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Abstract—The Internet of Drones paradigm is considered as a
key enabler for several cutting edge verticals, including surveil-
lance, planetary exploration, protection, loads transportation,
and aerology. The main limitations to its wide-scale adoption
arise from the constraints on the resources available onboard
of drones: this concerns energy, computational and storage
capabilities. Unfortunately, current literature mainly focuses on
energy limitations, leaving unexplored the interplay with other
constraints. To bridge this gap, the present contribution also en-
compasses the limitations on the memory onboard, which can be
critical when drones have to acquire high resolution multimedia
signals for ambient awareness services. In particular, an iterative
stochastic approach is conceived hereby to tune data flows from/to
drones subject to energy and memory constraints in order to
fulfill an Out-of-Service probability below a given threshold.
Stemming from the proposed approach, two algorithms have
been also designed that seek a different complexity-performance
tradeoff. The first one is less complex and more conservative,
since it plans the mission once at the beginning. The second,
instead, is slightly more complex and aggressive but it allows the
drone to gather and upload a higher volume of data and shorten
the gap with respect to the ideal case.

Index Terms—Data communications, Mobile environments,
Modeling Techniques, Internet of Drones.

I. INTRODUCTION

The Internet of Drones (IoD) is a network architecture
specifically designed to leverage the huge potential of Un-
manned Aerial Vehicles (UAVs) [1]. This is motivated by
the many features that drones expose by design, such as
their high degree of mobility in arbitrary 3D environments
and the ability to: gather data coming from the Internet of
Things (IoT), move variable payloads, survey wide areas of
interest [2], and serve as flying Base Stationss (BSs) in 6G &
beyond systems [3], [4]. Despite their huge potential, UAVs
may suffer from limitations in terms of maximum weight
transport, mission endurance, and cruise speed. Some of those
restrictions may critically interplay, thus requiring dedicated
optimization strategies.

Drones’ flight has been extensively analyzed from differ-
ent perspectives: (i) energy consumption related to drones’
movements [S5]-[7], (ii) path optimization [7], [8], (iii) com-
munication links and reliability [2], [9], (iv) coverage area [2],
(v) mission duration [10], [11], [14], and (vi) optimal data
gathering [12]. The joint resolution of those issues has been
formulated in [13]-[15] as optimization problems. Despite the
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scientific literature, to the best of authors’ knowledge, the
solutions proposed so far did not consider at all the constraints
related to onboard memory availability and almost exclusively
deal with energy limitations while tackling mission planning
and/or trajectory design. Unfortunately, memory constraints
are no longer negligible in missions targeting continuous mon-
itoring or acquisition of high resolution multimedia signals,
such as coastline erosion or crop monitoring [16]-[18].

This work investigates a continuous acquisition scenario in
which a drone gathers high resolution videos and, to raise
the responsiveness of the monitoring service, delivers low-
quality versions of gathered data to the reference ground in-
frastructure. Known the harmonization perspective of 6G, the
existing cellular network infrastructure could be empowered
by supporting multiple technologies, such as Visible Light
Communications (VLC). Therefore, it is assumed that BSs
will be way-points composing the mission plan, functionally
endowed with VLC receivers, and, from now on, referred to as
Check-Points (CPs). This surveying activity implies a certain
energy consumption, due to mechanical and data gathering
operations. It is worth to note that mechanical energy spent
over the mission is not known in advance and the amount of
data to acquire is subjected to memory availability constraints.
Therefore a sophisticated approach is required to tune the in-
coming/outgoing data streams from/to drones to/from CP with
the aim of maximizing the total amount of gathered/uploaded
data while lowering the probability to run out of energy
before the mission is completed. Before the mission starts,
an a priori tuning of incoming/outgoing flows is planned
based on a stochastic approach that targets an Out-of-Service
probability below a given threshold . As a matter of fact,
these allocations may be too conservative. Hence, an Iterative
Stochastic ApproAch to constrained drones’ Communications,
namely ISAAC, is also proposed hereby that: (1) models the
mechanical energy required over the mission as a random
variable, (2) provides an initial setting for the amount of data
to gather/upload over the mission in order to keep the Out-of-
Service probability below a given threshold ¢, and (3) refines
settings out of point (2), based on the actual memory and
energy availabilities measured during the mission. To analyze
the performance of the proposed approaches (i.e., the a priori
algorithm and ISAAC) a thorough simulation campaign has
been carried out in a wide set of scenarios and with respect
to an ideal solution,i.e. a posteriori, that plans the mission



