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Abstract—Unmanned Aerial Vehicles (UAVs) are key enablers
in many emerging verticals, thanks to their versatility in fulfilling
sensing, actuation, and communications tasks. At the same
time, their resources are quite constrained so that sophisticated
optimization approaches are required to prolong mission lifetime.
Current literature mostly focuses on energy constraints, but
when UAVs gather high-resolution multimedia signals, memory
constraints become critical too. To this end, a lean convex
optimization framework is proposed hereby to maximize the
acquired/uploaded data, subject to joint energy and memory
constraints. Simulation results validate the proposed approach
in a realistic 5G scenario.

Index Terms—5G, Mobile environments, Modeling Techniques,
Internet of Drones.

I. INTRODUCTION

Drones are key players in almost any smart domain because

of their inherent capability to support sensing, actuation, and

communication tasks in civil, industrial, and military fields [1].

Since drones are battery-supplied systems, on-board available

energy is limited, which suggests that properly designed

optimization routines are needed to maximize the lifetime of

a mission. These themes have been recently investigated by

the scientific community [2]–[17]. In particular, the surveyed

related works aim at optimally tuning transmission power [2]–

[4], [7]–[9], [13], [14], [16], energy efficiency [9], [12], achiev-

able data-rates [2]–[11], [13]–[17], and trajectory design and

mission planning [3], [7]–[17]. At the same time, it is worth

remarking that energy is not the only constrained resource on

board of a drone: memory availability is usually very limited

and could hinder the development of services that gather

high-resolution multimedia signals. For instance, considering

a real drone, the onboard available memory can be quickly

filled up if high-resolution video signals are acquired (e.g.,

4k RAW at ∼1 Gbps). Unfortunately, to the best of authors’

knowledge, this aspect has been neglected by the majority of

the scientific literature, with the sole exceptions of [18], [19].

In particular, in [18] beamforming techniques are discussed

in the context of content provisioning by multiple UAVs to

users requesting specific contents of interest. This reference

deals with content management, assuming that any content is

simplified to a unity dimension, and envisions storage capacity

as the maximum amount of contents that can be stored by each

drone as a constraint for the optimization problem. In [19],

instead, the problem formulation considers a drone providing

video signals to a multi-hop ground infrastructure based on

Visible Light Communications (VLC): an algorithm has been

proposed to manage on board resources without demonstrating

its optimality. However, channel modelling is neglected.

The present contribution proposes an optimization frame-

work that accounts for both energy and memory constraints in

high-resolution multimedia acquisition services. In particular,

the reference scenario (described in Sec. II) involves a drone

acquiring multimedia signals via onboard camera following a

given trajectory. With the aim of offloading the memory, while

increasing the responsiveness of the system, a low-resolution

version of gathered data is uploaded leveraging air-to-ground

communications (see Fig. 1). Here, uplink datastreams deserve

particular attention, while downlink streams-related problems

are not a major concern*.

Fig. 1: Reference Scenario.

The optimization framework (proposed in Sec. III) aims

at maximizing the amount of gathered and transmitted data,

subject to contrasting bounds on available energy and memory.

Clearly, continuous transmissions help avoid memory overflow

but waste energy. Hence, finding the optimal amount of data to

acquire from the camera and transmit to the ground motivates

this contribution. Unfortunately, the formulation of this non-

convex optimization problem makes the solution hard to be

derived. To face this issue, an equivalent convex optimization

formulation has been defined thanks to the introduction of a

set of slack variables. Simulation results (presented in Sec. IV)

demonstrate the effectiveness of the proposed approach in a

realistic 5G scenario under several settings. Finally, Section V

concludes the work and draws future research.

*Signalling and control data exchanges between the drone and the ground
Base Station (BS) are neglected because herein assumed to be less demanding
than the bandwidth needed to transfer multimedia signals.
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II. PROBLEM FORMULATION

The total duration of the mission T is split into N time

intervals with duration δt, each. Before the mission starts,

the available memory and energy on-board are M0 and E0,

respectively. The amount of transmission power spent by

the drone during the k-th time-slot for uploading operations

is defined as Pk. Therefore, when the drone is offloading

data, the channel capacity can be calculated according to the

Shannon’s equation:

Rk = B log
2

(

1 +
Pkhk

σ2

)

, (1)

where σ2 = N0B is the noise power at the receiver’s side, B
is the available bandwidth, and hk is the channel power gain.

