slotframe to reduce the number of timeslots thus minimizing
transmissions/receptions events. CEA calculates the number of
timeslots to allocate for a specific neighbor by summing the
number of currently used cells with an over provision value,
therefore taking into account traffic variability and potentially
reducing it. Afterward, the resulting number of required cells is
used by the AP to allocate or deallocate timeslots. This routine
is able to compare the number of required cells to the number
of timeslots that are currently allocated. LLSF, instead, is a
scheduling function that builds upon SFO and improves it in
order to reduce packet exchange latency along network paths.
It optimizes allocation tasks in the slotframe trying to minimize
transmission events reducing timeslots in number. Moreover, it
aims at scheduling child-parent slots keeping the TX ones in
close proximity to the respective Reception timeslots (RXs).
This can reduce transmission latency as transmissions may get
executed in a single iteration of the slotframe.

Unfortunately, both these solutions may still result inefficient
in operating scenarios. In fact, frequent topological changes
may cause non-negligible signaling overhead. Moreover, none
of the surveyed contributions address the network switching
functionalities, even if this is a crucial feature in highly mutable
configurations.

III. THE PROPOSAL

This work proposes a network switching mechanism and a
slot reservation policy, called ASAP. The former allows for a
dynamic increase in the number of nodes in the network. Such
routine is able to properly handle the situation in which a new
node wants to join the IoT network, already deployed and at

work in a certain area. The latter, instead, can be successfully
employed in the context of a 6TiSCH network that gradually
increases in size.

A. Network Switching Function

The need for a network switching function is motivated
by the fact that the upcoming IloT operating scenario will
increasingly employ robotic units to automate processes. Among
them, the deployment of an IoT network has to be properly
triggered and handled in a standard-compliant way. To bridge
this gap, an event-driven release call scenario is assumed. The
proposal foresees several routines: (i) the mote_sower, (ii) the
manual sower, (iii) the sower_server (acting as a supervisor),
(iv) arduino_release, and (v) queue_switcher. The mote_sower
has been created to handle the release of each mote (manual
sower). The manual sower, instead, handles each mote-release

° @ Network

®

!
Mote to be released

OBN
OpenVisualizer|

. .
Sower Server receives a request

OBN network coordinator

Q Network switching request is queued

7\

1
2
?) Request to CSwitcher is sent for released mote
a

@ CoAP Response is sent

®

OBN coordinator notifies OpenVisualizer of mote release

Fig. 1: Network switching request elaboration steps.

allowing a detachment from a network and the connection to
a new one. The sower_server routine is used as an interface
for the whole release mechanism (see Figure 1). Specifically, it
exposes a service called full_release that accepts two arguments:
the last two bytes of the mote’s Internet Protocol version 6
(IPv6) address, and a boolean value indicating if the mote to
be released, has to be set as the coordinator of the network.
When the request is received (Algorithm 1), the topological
release is triggered via a service named queue_switcher. The
queue_switcher service lets the Network Switcher handle a
queue of network switching requests in order to avoid conflicts
deriving from concurrent requests. Each network switch is trig-
gered by a dedicated (firmware) application, called CSwitcher.
It answers to a single Constrained Application Protocol (CoAP)
request at a time, so that the mote will disconnect from its
current network and connect to a new one by changing its PAN
IDentifier (PANID). Functionally speaking, the mote that has
switched the network should remove all the references to the old
network (e.g. neighbors, network topology, ASAP links) while
it synchronizes with the new one. Even if the most efficient

Algorithm 1: On Network Switcher request received

1: function SWITCH_REQUEST(req)
2: open CoAP client;
construct mote IPv6 address;
CoAP PUT on CSwitcher for mote to be released;
if CoAP Response Received then
remove mote from switching queue;
L close CoAP client;

3: end function

way to accomplish this task would be a complete reboot of
the device, this could still lead to a connection to the old
coordinator, instead of joining the new one. Therefore, a soft
reboot procedure has been created to call bootstrap functions to
reset the internal state while the PANID is set to the new one.
The algorithm on which CSwitcher is based can be represented
as a Finite State Machine (FSM) (see Figure 2). The three states
are:

« IDLE, when no requests have been received, yet;

« REQ, when a network switch request is received;
o SWITCH, when the mote is switching to the new network;

Processing request
successtully received

Mote soft reset Timer expired

Fig. 2: State diagram of the soft reboot procedure (CSwitcher).