knowing in advance the exact value of the mechanical energy
expenditure. Simulation results show that: (i) both algorithms
provide the same performance of the ideal one for a relatively
low number of CPs, (ii) ISAAC remarkably outperforms the a
priori approach in scenarios with a relatively high number of
BSs.

The remainder of this work is as follows: Section II defines
the reference scenario/mission. With Section III, a through
formulation of the envisioned problem is given. Section IV
presents the approaches to properly introduce Section V,
which, in turn, analyses the numerical results. Finally, Section
VI concludes the work drawing future possibilities.

II. REFERENCE SCENARIO

The reference scenario involves a drone that takes off from
a base starting point, meets N CPs, and, finally, returns to
the starting point. Accordingly, the mission is a sequence of
segments, each one bounded by two consecutive CPs, with the
sole exception of the first (from the starting point to the first
CP) and the last segments (from the last CP back to the starting
point). During the flight, the drone is assumed to acquire high-
resolution images and videos, an operating assumption that is
of relevance in both military and civil applications [2].

Ideally, as soon as the drone meets a CP, acquired infor-
mation are uploaded to it and the process is iterated until the
end of the mission. Assuming to use User Datagram Protocol
(UDP) for uploading operations, offloading of transmitted data
is avoided in order to keep a high resolution version of data
onboard while speeding up data transmission. In real world
scenarios, the flight of the drone is subject to a number
of standing in conditions, such as constrained energy and
onboard memory availabilities. As for energy, drones are
battery-powered systems, thus requiring dedicated utilization
policies. On the overall energy consumption, flight mechanics
accounts for an unavoidable, still relevant, quota, which may
become of great relevance in close relation to attitude/elevation
variations, as well as adverse weather conditions. In addition,
image acquisitions and data upload operations have relevant
effect on energy consumption, especially in presence of high
resolution images/videos, thus immediately affecting memory
usage and the responsiveness of the monitoring service running
on top of the UAV. Therefore, a critical tradeoff arises when
energy and memory constraints interplay with responsiveness
requirements of the mission. In order to tune the amount of
data to acquire on each segment of the mission and to upload
at each CP, given the constraints on energy and memory

Fig. 1: Reference scenario with a drone during the mission.

Description
N Number of Check-Points

Eo Initial amount of energy available on board
Ej Energy available on board when the drone approaches the
j-th CP
k1,k2 Proportionality coefficients to account for the energy spent in

upload and acquisition operations [J/GB]

Random variable modeling mechanical-related energy spent
across the j-th segment

Er Random variable modeling energy needed to face the last
segment of the mission

Moo Onboard available memory
04 Data quantity to upload at j-th CP
i Data quantity to acquire along the j-th segment of the mission
KD, First order statistical moment of £ p
ur First order statistical moment of Ep
op Standard deviation of Ep
or Standard deviation of Ep

TABLE I: Summary of Notation.

availability at the beginning of each segment, an iterative
stochastic approach is defined hereby. In Table I, the notation
used within the present work is outlined.

