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Abstract—In the emerging 5G architecture, the Cloud-Radio
Access Network (Cloud-RAN) offers the possibility to dynami-
cally configure virtual resources and network functionalities very
close to end-users, while jointly considering bandwidth, com-
puting, latency, and memory capabilities requested by heteroge-
neous applications, the channel quality experienced by end-users,
mobility, and any kind of system constraints. By capitalizing
on recent scientific results and standardization activities on 5G,
this short paper presents a preliminary design of an ETSI-NFV
compliant architecture willing to support the implementation
of advanced protocols, algorithms, and methodologies for the
optimal management of the 5G Cloud-RAN. Its components and
functionalities have been sketched by harmoniously integrating
Software-Defined Networking (SDN) facilities, Multi-access Edge
Computing (MEC), and deep learning. Herein, spatio-temporal
users’ dynamics are collected by SDN controllers and predicted
by a high-level orchestrator through a Convolutional Long Short-
Term Memory scheme. Then, the outcomes of the prediction
process are adopted to dynamically configure the Cloud-RAN
(i.e., by using any kind of customizable algorithm). Some of the
capabilities of the proposed approach are preliminarily evaluated
by considering the autonomous driving use case and real mobility
traces. Moreover, the paper concludes by reporting an overview
of future directions of this research activity.

Index Terms—5G Cloud-RAN, Users’ dynamics, ConvLSTM

I. INTRODUCTION

With the explosive growth of communication traffic and
the arrival of the fifth generation (5G) of mobile broadband
systems, traffic and mobility prediction are needed for an
effective planning and usage of network resources [1], [2]. In
this context, deep learning could be properly tailored to antic-
ipate traffic behaviors and optimize the deployment of virtual
resources and functionalities very close to end-users (i.e., at
the edge of the network), while offering concrete answers to
the deployment of flexible and advanced applications asking
for bandwidth, computing, latency, and memory capabilities
never seen before [3], [4].

The current scientific literature generally investigates traffic
forecasting and mobility prediction separately. The prediction
of the mobile traffic load has been achieved through Con-
volutional Neural Networks (CNNs) [5], Long Short-Term
Memorys (LSTMs) [6]–[8], or a combination of them [9], [10].

Mobility prediction is achieved through Markov Chains [11],
Markov Decision Processes [12], Hidden Markov Models [13],
Bayesian Networks [14], Neural Networks [3], [15], [16], or a
combination of Neural Networks and Bayesian Networks [17].

Differently from the current state of the art, this short
paper jointly addresses the two aforementioned problems and
conceives a network architecture willing to optimally manage
the 5G Cloud-Radio Access Network (Cloud-RAN) through
deep learning [18]. The high variability and heterogeneity of
components and functionalities that compose the conceived
framework inevitably make the design of a suitable deep
learning algorithm a very challenging task to accomplish.
Therefore, an original methodology leverages the integra-
tion of Software-Defined Networking (SDN) facilities, Multi-
access Edge Computing (MEC), and deep learning is sketched
in support of a preliminary resource planning through the
prediction of spatio-temporal users’ dynamics. It is important
to note that at the time of writing, and to the best of our knowl-
edge, a first attempt in this direction is presented in [19]. Here,
a multivariate LSTM is developed for predicting the workload
in MEC entities, by considering the impact of user mobility.
This short paper significantly advances the current state of the
art, including [19], because: i) it frames the overall proposal
within the standardized ETSI-NFV architecture, ii) it proposes
a new methodology for the spatio-temporal prediction of users’
dynamics (which differs from the one adopted in [19]), and
iii) it provides a very preliminary discussion on the usage of
prediction outcomes in a realistic use case.

The remainder of the short paper is as follows. Section II
illustrates the proposed architecture and provides some techni-
cal details on the adopted deep learning approach. Section III
presents the preliminary investigation, including the processed
data and the early results. Finally, Section IV concludes the
paper and draws future research activities.