The mote is still in the IDLE state. Once a CoAP request is
received, CSwitcher goes in the REQ state. The request contains
an identifier of the network to switch to and a flag indicating
if the mote has to become root of the second network. Then,
the IoT device is in the SWITCH state. The actual network
switch function is called after a period of time useful to let the
mote dispatch the message without problems. This last function
activates the soft_reboot, in order to let the mote connect to the
second network. This also automatically resets the CSwitcher
application to the default IDLE state, so the mote can eventually
process another request. It is worth noting that the FSM does
not foresees any exception/error. This is so as, once the mote
has left the old network, the mote will certainly either join the
new network or loose connection. The latter case is related
to battery discharge events or accidental hard reboot. Upon
receiving a request, the service will answer to the client node, for
instance, the sower_server. Then, the node answers the caller in
order to proceed with the execution of his tasks, while multiple
requests can be processed in background. The CoAP client
used here actually has a synchronous Application Programming
Interface (API), so it would block the caller if the requests is not
processed in threads. Both the node and the network_switcher
have to complete post-release actions, for instance:

« the node has to remove all the references to the detached
mote, with a trigger coming from the multicast sent by
CSwitcher;

o network_switcher has to close the CoAP client used for
the request and terminate the thread, with a trigger coming
from the CoAP response.

B. Decentralized Scheduling Function

ASAP is able to identify new nodes willing to joint the
network and dynamically modify the slotframe allocating time
slots for neighbor nodes. In the start-up phase, the only working
node is the coordinator, whose radio interface is always active,
and continuously listening for any node willing to join. When
another node is in proximity, the synchronization procedures
at MAC level start. The network coordinator modifies the
current schedule structure and inserts two new timeslots, the
first for transmissions activities and the second for receptions.
To properly address network formation and energy consumption
reduction criteria, ASAP operates in a distributed manner,
mirroring the routing graph and properly managing faulty links,
as it falls-back to shared slots if a communication task cannot
be executed in a dedicated one. Moreover, ASAP has been
designed to avoid deallocating dedicated parent-child links in
case IoT devices are temporarily disconnected. The result is
that ASAP lowers multiple link negotiations. Since the schedule
is reduced and optimized, ASAP also results to have a lower
memory footprint, when compared to other solutions. Instead
of estimating bandwidth like SFO does, ASAP immediately
creates timeslots with preferred parents. Its objective is to enable
duplex communications over dedicated timeslots between mote
couples, so that shared timeslots could be used as fallbacks.
ASAP is based on the link concept, for instance a bidirectional
communication channel composed of two adjacent timeslots
(Figure 3). Links are created following a child-preferred parent
criteria: each mote allocates timeslots for communication with
its preferred parent. This enables optimization of real-world
packet transfers (e.g. requests for data packets). Optimizing
communications with the preferred parent also adapt links to
the network topology, handled at the network layer. Each link
(Figure 4), whether it is allocated or not, will be represented
by an element inside an array. The index in the array (i.e.,
position), uniquely identifies the timeslots in the reserved area of
the slotframe. In order to allocate links between mote couples, a
lightweight negotiation algorithm is used. Each link is managed
in the scheduling function algorithm; timeslots will be referred
to only when they actually have to and link positions are used in
the rest of the algorithm. With a minimum packet exchange, a
mote couple can generate links, while deallocating those related
to neighbors that are no longer reachable (Figure 5).

IV. EXPERIMENTAL SCENARIO

In the reference scenario, the new network coordinator node
is connected to a host PC, for instance an Acer Veriton
N4620G, equipped with an Intel Core i3 processor with 4
GB of Random Access Memory (RAM). The IoT devices
involved in the experimental setup are ten Telos rev B (namely

Slot offset
0 1 2 3 4 5

RX X Mote
B B A

X RX Mote
A A B

Fig. 3: ASAP Link Structure.

Slot offset
5 6 7 8

TX | RX | RX | TX | RX | TX Mote
B B B B © C A

9
w
IS

A>B|A>C|A->D
B2 C2p | C2p

4 5 6 7 8
ASAP Link Position for mote A

Fig. 4: Correspondence between ASAP positions and timeslots.