The key assumptions of the proposed approach are:

o The amount of mechanical energy spent across the j-th
segment of the mission is a random variable Ep; with
mean /p; and variance osz with j € [1, N]. Moreover,
the energy required to revert to the starting point after
the last CP has been met is a random variable Er with
mean pr and variance o%. Those assumptions reflect
the fact that the energy spent on each segment cannot
be known in advance because during the mission the
drone has to continuously control its operations based
on unforeseeable surrounding conditions (i.e., physical
and/or environmental) shaped by the confidence interval.
Furthermore, those random variables are assumed inde-
pendent from each other.

o The amount of data gathered along the j-th segment (i.e.,
i;) is proportional to pp;. The motivation behind this
assumption is that the longer the segment, the larger the
amount of data that will be acquired. Moreover, the longer
the segment, the larger up,. As a consequence, it holds

Y= EDiyip e 1), 1)
th KDy,

e The amount of data o; uploaded at the j-th CP is
proportional to the amount of data ¢; gathered along the
j-th path:

05 = Oéij. (2)

with 0 < o < 1 This assumption models the upload of a
low resolution version of the contents gathered along the
j-th segment, based on scalable quality encoding [19].

o The energy spent in data uploads (from the drone to the
CPs) operations is proportional to the amount of uploads
data through the constant k.

o The energy spent in the acquisition operations is propor-
tional to the amount of gathered data through the constant
ko.



The goal of this manuscript is to define an algorithm that
tunes the values of o; and ¢; (with 1 < j < N) in order
to successfully complete the mission without violating energy
and memory constraints.

III. ITERATIVE STOCHASTIC APPROACH TO THE MISSION

With respect to the scenario described in Section II, the
following theorem grounds the iterative stochastic approach
proposed hereby. In particular, it states how to set i and
o (with 7 < k < N) once the j-th CP is approached in
order to keep the Out-of-Service probability below a given
threshold ¢ without violating energy constraints. In particular,
the following requirements will be considered:

Requirement 1: Once the N-th CP is reached, the energy
available onboard FEy should be larger than the energy
required to revert back to the starting point with probability
greater than 1 — e & P.(Exy < Er) <e.

Requirement 2: Once the j-th CP has been approached,
the values of i, with k € [N] should be set m order to
avoid a memory overflow Zk_J ir < My Zl e

Theorem 1. Knowing the values Ep,, i;, and o with 1 <1 <
j — 1 and assuming that Ep, with j < k < N and Er are
Gaussian independent random variables, Requirements 1 and
2 are satisfied if and only if

i< —P .0 Vjell.N]. 3)
where
j—1
(=M= i )
Ej—1—7v21
— i1 5
ko + ko ©®)
Q; = min (g,g) . (6)
j—1 j—1 j—1
Ejn=Ey—Y Ep —ki Y o—ky» ir. (1)
=1 =1 =1
7= Q5 (e)- ®)

provided that E; —~v; >0 Vj € [1,N —1]
being HUTD; = ,uT + Zk_J ,uDk, UTD? = UT + Zk JUD,,

and Q;(x) = o7 dt

r f - “TDJ

OTD
Proof. At takeoff, the drone is supposed to be fully charged.
As the mission starts, it steers at the first CP, while surveying
(i.e., acquiring video images) the fly over area. At the N-th
CP, the residual energy must be sufficient to sustain the last
segment of the mission, back to starting point. When the UAV
has reached the N-th CP, the remaining amount of energy can
be expressed as:

EN—EO—ZEDk—klzok—kQZ ©)

k=1

Hence, it is possible to state that the probability that the

leftover energy is less than E'r must be as low as €.
PT(EN < ET) <e (10)

which is equivalent to:

N N N
P(Er+Y Ep,>Ey—k Y on—ky Yy ix) <
k=1 k=1 k=1

Since, it is possible to consider Ep, ~ N(,uDk,o%k) and
Ep ~ N(pr,0%), it results that:

N
Erp, = Br+ Y Ep,. (11)
k=1
N N
Erp, ~ N <MT +S wpch+ za@ |
k=1 k=1

The probability value of interest is associated with an event
that happens with low probability (i.e., on the Gaussian’s tail),
which leads the study to include the Q-function. Unfortunately,
Erp, is not a normal standard distribution. The Q-function is
defined as follows:

