
A Qualitative Cross-Comparison of Emerging
Technologies for Software-Defined Systems

Awais Aziz Shah, Giuseppe Piro, Luigi Alfredo Grieco, Gennaro Boggia
Dept. of Electrical and Information Engineering (DEI),
Politecnico di Bari, v. Orabona 4, 70125, Bari, Italy;

Email: {awais.shah, giuseppe.piro, alfredo.grieco, gennaro.boggia}@poliba.it
CNIT, Consorzio Nazionale Interuniversitario per le Telecomunicazioni

Abstract—Software-Defined Systems are offering great op-
portunities for deploying programmable networks, as well as
large-scale services distributed across clouds. Starting from the
baseline principles of both Software-Defined Networking and Net-
work Function Virtualization, they embrace a number of novel
enabling technologies (like containers, container orchestrators,
and many other supporting tools) that significantly simplify the
integration and the management of virtual components, while
promising high level of flexibility, isolation, and performance. The
major tech giants are drastically building their business on these
technologies. However, many other companies are struggling in
the selection of suitable platforms, tools, and any other software
instruments allowing them to move forwards in this direction.
Based on these premises, this paper provides a three-folded
contribution. First, it explores the state of the art of container
engines and container orchestrators. Second, it analyzes the main
supporting tools that offer advanced and additional features to
the resulting container networking. Third, it defines a set of
qualitative Key Performance Indicators to carry out a prelim-
inary comparison of the reviewed technologies. The proposed
study aims at providing high-level guidelines and constructive
comments to foster the widespread usage of Software-Defined
Systems.

Index Terms—Software-Defined Systems, Containers, Con-
tainer Orchestrators, Supporting Tools, Cross-Comparison

I. INTRODUCTION

During the last decade, Software-Defined Networking
(SDN) and Network Function Virtualization (NFV) introduced
a revolutionary way to deploy programmable network archi-
tectures, based on a strict separation between data plane and
control plane and a native ability to dynamically define, install,
and configure virtualized network facilities [1], [2]. At the
same time, the potential of the cloud-computing supported
the design of advanced services and applications, leveraging
virtual components distributed at the large scale. Indeed, the
joint integration of SDN, NFV, and cloud-computing principles
recently paved the way towards the definition of Software-
Defined Systems (SDS) [3].

In the SDS, vision, resources, services, and applications are
treated as a combination of virtual boxes, interacting with each
other through the underlying communication infrastructure.
Their management demands high levels of flexibility, isolation,
and performance [4]–[6]. Since virtualization techniques based
on traditional Virtual Machines (VMs) cannot meet these
requirements [7], other enabling technologies are gaining
momentum in the current state of the art. They include, for

example, lightweight containers, container orchestrators, and
many other supporting tools [8]–[11]. Therefore, as a metter
of fact, SDS systems are significantly grounding their roots
into the container networking paradigm [12]–[14].

At the time of this writing, the major tech giants (like
Google, IBM, Amazon, and so on) are drastically adopting
these technologies to build and manage their large scale
infrastructures [15]. On the other hand, however, many other
organizations, especially small and medium enterprises, are
reluctant to launch their services through the SDS concept. The
reason is that they generally experience hard difficulties in the
selection of containerization softwares and tools that satisfy
their business needs and visions [16]. To make things worse, a
variety of containerization tools and management instruments
are continuously emerging, developers are constantly intro-
ducing new features in their latest updates. Accordingly, their
integration within an operating framework still appears as an
important barrier to face.

Starting from these premises, the work presented herein
intends to shed some light on the key enabling technolo-
gies of SDS based on container networking. Specifically,
the conducted study provides a three-folded contribution.
First, it explores containerization technologies, including both
container engines (i.e., LXC, Docker, LXD, Rkt, and Kata
container) and orchestrators (i.e., kubernetes, docker compose,
docker swarm, OpenStack, Nomad, Apache Mesos, Bistro,
ECS, Cloud Foundry, and OpenShift). Second, it analyzes
the main supporting tools that offer advanced and additional
features to SDS systems, such as load balancing, service dis-
covery, user interfaces, and communication protocols. Third, it
defines a set of qualitative Key Performance Indicators (KPIs)
through which carrying out a preliminary comparison of the
reviewed key enabling technologies. The resulting analysis
clearly shows pros and cons arising from an integration of
containers, container orchestrators and supporting tools and
provides high-level guidelines and constructive comments to
foster the widespread usage of SDS in the near future.

The rest of this paper is organized as in what follows.
Section II presents containerization engines and orchestrators.
Section III reviews the related supporting tools. Section IV
discusses the proposed qualitative cross-comparison. Finally,
Section V concludes the work and presents future research
directions.