P: On request from C received

o>

C: On new parent

Set C as busy
Get free links list

Choose free pos
from list

Create link /w C

at selected pos

Multicast link

Send request to P with C at pos

(@ (b)

C: Recv multicast from P

OP: Recv multicast from P

(©)

Fig. 5: ASAP link creation flowcharts for (a) new parent
requests, (b) new child request, and (c) multicast message
received.

TelosB'), a well known IoT platform that has been used in
several researches over the last decade [6][7]. As for software,
it has been employed OpenWSN? [12], an open source solution
implementing the IETF 6TiSCH protocol stack. It provides two
set of functionalities: (i) executing communication tasks through
IoT devices (i.e., the firmware part) and (ii) real-time monitoring
the IoT network activities while granting its connection to the
whole Internet (i.e., the software part, namely OpenVisualizer).
The software component, mainly acts as a border router for the
IoT network, providing gateway functionalities to the Internet
through the PAN Coordinator. Network traffic can be analyzed
thanks to a visualization platform enabled to grant a direct
interaction with the coordinator via a software TUN interface
translating IPv6 packets to IPv6 over Low power Wireless
Personal Area Networks (6LoWPAN) and viceversa, while the
Routing Protocol for Low-power and Lossy networks (RPL)
component stores all the paths to the nodes in the network,
read from DAOs.

A. Performance evaluation

The deployment algorithm has been functionally evaluated
together with the slot reservation policy in a star IoT network
with 1 coordinator and 9 IoT nodes (Figure 6). As soon as the
release of a mote is completed, the joining procedure starts and
the proposed scheduling function gets involved. To verify its
effectiveness when applied to an automatically deployed IoT
network, an experimental campaign has been carried out. The
aim of the experiments was to compare the usage of dedicated
slots with shared slots, while analyzing the effect on network
performances of the automation provided by ASAP. In details,
three different scheduling solutions have been tested:

1) ASAP, the proposed function;

2) the so-called ASAP Fixed, an hard-coded slotframe sched-
ule generating links with specific motes at boot, using the
same functions ASAP provides;

3) Shared, a slotframe schedule with only TX/RX shared

timeslots.

5 BRT -

- ¢
)

>
.- % ToT coordinator »
connected to host PC
» -

0 End-node ‘

Fig. 6: The IoT network after the deployment has been com-
pleted.

With reference to the Shared scheduling solution, assuming to
ignore the Carrier Sense Multiple Access with Collision Avoid-

Thttp://www.memsic.com/userfiles/files/Datasheets/WSN/telosb_datasheet.pdf
Zhttps://openwsn.atlassian.net/wiki/spaces/OW

ance (CSMA/CA) backoff algorithm, communications would

theoretically occur in a single slotframe if the number of slots 900

at least equals the number of end-devices a certain node is 800 I
connected to. Even though this condition could be theoretically 700

sufficient, conflicts may verify in real operating conditions. o 600

Therefore, a little redundancy has been introduced by increasing g oo B 15900

the number of shared slot by one. In the ASAP-based scheduling g “°

solutions, the network coordinator creates a couple of link with 00 e 24664 e ®
each child in topology (see Section III-B). As a result, each 20

100 100.80 127.20 3680

child in the IoT network will rely on a scheduling solution that

grants fair duty cycling conditions. ASAP ASAD Fixed shared
The experimental campaign was meant to communicate real

data coming from sensors on-board of each mote. The IoT Fig. 7: Average first DAO reception time.

network has been tested with a CoAP application. Leveraging

the request-response communication scheme, to each mote in 100%

the network 20 different requests were sent. Every time a request 90%

is done, it is sent to every mote in topology. The collected 80%

responses contained: (i) first DAO reception time, (ii) RTT
and PLR for each request, (iii) timeslot usage during each
test run (e.g., number of transmissions, receptions and Ac-
knowledgements (ACKs)), and (iv) network coordinator packet
buffer status. DAO reception time is an important parameter
that can be used to evaluate the time period needed to complete 30%