Q) =

being 7, the value that maximises the Out-of-Service proba-
bility. With a simple change of notation, it results:

(12)

T —
Qi(x) = Q(F 110 (13)
OTD,

from which it can be derived:

Q1 (e) =0 (14)
Therefore, it is possible to write:

N N
k1Y ok +ka Y ik < Eo— 0. (15)

k=1 k=1

Further, the amount of occupied memory cannot exceed the
maximum amount of memory available, which implies:

N
> ik < Mo (16)
k=1

Based on (2)

N
(ki +k2) Y ix < Bo— 70
k=1
N
Z Eo — 70 an
1 kla + ]{32)
Now, it is possible to combine (16) and (17) to write:
= min (M, £2532 ) (18)
and, thanks to (1), it results:
=M (19)

N
Zk:l KDy,



Once the UAV has reached the 1-st CP, the remaining
amount of energy can be expressed as:

Ey=FEy— Ep1 — k101 — katy (20)

The proposed approach can be considered as iterative and,
hence, it is possible to calculate what happens at the 2-nd
CP. In particular, once defined E; in (20), it is possible to
reformulate (10) as:

PT(EN < ET) <e

N N N
PT(ET+ZEDk > F 7]6120]6 7]6221']6) <e
k=2 k=2 k=2

It is worth remarking that being Fp, known, so it is in
Equation (20), and it is possible to derive Erp, as:

N
Erp, =Er+» Ep,
k=2

N N
ETD2 ~ N <[LT =+ Z,U:D,NU% + ZO’%}C>
k=2 k=2

Once again, it is mandatory to calculate the ; corresponding
to the new distribution Erp:

Q) =
Qa(x) = QTP
0T Dy
Q3 '(e) =m.

The new energy constraint is:

N N
kY op+ky» in<Ei—m
k=2 k=2

which, based on (2), is equivalent to:

N
(k‘la—Fk’g)Zik S E1 —

k=2

thus leading to:

N
Z S et @

whereas, the memory constraint can be expressed as follows:

N

ZikSMoo_

k=2

(22)

Since our aim is to maximize the memory output, lowering
the amount of energy intake, it can be written:

0y = min (Mao — i1, 2253 ) (23)
from which can be obtained:
iy = — 22, 24)

N
Zk:2 KDy,

The same rationale can be used to demonstrate the theorem
for any value of j. L]

To apply Theorem 1 in real settings it is necessary to define
«. In the following remark a rationale to iteratively set « is
proposed:

Remark 1. At the j-th CP, three possible cases (Figure 2)
may be verified:

Case A: the energy constraint always dominates over the
memory one (i.e., (4) is greater than (5), which means > &)
Vo, which implies an optimal value of o = 0, to maximize
Ej1 =71

ko

Case B: the memory constraint dominates over the energy
one (ie., (5) is greater than (4), which means £& > () Vq,
which implies an optimal value of o = 1 that maximizes the
responsiveness. In this case, §); is expressed as

j—1
O =Myo— Y i
1=1

Case C: in this case, ( and £ intersect at o« = o, which is
. L N . N
the optimum value to maximize ", iy and y_,_, 0;. Hence,
) can be expressed as

Q; = (25)

(26)

] 1_’73 1
. 11
Q; = min Z " kiadtke
\W_/
¢ 3
—{1—case A O—case B case C

Fig. 2: Cases and combination of memory occupancy as a
function of a.

Corollary 1. Without loss of generality, the hypothesis that
Ep, and E7 distributions are Gaussian may not be strictly
verified. In this case, Er D; will not be Gaussian. Therefore,
it is possible to define Fp, and Fr as the distributions
associated to the random variables Ep, and Erp,. The only
required changes are the definition of v, which is now equal
to Fg ( ) is the Complememary Cumulative Distribution
Functlon definition of Er D;



IV. THE PROPOSED ALGORITHMS

According to the mathematical formulation proposed in
Theorem 1, three approaches are possible.