The energy spent in the acquisition operations can be

expressed as Ec = δtNPc, where Pc is the constant power

consumed by the camera. To guarantee a uniform quality of

gathered multimedia signals, the amount of acquired data over

each time step is i0. The amount of uploaded data, instead, is

equal to ok = δtRk, during the k-th time step. When the UAV

has completed its mission, the remaining amount of energy

EF can be expressed as:

EF = E0 − Em − δt

N
∑

k=1

Pk − Ec. (2)

being Em is the total mechanical energy spent throughout the

mission. As discussed in [19], during the mission the drone

has to continuously control its operations based on surrounding

physical conditions, so that the energy spent cannot be exactly

known in advance: therefore, a random variable has to be

considered to model Em. Without loss of generality, it is

assumed that Em’s distribution is non-normal Gaussian where

µm and σm are its mean and standard deviation, respectively.

Nevertheless, the following considerations can be easily re-

ferred to other cases. Hence, it is possible to state that the

probability that the leftover energy EF is less than zero must

be at most ε, i.e. Out-of-Service probability: Pr(EF < 0) ≤ ε
which is equivalent to

Pr(Em > E0 − δt

N
∑

k=1

Pk − Ec) ≤ ε.

Symbol Description

N Time intervals the mission is composed by [#].

δt Duration of a time interval [s].

Pk Transmission power at time interval k [W].

Rk Datarate [Bps].

Em Overall mechanical energy consumption [J].

E0/EF Initial/Final onboard available energies [J].

i0 Acquired data at any time interval [B].

ok Uploaded data at time interval k [B].

M0 Initial onboard available memory [B].

P Set of Transmission Power values [W]

W Set of slack variables.

γ Mechanical energy required to accomplish the mission [J].

Ec Onboard camera energy consumption [J].

ε Out-of-Service probability.

TABLE I: Summary of notation.

With a simple change of notation, the function that models

the tail of Em is Q1(x) = Q(x−µm

σm

), from which it results

Q−1

1
(ε) = γ. Therefore, it is possible to write:

Ec + γ + δt

N
∑

k=1

Pk ≤ E0. (3)

The main focus of the present work is to solve (P1), that is

formulated as follows:

(P1) :max
i0,P

Ni0 + δt

N
∑

k=1

Rk s.t.

Ec + γ + δt

N
∑

k=1

Pk ≤ E0 (4)

ki0 − δt

k
∑

j=1

Rj ≤ M0, ∀k : 1...N (5)

δt

k
∑

j=1

Rk ≤ ki0, ∀k : 1...N (6)

0 ≤ Pk ≤ PMAX , ∀k : 1...N (7)

i0 ≥ 0 (8)

Problem (P1) aims at maximizing the amount of acquired

and offloaded data subject to several constraints on available

memory and energy, where P is the set of Pk ∀k. In particular,

in (4) it is explicitly stated that there is an upper-bound to the

maximum amount of energy that the drone can use at any

time during the mission. Similarly, in (5), memory limitation

is presented. Respecting constraint (6) implies that the amount

of data to be offloaded cannot exceed the available one, at

any time during the mission. Finally, Equations (7) and (8)

clarify the bounds for power consumption and acquired data,

respectively.

III. PROPOSED SOLUTION

As clearly results from its formulation, (P1) is a non-convex

problem with reference to constraint (6). To tackle this issue,

slack variables W = {wk ≥ 0, ∀k} can be introduced. Hence,

(P1) can be reformulated as:

(P2) : max
i0,P,W

Ni0 + δt

N
∑

k=1

wk s.t.

(4), (7), (8),

ki0 − δt

k
∑

j=1

wj ≤ M0, ∀k : 1...N (9)

Rk ≥ wk, ∀k : 1...N (10)

δt

k
∑

j=1

wj ≤ ki0, ∀k : 1...N. (11)

Theorem 1. Solving problem (P1) is equivalent to solving

problem (P2), for a sufficiently large M0.

Proof. The constraints in (10) can be used to reach the optimal

solution of problem (P1) when the equality holds. Since, Rk



represents an upper-bound for wk, even when the equality

is not respected, the condition will always be verified for

increasing values of wk, until equality holds again. Because

of constrains (9) and (11), the value of wk can be increased

up to Rk if and only if M0 is sufficiently large. �

IV. PERFORMANCE EVALUATION

A simulation campaign has been carried out to evaluate,

through MATLAB R2020a, (i) power consumption, (ii) achiev-

able datarates, and (iii) memory occupation over time in a

realistic 5G scenario. To this aim, two different settings were

considered: the first configures an energy-bounded scenario,

whereas the second is a memory-constrained one. Their main

difference is the available energy E0 before the mission starts.

In the first case, the energy availability is far more than

sufficient for completing the mission while offloading data

with the maximum transmission power. In the second one,

instead, E0 value is restricted, thus requiring an optimized

tuning of the transmission power. Therefore, the memory

constraint is not dominating.

A. Parameter settings

Without loss of generality, the mean µm of the mechanical

energy consumption Em has been modeled as proposed in

[20]. The mechanical power P (V ) spent by a drone, flying at a

fixed quota H , is the same in every δt as it travels at an optimal

constant cruise speed V [21]. For what concerns the channel

model, instead, hk has been defined as proposed in [14].