II. CONTAINERIZATION TECHNOLOGIES

As anticipated in the previous Section, the main rationale
behind upcoming SDS is based on container networking. As
depicted in Figure 1, resources, services, and applications are
implemented as containers and distributed across network ele-
ments and clouds. Differently from traditional VMs, containers
installed over the same physical machine share the same oper-
ating system. But, at the same time, they may still experience
a good level of isolation. Also, local operations, like loading
and turn-off procedures, could register limited latencies. On
the other hand, a logically centralized orchestrator automates
the management of containers lifecycle. This Section reviews
containerization technologies available in the current state of
the art.

A. Container Engines

Popular container engines are: LXC, LXD, Docker, Rkt, and
Kata Containers.

1) LXC(Linux Containers): It is an open-source software
supported by Canonical Limited and in active development
since 2008. Its first stable Version 1.0 was released on
February 20, 2014. Containers in LXC rely on the Linux
kernel containment features [8]. This functionality allows the
user to run multiple images on a single host. The isolation
between the containers is provided through kernel namespaces.
Resource management, instead, is done through cgroup [16].
It supports multiple applications in a container and provides
partial portability across Ubuntu distributions only [16]. These
features make LXC more performant than standard VMs [17].

2) Docker: It is one of the leading containerization tools
in the industry. The initial version of Docker was released
on March 13, 2013. It uses the features of Linux kernel
namespaces and cgroups to completely isolate applications
and the underlying operating system. It also allows to run a
single process in a container [8], [16], [18]. Docker extends
the Linux container technology by creating portable, easy
to use, and flexible images [18]–[20]. It creates self-elastic
clusters with a size managed according to the workload and
provides enhanced elasticity because of the fast loading speed
of container [11].

3) LXD: Built on top of LXC, it provides new and better
user experience. It is a free and open-source software, built
under the Apache 2.0 license1. The initial Version 0.1 of
LXD was released on February 13, 2015. Differently from
LXC, it offers new features like a new single command line
tool to enhance user experience for containers management.
Moreover, multiple applications can run in a single container
[21]. LXC containers can be easily used through REST API
and a CLI clients.

4) Rkt: Its first version was released on November 27, 2014
by CoreOS (acquired by RedHat). It allows to run multiple
isolated images sharing a common kernel namespace. Rkt
container runtime is interoperable, secure, and open-source.
It also provides security in various aspects. For example, it

1https://linuxcontainers.org/lxd/

validates the authenticity of the image after downloading by
cross checking publisher’s image signature [16]. The work
presented in [16] demonstrates that Rkt emerges as a suitable
choice in computational and data intensive high performance
application environment.

5) Kata Containers: It is an open source project available
under the Apache 2.0 license. The first Version of Kata
containers was released on May 22, 2018. It is a novel
implementation of lightweight VMs, that seamlessly integrates
within the container ecosystem. Therefore, benefits of both
container and VMs are met, including high performance,
workload isolation, and security. Kata Containers support the
Open Containers Initiative (OCI)2 [22].

B. Container orchestrators

Popular container orchestrators are: Kubernetes, Docker
Compose, Docker Swarm, OpenStack, Nomad, Apache Mesos,
Bistro, ECS, Cloud Foundry, and OpenShift.

1) Kubernetes: It is an open-source container orchestrator
for automating application deployment, scaling, and manage-
ment across clusters of hosts (physical or VMs) [22]. It is
freely available under the Apache License 2.0. Its first avail-
able Version was released on June 7, 2014. It was developed by
Google under their experience of building container manage-
ment solutions [22]. It is now maintained by the Cloud Native
Computing Foundation. It works with a range of technologies
and provides an orchestration layer for managing Docker
containers on different physical entities [10]. Kubernetes uses
a master-slave architecture. The slave hosts, namely nodes, are
intended for running the containers assigned by the master. It
also adds an abstraction layer on top of containers, namely
Pod. Specifically, it represents a group of up to five containers
that share storage, networking resources, IP address. Pods form
an atomic unit of scheduling and are created or destroyed
automatically. They can communicate with each other without
any Network Address Translation (NAT). This ensures a very
easy management of a multi-host cluster [23].

2) Docker Compose: It is a solution developed by Docker
for creating and running applications, including multiple
Docker Containers [19]. The first production ready Version
1.0 of Docker Compose was released on October 16, 2014.
It helps to configure applications and containers by using a
YAML file with a single command [18].