The first one is an iterative solution (namely, ISAAC) that
introduces continuous refining of the involved parameters,
hence regulating data acquisition as a function of the amount
of energy used by the drone during the mission each time a
CP is approached. The second, instead, is more conservative
and less complex approach, namely a priori, to compute
acquired/uploaded data amounts (e.g., ¢; and o;), for each CP,
just once, at the beginning of the mission. Here, the value of
Q is kept equal to the one calculated at the starting point
(i.e., © = €4). Last approach, called a posteriori, uses the
actual values of mechanical energy consumption, leveraging
the above reported equations. Such a solution is equivalent
to deal with the problem from a deterministic point of view,
since it is equivalent to evaluate the reference parameters at the
end of the mission. It is reasonable to assume that: (i) ISAAC
can provide a more aggressive behaviour when compared to
the a priori algorithm, (ii) the comparison with a posteriori
benchmarking algorithm is useful to evaluate the improvement
that ISAAC can provide.

A. Computational Complexity

An estimation has been carried out on the proposed solu-
tions, e.g., a priori and ISAAC algorithms. A detailed outlook
on the involved operations is reported in Table II. Figure 3
compares the complexity of the two approaches as a function
of the number of CPs: as expected, the a priori approach
can be useful in those scenarios characterized by very low
complexity requirements, whereas ISAAC needs larger com-
puting resources. At the same time, it is worth to note that the
computing load due to ISAAC is distributed over the N CPs
and therefore it is sustainable.

- % -A priori Sums/Subs ‘
- - -A priori Mults/Divs|

ISAAC Sums/Subs
—O—ISAAC Mults/Divs

—
o
W

Operations [#]
=

10 11 12 13 14 15 16 17 18 19 20
BSs [#]

1 23 45 6 7 8 9

Fig. 3: Computational Complexity Analysis of the a priori and
iterative algorithms.

A priori ISAAC
Sums/Subtractions T(N2+19N)) [ 2(TN2 4+ 17N - 10)
Multiplications/Divisions | 2N+7 2(5N-1)

TABLE II: Computational Complexity of proposed algorithms.

V. PERFORMANCE EVALUATION

In this Section, the ISAAC algorithm is compared with
a priori and a posteriori algorithms. A wide simulation
campaign has been carried out to analyze the performance of
ISAAC in a broad range of settings. A Monte Carlo Matlab-
based simulator has been developed to compare the different
algorithms. For each simulation settings, 10° runs have been
carried out. For all the results presented in Section V-B, the
average values and standard deviation have been reported
for each algorithm/scenario. The main assumptions of the
simulation model are described in Section V-A.

A. Simulation Settings

All the parameters involved in the simulation campaign
are widely discussed hereby and their reference values are
summarized in Table III.

Variable Input/Output Values
N 1 [1, 7] [#]
Nyvax I 7 [#]
Uy : 30p 1 10%up
Us : 30p 1 20%up
€1 I 1 [%]
€2 I 2 [%]
Onboard Memory 1 128, 1024, 2048 [GB]
7 0] [GB]
o 0] [GB]
>N 0 [GB]
Available Energy (0] [J]
Available Memory (6] [GB]

TABLE III: Input and Output simulation parameters.

1) Scenarios description: Two scenarios have been con-
sidered: the first is a urban setting (i.e., densely populated
environment) whereas the second is a rural one. The main
difference between them is the inter-CPs distance, which
is of 200 m, in the first case, and 1732 m in the second
[23]. For both, the distances are calculated as a random
variable uniformly distributed with a range of +10%. In the
urban scenario, the maximum number of CPs has been set
to Nyrax = 74, which guarantees that the energy onboard
is always lower than the mechanical energy required for the
mission. In the rural case, instead, the maximum number of
CPs is Nysax = 7. For instance, according to [22], Ej has
been set to 213.4 kJ. Moreover, two different values of the
confidence interval for the mechanical energy have been herein
considered, e.g., 10% and 20%. All the results that will be
presented later on in this Section will be related to the rural
case. The results related to the urban scenario are very similar
with the only difference of involving a larger number of CPs.