network formation operations (Figure 7). This metric provides 20%

an indication of the time taken by the IoT devices to complete 10% 4.83% 4.83%
the Directed Acyclic Graph (DAG), which grants the both 0% || [
upward and downward paths are formed and packets are free ASAP ASAP Fixed Shared
to flow in both directions. Measured times do not directly
depend on the scheduling function. Nevertheless, the layered
structure of the protocol stack implies that all the operations
defined at MAC layer must be completed before upper layers
can be involved. Results in Figure 8 demonstrate the higher
efficiency of dedicated links and timeslots. In particular, avoid-
ing collisions in both transmission and reception, the PLR is
lowered to 4.83%, which represents an interesting result when
compared to other solutions [13][14]. In particular, the measured
values prove that the usage of dedicated links lowers the PLR
in a measure of the 91%. To prove the effectiveness of the
proposed scheduling function, RTT has been tested and the 3
average measured values are reported in Figure 9. Measured

values show an improvement in the measure of the 50%. The 0
failure causes for packet delivery can be vary but queuing

time is among the major concerns. Hence, queues have been Fig. 9: CoAP - Average RTT.
evaluated in terms of number of packets over time. In particular,

the maximum and average numbers of packets in a queue are 10
represented in Figures 10 and 11, respectively. For the sake
of completeness, average slot usage measured over the tests is
reported in Table I. The joint evaluation of all the measured
parameters clearly demonstrates that the usage of dedicated slots
better fits QoS criteria, in terms of reliability. The minimum
RTT value for any test case does not fall below 1.2s. For
the Shared scheduling solution, this happens when the network
traffic is still low, meaning that there are no conflicts and so the
performance are similar to the best case in ASAP and ASAP 0
Fixed solutions. If the traffic, or the number of motes in the IIoT
network, is low, the usage of dedicated slots does not lead to

70%
60% 53.61%
50% e
40%

PLR [%]

Fig. 8: Average CoAP PLR.

25
21.76

20

5

11.70 1231

Average RTT [s]

ASAP ASAP Fixed Shared

Maximum queued packets [#]
w

ASAP ASAP Fixed Shared

Fig. 10: CoAP - Maximum number of queued packets.

)
é 7
g 6
2 4.96
g 5
& 4
&
s 3
2 1.99 2.01
<2

] .

0

ASAP ASAP Fixed Shared

Fig. 11: CoAP - Average number of queued packets.

Dedicated Slots Shared Slots
TX | TXACK | RX | TX | TX ACK | RX
ASAP | 219 192 339 | 170 148 201
ASAP | 341 319 363 | 214 196 186
Fixed
Shared - - - 764 580 726

TABLE I: CoAP - Average slot usage [No. of packets].

sensible advantages when compared to the shared slots solution,
as CSMA/CA backoffs would be much less frequent. As shown
in Figure 10, the Shared solution almost fill up the packet buffer
in each test case. Here, conflicts cause noticeable delays in
packet dispatch, which can impair network performances and
communications, lowering QoS. This may result in worsening
PLR values. Scheduling solutions with dedicated slots will result
in a much less variable packet dispatch rate, which makes RTTs
more predictable, also resulting in a lower probability of packets
queue filling (Figure 11). Most of the requests are elaborated
inside dedicated timeslots using ASAP-based solutions® (see
Table I).

V. CONCLUSIONS AND FUTURE RESEARCH

This work presented a decentralized solution specifically
conceived for continuously monitor connectivity, properly man-
aging disconnections, without causing signaling overhead, in
6TiSCH-compliant IIoT networks. Among the main objectives,
there was the automated assignment of dedicated timeslots.
The experiments highlighted that, at MAC layer, a dedicated
scheduling function can significantly lower the amount of packet
losses, while improving communication latencies. Both net-
work formation optimization mechanism and scheduling policy
demonstrated a sensible reduction of queue filling, one the
major stakeholders in latencies and losses. It was shown that the
proposed ASAP algorithm is able to improve message exchange
by the 92%, thus resulting in higher network efficiency, and has
a remarkable impact on packet queues, diminished by the 50%.

Despite the results, the adopted decentralized approach could
still be compared with centralized solutions. Moreover, ASAP
link requests could be embedded within Information Element

3 ASAP-based solutions require less packet transmissions before the end of
the test, despite the lower measured values for the PLR. This means that the
energy consumption would potentially be lower, while having a slightly higher
duty cycle.

(IE) messages. Nodes in the IIoT network could also rely on
multicast messages from parents to improve the setup phase.
Finally, dynamic network redeployment capability could be
introduced in multihop scenarios.