3) Docker Swarm: It is the Docker’s local clustering solu-
tion developed by Google. While the standard Docker API
launchs the containers, Swarm takes care of selecting the
appropriate hosts for running containers [23], [18]. It can
group together several hosts, allowing the user to manage them
as a unified cluster by using the Swarm CLI utility [19]. It
combines multiple Docker engines into a single virtual engine.
For managing and configuring services in the containers,
a specific discovery service can be used with Swarm. The
advantage of Swarm is that it natively incorporates Docker API

2OCI is a project under governance of Linux Foundation. It was started in
June 2015 by Docker, CoreOS, and other leaders of containerization industry
to standardize the container formats and runtime.

Graphic shells

SDN
Controller

Container Orchestrator

Load
balancer

Service
Discovery

Pr
ot

oc
ol

s

Pr
ot

oc
ol

s

Host

Containers

Core Network

Fig. 1. Big picture of Software Defined Systems based on container networking.

calls. This consequently makes easy to move large workloads
and applications to different clusters [23].

4) OpenStack: It is an open-source operating system devel-
oped to manage and control large pool of computations in the
cloud. It was developed in Python by NASA and Rackspace to
handle massive infrastructure in the cloud [24] [25]. Its initial
version was released on October 21, 2010. It has already been
used by several companies worldwide for managing Petabytes
of distributed architectures, scaling to over 60 million VMs
[25]. OpenStack provides many other services like multi-
tenant security, monitoring, storage, and more [25]. Google
Sponsors the OpenStack foundation [26]. It provides support
for managing Bare-metal, VMs, and container based hosts [27]
[28].

5) Nomad: Hashi group’s Nomad was developed in 2015.
It is an open-source scheduler that uses a declarative job file
for scheduling containerized applications. It follows an agent-
based architecture using single binary that is responsible for
rolling upgrades and draining nodes for rebalancing [29].

6) Apache Mesos: It is an open-source and low level
clustering solution, that integrates with a high level framework
to provide the complete orchestration [23]. Mesos combines
the resources of the cluster (like CPU, RAM etc.) in a way
that looks like single giant host to the developer [29]. It was
originally developed by students of UC Berkeley RAD Lab
in 2009. Apache announced its Version 1.0 on July 27, 2016.
It comes with a distributed system kernel that provides appli-
cations with API’s for resource management and scheduling

in large-scale clustered environments. It allows developers to
create their applications. A job scheduler tool can be used
with it for scheduling and running tasks [26]. Since Mesos
acts like a kernel of the distributed OS therefore, a framework
i.e., Marathon is used with it for Container Orchestration.

7) Bistro: Facebook’s Bistro is a closed-source scheduler
that runs data-intensive batch jobs on distributed systems. The
present public release of this technology is partial, including
just the server components. It is designed to handle workload
efficiently and to respond rapidly to the changing configu-
rations. This is because Facebook stores a high amount of
data in different formats and frequently runs batch jobs for
transformation and transfer of data [30].

8) Amazon’s Elastic Container Service (ECS): It is a
closed-source solution used in Amazon Web Services (AWS)
for running, scaling, and securing container applications3.
ECS can be used with any third-party hosted Docker image
repository or accessible private registry, such as Docker Hub.

9) Cloud Foundry: It is an open-source, multi-cloud ap-
plication platform as a service. The software was originally
developed as a container-based architecture by VMware in
2011. Then, it was transferred to Pivotal Software, which is a
joint venture by EMC, VMware, and General Electric. Cloud
Foundry supports Docker images by connecting to the Docker
registry, giving those enterprises that are already running
Docker take advantage of all the platform capabilities that
Cloud Foundry provides. It also supports the OCI initiative.

3https://aws.amazon.com/ecs/features/

10) OpenShift: Developed by the RedHat under the Apache
license 2.0 on May 4, 2011. It is a combination of open-source
technologies for orchestration, including RedHat Enterprise
Linux, OCI-standard containers, and Kubernetes for orches-
tration and management. OpenShift extends to give users their
choice of frameworks, databases, and runtimes. OpenShift is
a part of the CNCF Certified Kubernetes program, ensuring
portability and interoperability for container workloads.

III. SUPPORTING TOOLS FOR CONTAINERIZATION

There are many tools supporting specific facets in container
networking, including load balancing, service discovery, pro-
tocols, and user interfaces. They facilitate the orchestration
and management of containers, depending on the business
requirements.

A. Load balancing tools

Load balancing tools aims at spreading the inbound requests
(i.e., the load) across the containers. In this way, they minimize
the response time and increase the throughput [29]. The list
of some popular load balancing tools for containerization are
reported below.