2) Power consumption model: This work uses the model
proposed in [5] to characterize the average mechanical power
P(V) spent by a drone flying at speed V:
1+ 3V* +

U2

tip

vioope
Pl 1+ -2
i ( + 4v3 21)8)

P(V) = Ry 27)

1/2
1
+ §d0psAV3



which is composed by the blade profile power (i.e., Fy) and
the induced power in hovering status (i.e., F;).

3) Memory Configuration: To verify the model’s reliability,
the drone has been supposed to be equipped with three onboard
memory capabilities, i.e., 128 GB, 1024 GB, and 2048 GB. In
the first case, memory is a major concern in terms of resource
handling, whereas, in the second one, both memory and energy
availabilities are likely to be sufficient to successfully handle
the mission. Lastly, in the third configuration, energy becomes
the priority.

4) Data-to-Energy constants definition: The energy amount
employed for the transmission of the acquired data toward
the CP is strongly connected to the involved technology. In
this case, drones are assumed to communicate thanks to a
5G infrastructure. The energy consumption can be assumed
as 2.3 nJ/bit [20], which leads to k; ~ 19.76 J/GB. The drone
is herein assumed to enrol an Intel RealSense D430 camera
[21], with a resulting power consumption equal to 3.5 W. The
value of ky has been calculated as the ratio between the power
consumption of the camera used by the drone to acquire both
the Red Green and Blue (RGB) and Depth data and the value
resulting from the summation of all data fluxes, i.e., aggregated
flux. Assuming an RGB 1920x1080 resolution with 2 B/px
depth @30 fps, the resulting throughput is 118.65 MB/s. With
a 848x480 resolution @90 fps for the Depth, the resulting
throughput is 69.87 MB/s. Therefore, with 2 B/px, the overall
throughput is 180.52 MB/s, or 0.1841 GB/s, from which it
results that kg is equal to 19 J/GB.

5) Out-of-Service Probability: The Out-of-Service proba-
bility ¢ in Requirement 1 is set to either 1% or 2%.

B. Simulation Results

Table IV shows the Out-of-Service frequency in the consid-
ered scenario. In the 128 GB case, no outage has been mea-
sured because in this memory configuration, at any moment,
the memory constraint dominates over the energy-related one.
The whole memory amount is filled up during the mission with
a rate that results be fairly proportional to the length of each
segment. Both acquired and uploaded memory occupancies
demonstrated a constant trend. Furthermore, all considered
algorithms behave the same under this configuration, so that
the rest of the Section will focus on 1024 and 2048 GB
settings. For the ideal a posteriori algorithm, no outage
is measured because the mission is planned based on real
mechanical energy consumption values, which are supposed
to be known in advance. On the other side, both a priori and
ISAAC provide similar Out-of-Service frequencies, in the worst
case, extremely close to the theoretical bounds (1, and €2).

1) 1024 GB configuration: Figures 4a and 4b show the total
acquired and uploaded data, respectively, in a scenario with
7 CPs, under different parameter settings. The total acquired
data is almost the same whatever the algorithm and/or the
simulation settings because the amount of onboard memory
is limited and, as a such, all algorithms acquire an amount of
data which is very close to 1024 GB. Differently from the total
acquired data, the total uploaded data in the a priori approach

is remarkably lower than using ISAAC or the ideal a posteriori
solution. In addition, ISAAC grants a better performance level
with respect to the a priori solution, closer to the ideal a
posteriori algorithm. Figures 5a and 5b show the total acquired
and uploaded data at each CP over the mission, respectively.
Again, no remarkable differences are observed for the acquired
data across the different algorithms/simulation settings. Once
again, this is motivated by the fact that the memory onboard is
limited and all algorithms set the amount of data to acquire to
1024 GB over 7 CPs. The uploaded data at each CP is almost
constant for the a priori and the a posteriori algorithms but
progressively increases from one CP to the next one when
ISAAC is used. Similar outcomes have been observed in all
other configurations.