Starting from real, high-profile and low-profile drones, the two

scenarios will envision E0 = {213, 100} kJ, respectively. A

reference area of interest is monitored by a drone flying over a

specific path, described by the well-known Theodorus Spiral,

which is composed of right triangles, placed edge-to-edge

[22]. As a property, for each and every point qk, ∀k : 1...N
composing the spiral, the distance is constant. The latter

property perfectly suites the constant velocity envisioned by

the model. Once the drone takes-off from the starting point q
0
,

it reaches the quota at the point q
1

and proceeds to acquire

and upload data along its spiral path. The ground BS is placed

in qb. The mission ends when the drone reverts back to q
0
.

Assuming a 16mm lens, it can be derived the equation set

related to the Field of View (FoV)’s base and height as follows:

b = 2H sec (θ/2) tan (φ/2) , (12)

h = 2H sec (φ/2) tan (θ/2) , (13)

where θ and φ are the Angles of View (AoV) of b and h,

respectively. It is worth noting that the spiral has been sized

in order to obtain non-overlapping adjacent FoVs.

It is herein assumed that the reference scenario involves 5G

networking technologies. In particular, B = 20 MHz band-

width around 3 GHz in the 5G NR in Unlicensed spectrum

(NR-U) is accounted for usage by the drone. According to

specifications [23] and [24], such values are justified when

referring to Frequency Range 1 (FR1). Further, in order to

achieve a sensible throughput increment, the communica-

tion infrastructure implements Multiple-Input-Multiple-Output

(MIMO) with space-division multiplexing and carrier aggrega-

tion. Since Em is a Gaussian random variable (see Section II),

two values of the confidence interval Um = 3σm have been

chosen: 5% and 10%. In other words, σm = [0.016, 0.033]·µm.

The configuration setting also includes: M0 = 8 GB, Pc =

10 W, δt = 3 s, N = 199‡‡, ε = 0.01, V = 16 m/s, θ = 70.2°,

φ = 43.3°, H = 100 m, qb = [0 0 10], α = 2, β0 = -60 dB,

PMAX = 1 W, N0 = -174 dBm/Hz and hence σ2 ≈ -101 dBm.

Simulation parameters regarding the physical characterization

of the drone are summarized in [20].

B. Discussion on results

Figure 2 shows the power trend over time in the energy-

bounded cases obtained by solving (P2). Those values are

obtained from the Shannon’s equation, being wk = Rk the

datarate †. These results show that a lower σm, i.e., a lower

variability on the mechanical energy spent during the mission,

implies a lower γ in the constraint (4), and, as a consequence,

a larger amount of available power that can be used for

transmission tasks. The results in the memory-bounded cases

are omitted since the available energy is more than sufficient

for completing the mission and, hence, the considered values

are always equal to PMAX .
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Fig. 2: Power consumption in the energy-bounded configura-

tion.

Figure 3 shows the optimal datarates obtained from (P2)

in all considered settings: clearly σm does not affect wk

(or equivalently Rk) in memory-bounded scenarios because

in those scenarios the energy limitations are less severe

than memory ones. On the other hand, different datarates

are obtained for different values of σm in energy-bounded

scenarios: the higher σm, the higher γ in (4), the smaller

the amount of energy that can be allocated to communication

tasks (i.e., the lower wk). Similar results hold for i0: being

σm = 0.033µm, in the energy-bounded configuration, 0.185

Gbps were acquired, whereas, with σm = 0.016µm, the

amount of acquired data grew up to 0.217 Gbps. In the

memory-bounded ones, instead, the result was 0.221 Gbps for

both values of σm.

‡‡N is sized to have a 4 complete rounds trajectory over a 1.5 km2 area.
†It is worth to note that in all simulated settings, we verified that the

optimal solution of (P2) always provides wk = Rk .
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Fig. 3: Datarates in all the configurations.

Figure 4 shows the available memory over time resulting

from the solution of (P2). The results are identical in all

configurations, since the difference between acquired and

uploaded data does not change, regardless of the involved

statistical fluctuations.

0 100 200 300 400 500 600

Time [s]

0

1

2

3

4

5

6

7

8

M
em

o
ry

 [
G

B
]

Fig. 4: Memory availability trend over the mission.

V. CONCLUSIONS

This work proposed an approach to maximize the ac-

quired/uploaded data by a drone while satisfying contrasting

transmission power and memory constraints. The optimal so-

lution to the, initially non-convex, problem was found through

an equivalent formulation involving a set of slack variables.

Future research will extend the presented results to trajectory

design of a swarm of cooperating drones, surveying multiple

areas of interest. At the same time, more sophisticated channel

and energy consumption models will be involved.
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