1) Envoy: It was built at Lyft in C++. It is a distributed
proxy designed for single applications and services. It may
also serve as a communication bus and data plane for mi-
croservice architectures [29].

2) HAProxy and Bamboo: It is a very popular, fast, and
reliable solution for load balancing, which ensure a high
availability for TCP and HTTP-based applications. For years,
it has become the standard load balancing tool. Thus, it is
now shipped with most mainstream linux distributions. It can
be integrated with almost all the existing technologies [29]. On
the other hand, Bamboo is a tool that automatically configures
HAProxy for web services deployed on the top of Apache
Mesos and Marathon [29].

3) Kube-Proxy: It runs on every node of the kubernetes
cluster. It works for the cluster’s internal load balancing and
service discovery [29].

4) MetalLB: It is a tool for load balancing in bare-metal
Kubernetes clusters. This tool exists because Kubernetes does
not offer default load balancing mechanisms for bare metal
clusters [29].

5) NGINX: It is a load balancing tool for HTTP-based
traffic. It offers further mechanisms for configuration and
monitoring4 [29].

6) Traefik: It is an open source tool that is gaining much
popularity nowadays like HAProxy [29]. It is supported by
every major cluster technology. The popular features of Traefik
are the auto discovery and tracing of clusters (including
Kubernetes, Mesos, Docker Swarm, Marathon, and Rancher).

7) Vamp-router: It is a service routing, load balancing,
and filtering application. It updates the configurations through
REST API or Zookeeper 5 [29].

4https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-
balancer/

5https://github.com/magneticio/vamp-router

8) Vulcand: It is a HTTP API management and micro
services tool that uses Etcd as a configuration backend. With
Vulcand, changes to configuration take effect immediately
without restarting the service.

B. Service discovery tools

In container networking, it is not possible to manually assign
applications to high number of containers. Instead, such a
task is managed by a specific software, generally referred
to as scheduler, that controls the lifecycle of containers. In
this context, service discovery is used to determine where the
container ended up with being scheduled.

1) ZooKeeper: It is a software by Apache Software Foun-
dation, originally developed at Yahoo. It is a key-value store
for maintaining configuration information in distributed sys-
tems. ZooKeeper organizes the data in a file system (to this
end, it basically uses tables, called znodes) [29]. Even if it
emerges as a mature tool, its installation procedure appears
complex [29]. This tool is sponsored by giants like Google,
Microsoft, AWS, and Facebook.

2) Etcd: It is another key-value store developed by the
CoreOS team in the GO language. The Etcd security feature
allows TLS/SSL authentication between client and cluster Etcd
nodes [29].

3) Consul: It is a key-value store developed by the
HashiGroup in the Go language. Consul offers a multi-data
center support for service registration, discovery, and health
monitoring [29].

4) Mesos-DNS: It is a DNS-based customized solution for
service discovery, working in Apache Mesos. Mesos-DNS is
written in the Go Language. Moreover, it polls the active
running processes on the Mesos architecture and exposes the
running tasks through DNS and HTTP APIs [29].

5) SkyDNS: It is a DNS-based service discovery tool used
with Etcd. It stores the service records in Etcd and updates
their DNS records accordingly [29].

6) WeaveDNS: It is another DNS-based service discovery
solution that allows containers to find other containers through
their IP addresses.

7) SmartStack: The Airbnb smartstack writes the service
registration in Zookeeper and dynamically configures the
HAProxy for lookup [29].

8) Eureka: It was developed and deployed for the AWS
(i.e., where Netflix runs) [29]. Specifically, Netflix’s Eureka
is a Rest-based service discovery tool used for load balancing
and checks the failover of intermediary servers. It comes with
its own load balancer.

C. User interfaces

Graphic User Interfaces (GUIs) and User Interfaces (UIs)
provide an abstract access to the remote resources for sup-
porting the monitoring and the management of cloud-based
processes. Popular solutions include:

1) Rancher: It is an open-source software for delivering
Kubernetes-as-a-Service for multi-cloud computing.

2) Clocker: It is a self-hosted and open-source container-
management platform, built on the top of Apache Brooklyn.
Clocker is used to easily deploy production grade Docker
swarms or Kubernetes clusters to a range of clouds (including
AWS, Azure, Google Cloud, IBM Softlayer, and IBM Blue-
Box)6. Moreover, it supports a wide range of cloud providers
through the use of the jclouds toolkit [23]. It can be configured
with cloud though deployment tokens and access keys. After
this, it can automatically detect hosts and install a network
with the support of service discovery tools like Weave or
Project Calico [23].