The most thrilling attainable perspective is represented by the
employment of unmanned vehicles for automating the deploy-
ment of a self-organizing IoT network in industrial context.

VI. ACKNOWLEDGMENTS

This work was partially founded by Italian MIUR PON
projects Pico&Pro (ARS01_01061) AGREED (ARSO01_00254),
FURTHER (ARS01_01283), RAFAEL (ARS01_00305) and by
Apulia Region (Italy) Research Project E-SHELF (OSW3NO1).

REFERENCES

[11 M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial
communication: Automation networks in the era of the internet of things
and industry 4.0, IEEE Industrial Electronics Magazine, vol. 11, no. 1,
pp. 17-27, Mar. 2017.

[2] S. R. Blackburn, T. Etzion, K. M. Martin, and M. B. Paterson, “Efficient
key predistribution for grid-based wireless sensor networks,” in Interna-
tional conference on information theoretic security. Springer, 2008, pp.
54-69.

[3] T. Watteyne, J. Weiss, L. Doherty and J. Simon, “Industrial IEEE802.15.4e
Networks: Performance and Trade-offs,” in I[EEE International Conference
on Communications (IEEE ICC), vol. Internet of Things Symposium,
London, UK, June 2015, pp. 8-12.

[4] T. Watteyne, M. R. Palattella and L. A. Grieco, “Using IEEE 802.15.4e
Time-Slotted Channel Hopping (TSCH) in the Internet of Things (IoT):
Problem Statement,” Internet Engineering Task Force (IETF) - Request
for Comments: 7554, 2015.

[5] C.-Y. Chang, Y.-T. Chin, C.-C. Chen, and C.-T. Chang, “Impasse-aware
node placement mechanism for wireless sensor networks,” IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems, vol. 48, no. 8, pp.
1225-1237, Aug. 2018.

[6] V. Scilimati, A. Petitti, P. Boccadoro, R. Colella, D. Di Paola, A. Milella,
and L. Grieco, “Industrial internet of things at work: a case study analysis
in robotic-aided environmental monitoring,” IET Wireless Sensor Systems,
June 2017.

[71 H. Harb and A. Makhoul, “Energy-efficient sensor data collection ap-
proach for industrial process monitoring,” IEEE Transactions on Industrial
Informatics, vol. 14, no. 2, pp. 661-672, Feb. 2018.

[8] R. Teles Hermeto, A. Gallais, and F. Theoleyre, “Scheduling for
ieee802.15.4-tsch and slow channel hopping mac in low power industrial
wireless networks,” Comput. Commun., vol. 114, no. C, pp. 84-105, Dec.
2017.

[9]1 X. Vilajosana, Q. Wang, F. Chraim, T. Watteyne, T. Chang, and K. S. J.
Pister, “A realistic energy consumption model for tsch networks,” IEEE
Sensors Journal, vol. 14, pp. 482-489, 2014.

[10] D. Dujovne, L. A. Grieco, M. R. Palattella, and N. Accettura,
“6TiSCH 6top Scheduling Function Zero / Experimental (SFX),”
Internet Engineering Task Force, Internet-Draft draft-ietf-6tisch-6top-
sfx-00, Sep. 2017, work in Progress. [Online]. Available: https:
//datatracker.ietf.org/doc/html/draft-ietf-6tisch-6top- sfx-00

[11] T. Chang, T. Watteyne, Q. Wang, and X. Vilajosana, “Llsf: Low latency
scheduling function for 6tisch networks,” in 2016 International Conference
on Distributed Computing in Sensor Systems (DCOSS), May 2016.

[12] Regents of the University of California, “OpenWSN,” April 2016.
[Online]. Available: https://openwsn.atlassian.net/wiki/pages/viewpage.
action?pageld=688187

[13] P. Boccadoro, G. Piro, D. Striccoli, and L. A. Grieco, “Experimental
comparison of industrial internet of things protocol stacks in time slotted
channel hopping scenarios,” in Proc. of IEEE International Conference on
Communications (ICC), Kansas City, MO, USA, May 2018.

[14] N. Accettura, E. Vogli, M. R. Palattella, L. A. Grieco, G. Boggia, and
M. Dohler, “Decentralized traffic aware scheduling in 6tisch networks:
Design and experimental evaluation,” IEEE Internet of Things Journal,
vol. 2, no. 6, pp. 455-470, Dec. 2015.