2) 2048 GB configuration: In this configuration, the
amount of onboard memory is no longer limited and the
iterative algorithm, acquires an amount of data which is very
close to the available amount. The a posteriori benchmarking
solution maximises the amount of acquired memory, whereas
the a priori solution confirms its conservative trend (see
Figures 6a and 6b). The total uploaded data, instead, in the a
priori approach is remarkably lower when compared to ISAAC.
The spread among the values is confirmed with reference
to the ideal a posteriori solution. Figures 7a and 7b show
the total acquired and uploaded data at each CP over the
mission, respectively. The a priori algorithm demonstrates
its conservative behaviour which is, at the beginning of the
mission, emulated by ISAAC that starts to refine the acquired
amount of data, getting closer to the theoretical a posteriori
solution. At the end of the mission, the acquired data results
to be sensibly higher when compared to the ideal behaviour,
thus demonstrating its added value. Even for the uploading,
ISAAC shows the increasing gain trend which implies that the
amount of uploaded data is significantly higher at the end of
the mission when compared with a priori solution, heading
to ideal values. Similar outcomes have been observed also in
other configurations.

VI. CONCLUSIONS

This work discussed an iterative stochastic approach to
the prototypical mission of a drone surveying a certain area,
gathering high quality video data and uploading low quality
versions of those data through a set of CPs along the path.
During the mission, the drone is subject to constraints related
to energy and memory availabilities. Starting from the pro-
posed approach, two algorithms have been conceived that seek
different complexity-performance tradeoffs. The two, namely
a priori and ISAAC, respectively, were compared to an ideal
solution that knows in advance the actual energy spent on
each segment of the mission. Simulation results show that, in
relatively short missions, all algorithms behave the same. As
the mission length increases, ISAAC provides a performance
level closer to the ideal solution than the a priori algorithm.
Despite the relevance of the findings, future perspectives
remain open. First of all, the reference mission can be carried
out by a swarm of drones, thus implying flight coordination



1024 GB 2048 GB
BSs A priori Iterative A posteriori A priori Iterative A posteriori
U1 Uz U1 Uz U1 Uz U1 UZ U1 UZ Ul U2
€1 &2 &1 &2 &1 &2 €1 &2 €1 &2 &1 €2 €1 €2 €1 €2 €1 €2 €1 €2 €1 &2 €1 &2
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
= 3 0 0 0 0 0 0 0 0 0 0 0 0 |0.006|0.011{0.009|0.018{0.004|0.006|0.005| 0.01 | O 0 0 0
5 4 0 0 0 0 0 0 0 0 0 0 0 0 |0.01(0.019| 0.01 | 0.02 | 0.01|0.02|0.01[{0.02| 0 0 0 0
& 5 0 0 0 0 0 0 0 0 0 0 0 0 |0.01(0.02|0.01{0.021|0.01|0.02|0.01[{0.02| 0 0 0 0
6 0.01 |0.018| 0.01 | 0.02 {0.005|0.011{0.005/ 0.01 | O 0 0 0 |0.01(0.019| 0.01 | 0.02 | 0.01 | 0.02 | 0.01 [0.019| O 0 0 0
7 0.01 | 0.02 | 0.01 | 0.02 | 0.01 | 0.02 | 0.01 |0.02| O 0 0 0 |0.01(0.021| 0.01 | 0.02 | 0.01 | 0.02 | 0.01 [0.021| O 0 0 0
TABLE IV: Out-of-Service frequency measured in the experimental campaign.
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Fig. 4: Acquired and uploaded data in the 1024 GB configuration.
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and cooperative tasks optimization execution related problems.
Second, the proposed approach could include trajectory design
and path optimization. Thirdly, the 6G technological landscape
can be further investigated to evaluate promising newbies, i.e.,
mmWaves.
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