3) Tutum: It was used to build, deploy, and manage con-
tainerized applications across any cloud infrastructure. Tutum
decouples the orchestration layer from the underlying infras-
tructure on which the application runs. Tutum works on the
top of any infrastructure provider and users can choose the
provider that best satisfies their requirements. Started in 2013,
later acquired and integrated by Docker in 2015.

4) Portainer: It is a lightweight management UI, which
allows to easily manage different Docker environments (like
Docker hosts or Swarm clusters). Portainer is able to provide
support for Linux, Windows, and OSX 7.

5) Kitematic: It is a powerful UI for managing containers8.
Kitematic gives a one-click installation ability for running
Docker on Mac.

6) DockStation: It is a developer-centric tool for managing
Docker projects. Instead of lots of CLI commands you can
monitor, configure, and manage services/containers by using
a GUI. DockStation supports MacOS, Linux, Ubuntu, and
Windows.

7) Panamax: It is a browser rendered GUI for pulling
together image compositions. It supports Docker.

8) Docker UI: It provides a simple interface into the
currently running docker VM and allows the users to
browse/check the state of installed containers.

9) Docker Compose UI: It is a UI for Docker containers.
Differently from other dashboards, it appears like a browser-
based interface to manage deployed container compositions.

10) Shipyard: It is another UI for managing Docker Con-
tainers. Within few seconds it is ready for the login and
gives the snappy looking dashboard. Shipyard has a simple
installation procedure. After pulling down a script, simply run
it, and Shipyard pulls down a number of images and spins
them up9.

D. Protocols

The communication between the different components in
container networking is performed with the help of protocols.
Main solutions are: OpenFlow, NETCONF, and RESTCONF.

6http://www.clocker.io
7https://github.com/portainer/portainer
8https://kitematic.com/
9https://dzone.com/articles/managing-docker-containers-with-shipyard

1) OpenFlow: Born in 2008, it was considered as the first
standard for SDN [31]. Therefore, it is a well-known commu-
nication protocol that gives access to the physical components
(i.e., routers or switches) of the data plane [32], and adapt their
functionalities to changing business requirements. Today, all
the standard manufacturers of network devices provide support
for OpenFlow in their devices.

2) NETCONF: The Network Configuration Protocol (NET-
CONF) provides a simple mechanism to manage, configure
and upload configurations of a network device. It allows
the device to expose a full and formal API, used by the
applications to receive configuration data sets [33].

3) RESTCONF: NETCONF defines the configuration data
stores and a set of CRUD operations (that include create,
read, update and delete) useful to access to these data stores.
RESTCONF uses HTTP methods to provide CRUD operations
on a conceptual datastore containing YANG-defined data [34].

IV. CROSS COMPARISON OF SDS ENABLING
TECHNOLOGIES

In order to remark the pros and cons of SDS enabling
technologies and to shed some lights on their joint usage
within a more complete framework, this Section defines a set
of KPIs and proposes a qualitative cross comparison.

First of all, the qualitative KPIs defined for evaluating
container engines include the development language, the
developing company, the community support, the reference
operating system, the licensing type, the OCI compliance,
and the support for IPv6. The resulting cross comparison is
reported in Table I. It is evident that LXC, LXD, Docker,
Rkt, and Kata containers are open-source technologies, pro-
moted by strong community, and working with Linux. All the
container engines, except LXD, are compliant with the OCI
guidelines. Moreover, excepting Kata containers, all the other
engines support IPv6. Among the others, Docker emerges as
a powerful technology that works on multiple platforms (i.e.
Linux, Windows, and MacOS).

The set of qualitative KPIs used to evaluate containers
orchestrators include the development language, the devel-
oping company, the community support, the licensing type,
the builtin scheduler, the native load balancing feature, the
native service discovery, the reference operating system, the
cloud support, the bare metal support, and the possibility to
handle clustering. The resulting cross comparison is shown in
Table II. The conducted study demonstrates that Kubernetes
and OpenStack are the open-source orchestration technologies
that come up with built-in scheduler, load balancer, service
discovery native functionalities. They support multiple operat-
ing systems, cloud, bare metal, and clustering features. They
also have a strong community support, backed by Google and
Cloud Native Computing Foundation (CNCF). On the other
hand, instead, other technologies guarantee limited features
(they are used in the industry only for specific purposes).
Among all the investigated solutions, Kubernetes allows a
huge amount of flexibility for containerization networking. It

TABLE I
CROSS COMPARISON AMONG CONTAINERIZATION ENGINES.

Engine Language Developers Community sup-
port

OS Support Licencing type OCI IPv6

LXC C,
Python,
Lua

Canonical Ltd Canonical Ltd and
Ubuntu* (Forum &
Github)

Linux Opensource, GNU
LGPL v.2.1

X X

LXD Go Canonical Ltd Canonical Ltd and
Ubuntu** (Forum
& Github)

Linux Opensource,
Apache 2.0

7 X

Docker Go Docker, Inc. Docker, Inc.
(Community,
Forum, Blog &
Github)

Linux, Win, Mac Opensource,
Apache 2.0

X X

Rkt Go CoreOS
(REDHAT)

Red Hat Inc.,
Github

Linux Opensource,
Apache 2.0

X X

Kata
Con-
tainers

Go The OpenStack
Foundation

OpenStack founda-
tion, Blog, Github,

Linux Opensource,
Apache 2.0

X 7

*LXC 1.0 will be supported until June 1st 2019 and LXC 2.0 until June 1st 2021.
**The current LTS of LXD if 3.0, which will be supported until June 2023

can be used with almost all the container engines to provide
agility.

The joint usage of container engines and supporting tools
is evaluated below.

Table III, for instance, focuses on load balancing tools. It
clearly emerges that NGINX can be natively used with all
the reviewed container engines. HA-Proxy, instead, can be
used with LXC, LXD, and Docker. The rest of load balancing
tools, excluding Bamboo, could be used with all the container
engines thanks to the additional plugins implemented in both
Kubernetes orchestrator and Etcd tool. Among the containers,
Docker can work with all the considered load balancing tools.
The Bamboo tool, instead, provides a very scarce support for
the container engines.

Table IV illustrates the possible joint usage of service
discovery tools and container engines. Also in this case, many
container engines are natively or indirectly (i.e., with the
usage of integration instruments provided by some container
orchestrators) compatible with the reviewed service discovery
tools. Nevertheless, a very scarce integration is observed for
both SmartStack and Eureka.

Table III concludes the analysis by showing the usage of
user interfaces with the considered container engines. In this
case, only the Rancher graphical interface is supported by all
the container engines. The rest of the tools, instead, have been
specifically conceived for Docker.

V. CONCLUSION

Software Defined Systems allow to define, deploy, and use
virtual resources, services, and applications across the network
elements and clouds. To fulfill strict requirements (including,
for instance, flexibility, isolation, and high performance), their
enabling technologies include container engines, container or-
chestrators, and many other supporting tools. The paper deeply

reviewed the state of the art on enabling technologies and
provided a qualitative cross comparison, based on a specific set
of Key Performance Indicators. The conducted study clearly
demonstrated that Docker is emerging as the leading container
engine. In fact, it offers a strong set of features and allows
the usage of a large number of supporting tools. At the
same time, it is remarked that Kuberentes appears as a very
promising container orchestrator because it comes up with its
own scheduler, load balancer, and service discovery features.
Future research activity will complete the proposed qualitative
investigation with a quantitative performance evaluation of
container engines, container orchestrators, and their supporting
tools.

VI. ACKNOWLEDGMENT

This work was partially funded by Italian MIUR
PON projects Pico&Pro (ARS01 01061), AGREED
(ARS01 00254), FURTHER (ARS01 01283), RAFAEL
(ARS01 00305) and by Apulia Region (Italy) Research
Project E-SHELF (OSW3NO1) and INTENTO (36A49H6).

REFERENCES

[1] D. Kreutz, F. M. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[2] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: Challenges and opportunities for innovations,” IEEE
Communications Magazine, vol. 53, no. 2, pp. 90–97, 2015.

[3] Y. Jararweh, M. Al-Ayyoub, E. Benkhelifa, M. Vouk, A. Rindos et al.,
“Sdiot: a software defined based internet of things framework,” Journal
of Ambient Intelligence and Humanized Computing, vol. 6, no. 4, pp.
453–461, 2015.

[4] Y. Alahmad, A. Agarwal, and T. Daradkeh, “High availability manage-
ment for applications services in the cloud container-based platform,” in
Proc. of IEEE IEEE/ACS International Conference on Computer Systems
and Applications (AICCSA), 2018, pp. 1–8.

[5] J. Matias, J. Garay, N. Toledo, J. Unzilla, and E. Jacob, “Toward an
sdn-enabled nfv architecture,” IEEE Communications Magazine, vol. 53,
no. 4, pp. 187–193, 2015.

TABLE II
CROSS COMPARISON AMONG CONTAINERS ORCHESTRATORS.

Name Language Developers Community
support

Licensing S LB SD Platform Cloud BM Cluster

Kubernetes Go Google Cloud
Native
Computing
Foundation

OpenSource
(Apache
License
2.0)

X X X Linux,
Mac,
Windows

X X X

Docker
Compose

Python Docker, Inc Docker,
Inc.
(GitHub)

OpenSource
(Apache
License
2.0)

X 7 7 Linux,
Mac,
Windows

X X 7

Docker
Swarm

Python Docker, Inc Docker,
Inc.
(GitHub)

OpenSource
(Apache
License
2.0)

X 7 7 Linux,
Mac,
Windows

X 7 X

OpenStack Python NASA/
Rackspace

OpenStack
Foun-
dation/
Google

OpenSource
(Apache
License
2.0)

X X X Ubuntu X X X

Nomad Go Hashicorp Hashicorp
(GitHub)

Mozilla
Public
License 2.0

X X 7 Linux,
Mac,
Windows

X X X

Apache
Mesos

C++ UC
Berkeley
RAD Lab
Students

Apache
Software
Founda-
tion(Blog,
GitHub)

OpenSource
(Apache
License
2.0)

X 7 7 Linux,
Mac,
Windows

X X X

Bistro C++ Facebook,
Inc.

Facebook,
Inc.(Bistro
Group,
GitHub)

Closed
source
(BSD
License)

X 7 7 Ubuntu X 7 X

ECS JS etc Amazon.com,
Inc.

Amazon.com,
Inc.

Paid X X X Linux,
Windows

+(only
AWS)

7 X

Cloud
Foundry

Go,
Ruby,
Java

VMWare Cloud
Foundry
Foundation
Commu-
nity and
GitHub

OpenSource
(Apache
License
2.0)

X * * Linux,
Mac,
Windows

X X *

OpenShift Go, An-
gularJS

RedHat
Software

Red Hat
(OpenShift
personal
Blog and
Commu-
nity)

OpenSource
(Apache
License
2.0)

+ + + Linux,
Mac,
Windows

X 7 X

S = Scheduler; LB = Load Balancer; SD = Service Discovery; * through BOSH or Kubernetes; + through Kubernetes

TABLE III
JOINT USAGE OF LOAD BALANCING TOOLS AND CONTAINER ENGINES.

Tool LXC LXD Docker Rkt Kata Containers

Bamboo 7 7 X 7 7
Envoy * * X * *
HAProxy X X X * *
Kube-Proxy * * * * *
MetalLB * * * * *
NGINX X X X X X
Traefik * * X * *
Vamp-router * * X X *
Vulcand ** ** X ** **

* through Kubernetes; ** through Etcd

TABLE IV
JOINT USAGE OF SERVICE DISCOVERY TOOLS AND CONTAINER ENGINES.

Tool LXC LXD Docker Rkt Kata Containers

ZooKeeper Yes Yes Yes * **
Etcd Yes ** Yes Yes **
Consul ** ** Yes ** **
Mesos-DNS *** *** *** *** 7
SkyDNS **** **** **** **** *****
WeaveDNS ** ** Yes ** **
SmartStack 7 7 Yes 7 7
Eureka 7 7 Yes 7 7

through *Zetcd and Etcd3; **Kubernetes; ***Apache Mesos;
****Etcd; *****combination of Etcd and Kubernetes

TABLE V
JOINT USAGE OF USER INTERFACES AND CONTAINER ENGINES.

Tool LXC LXD Docker Rkt Kata Con-
tainers

Rancher X X X * *
Clocker 7 7 X 7 7
Tutum 7 7 ** 7 7
Portainer 7 7 X 7 7
Kitematic 7 7 X 7 7
DockStation 7 7 X 7 7
Panamax 7 7 X 7 7
Docker UI 7 7 X 7 7
Docker Compose-
UI

7 7 X 7 7

Shipyard 7 7 X 7 7

*through Kubernetes; ** Docker acquired and integrated it

[6] V. Kaushik, A. Sharma, and R. Tomar, “Virtualizing network functions
in software-defined networks,” in Innovations in Software-Defined Net-
working and Network Functions Virtualization. IGI Global, 2018, pp.
26–51.

[7] P. Sharma, L. Chaufournier, P. Shenoy, and Y. Tay, “Containers and
virtual machines at scale: A comparative study,” in Proc. of ACM
International Middleware Conference, 2016, p. 1.

[8] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,”
IEEE Cloud Computing, no. 3, pp. 81–84, 2014.

[9] X. Tang, F. Zhang, X. Li, S. U. Khan, and Z. Li,
“Quantifying cloud elasticity with container-based autoscaling,”
Future Generation Computer Systems, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X18307842

[10] S. V. Gogouvitis, H. Mueller, S. Premnadh, A. Seitz, and B. Bruegge,
“Seamless computing in industrial systems using container orchestra-
tion,” Future Generation Computer Systems, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X17330236

[11] C. de Alfonso, A. Calatrava, and G. Moltó, “Container-based virtual
elastic clusters,” Journal of Systems and Software, vol. 127, pp. 1–11,
2017.

[12] J. Claassen, R. Koning, and P. Grosso, “Linux containers networking:
Performance and scalability of kernel modules,” in Proc. of IEEE/IFIP
Network Operations and Management Symposium (NOMS), 2016, pp.
713–717.

[13] V. Marmol, R. Jnagal, and T. Hockin, “Networking in containers and
container clusters,” Proceedings of netdev 0.1, February, 2015.

[14] R. Cziva, S. Jouet, K. J. White, and D. P. Pezaros, “Container-based
network function virtualization for software-defined networks,” in Proc.
of IEEE Symposium on computers and communication (ISCC), 2015,
pp. 415–420.

[15] Ł. Makowski and P. Grosso, “Evaluation of virtualization and traffic
filtering methods for container networks,” Future Generation Computer
Systems, vol. 93, pp. 345–357, 2019.

[16] J. P. Martin, A. Kandasamy, and K. Chandrasekaran, “Exploring the
support for high performance applications in the container runtime
environment,” Human-centric Computing and Information Sciences,
vol. 8, no. 1, p. 1, 2018.

[17] T. Adufu, J. Choi, and Y. Kim, “Is container-based technology a winner
for high performance scientific applications?” in Proc. of IEEE Network
Operations and Management Symposium (APNOMS),, 2015, pp. 507–
510.

[18] P. S. Kocher, Microservices and Containers. Addison-Wesley Profes-
sional, 2018.

[19] F. Paraiso, S. Challita, Y. Al-Dhuraibi, and P. Merle, “Model-driven
management of docker containers,” in Proc. of IEEE International
Conference on Cloud Computing (CLOUD), 2016, pp. 718–725.

[20] C. Kniep, “Containerization of high performance compute workloads
using docker,” doc.qnib.org, 2014.

[21] J.-S. Ma, D.-J. Kang, and H.-Y. Kim, “The lxc-lxd virtualization in
arm64bit x-gene2 server,” in International Conference on Green and
Human Information Technology. Springer, 2018, pp. 168–175.

[22] C. Abdelmassih, “Container orchestration in security demanding envi-
ronments at the swedish police authority,” 2018.

[23] A. Mouat, Orchestrating, clustering, and managing containers.
O’Reilly Media, Inc., 2016.

[24] A. Corradi, M. Fanelli, and L. Foschini, “Vm consolidation: A real
case based on openstack cloud,” Future Generation Computer Systems,
vol. 32, pp. 118–127, 2014.

[25] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Openstack: toward an open-
source solution for cloud computing,” International Journal of Computer
Applications, vol. 55, no. 3, pp. 38–42, 2012.

[26] K. Cacciatore, P. Czarkowski, S. Dake, J. Garbutt, B. Hemphill,
J. Jainschigg, A. Moruga, A. Otto, C. Peters, and B. E. Whitaker,
“Exploring opportunities: Containers and openstack,” OpenStack White
Paper, vol. 19, 2015.

[27] C. G. Kominos, N. Seyvet, and K. Vandikas, “Bare-metal, virtual
machines and containers in openstack,” in Proc. of IEEE Conference
on Innovations in Clouds, Internet and Networks (ICIN), 2017, pp. 36–
43.

[28] H. Kang, M. Le, and S. Tao, “Container and microservice driven
design for cloud infrastructure devops,” in Proc. of IEEE International
Conference on Cloud Engineering (IC2E), 2016, pp. 202–211.

[29] M. Hausenblas, Container Networking. O’Reilly Media, Inc., 2018.
[30] A. Goder, A. Spiridonov, and Y. Wang, “Bistro: Scheduling data-parallel

jobs against live production systems.” in USENIX Annual Technical
Conference, 2015, pp. 459–471.

[31] A. Lara, A. Kolasani, and B. Ramamurthy, “Network innovation using
openflow: A survey,” IEEE communications surveys & tutorials, vol. 16,
no. 1, pp. 493–512, 2014.

[32] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[33] R. Enns, “Netconf configuration protocol,” Tech. Rep., 2006.
[34] A. Bierman, M. Bjorklund, and K. Watsen, “Restconf protocol,” Tech.

Rep., 2017.