II. THE PROPOSED ARCHITECTURE

The network architecture presented herein wants to na-
tively support a wide range of services, including autonomous
driving, augmented reality, virtual reality, and drones (just
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Fig. 1. The proposed architecture.

to name a few), that have massive bandwidth and latency
constraints. In line with 5G specifications, gNBs provide
wireless connectivity to mobile users through heterogeneous
technical components at the radio interface (this concept is
illustrated in Fig. 1 by means of beams with different colors)
[20]. A number of MEC servers are connected to gNBs and
expose computing resources to mobile users, depending on
the service they use [21]. Also in this case, the colored blocks
close to MEC servers in Fig. 1 highlight the heterogeneity of
resources allocated for different applications. All the resources
available in the Cloud-RAN are monitored, configured, and
orchestrated according to the ETSI-NFV architecture [18].
Specifically, gNBs and MEC servers are connected to SDN
controllers. They locally control users’ mobility and monitor
network resources requested by the mobile users. The NFV
Orchestrator (NFVO) optimally orchestrates network services
and resources on the Cloud-RAN, based on the prediction
of spatio-temporal users’ dynamics, while satisfying heteroge-
neous traffic demands [21]. Note that radio and MEC resources
can be dynamically allocated to a group of services, according
to the network slice paradigm [22].

The main functionalities covered by the proposed archi-
tecture are introduced below. Only a high-level description
is presented and their complete design is delayed for future
research activities.

A. Monitoring of users’ mobility and resource usage

Each SDN controller implements monitoring functionali-
ties and retrieves spatio-temporal users’ dynamics, including
mobility patterns and bandwidth utilization. The interaction
between SDN controller and the other entities of the network
is implemented through conventional communication control
protocols (i.e., OpenFlow, RestConf, etc.) [23]. However, the
structure of provided data (the YANG model, for instance)
and the periodicity of that interaction remain an open issue
and must be properly defined.

B. Recognition of user mobility patterns

The key methodology envisaged in this contribution as-
sumes to predict the spatio-temporal users’ dynamics through
deep learning. In fact, spatio-temporal users’ dynamics cap-
tured by SDN controllers are collected by the NFVO, which
can consequently perform mobility prediction. Specifically,
the Convolutional LSTM (ConvLSTM) architecture, which has
been initially introduced for precipitation nowcasting [24] and
recently investigated also for traffic forecasting [25], is adopted
for this purpose. The ConvLSTM is a neural network based
on LSTM [26], with the convolution operator as input, forget,
and output gates instead of the element-wise or Hadamard
product [24]. Therefore, it can extract temporal and spatial
correlations of data through LSTM memory cells and the
convolutional operation, respectively [10], [27]. Going more
into detail, this work conceives a learning architecture em-
bracing two 2-dimensional ConvLSTM layers, after each one
a Batch Normalization layer is used to accelerate deep network
training [28]. At the end, the prediction is performed through
a fully-connected layer with the Rectified Linear Unit (ReLU)
activation function [10]. The predictor is configured in order
to minimize the Mean Square Error (MSE) loss function. The
distribution of users among cells and the resources they use
at both radio interface and Cloud-RAN (also on the network
slice bases) are observed for a time interval T . Then, the
ConvLSTM is used to predict these details in the future time
instants.

The dimension of cells, the observation slot, and the dura-
tion of T are relevant parameters for future research activities.
Moreover, the robustness of the prediction algorithm to deal
with uncertainty and measurement errors has to be considered
in the design and evaluated. Another important aspect is
the algorithm complexity together with the availability of
training data. It is recommended not to send a huge amount
of data through wireless links and avoid congestions. In this
context, distributed learning solutions must be studied to share
knowledge among the different MEC servers.

C. Towards an optimal resource management

The outcomes of the prediction process are adopted to
dynamically configure the 5G Cloud-RAN. In this case, user
mobility patterns may be used to aid optimization algorithms
to allocate radio resources among network slices, initiate or
configure MEC resources based on users’ demands [21]. For
example, NFVO may forecast next user locations and take
full advantage of good future conditions (such as getting
closer to a gNB or entering a less loaded MEC server) or
mitigate the impact of negative events (e.g., entering a tunnel).
A careful study on the impact of prediction error on the
optimization problem needs further investigations. It might
be potentially more harmful to use a wrong prediction than
not using prediction at all. A good accuracy can usually be
obtained for short prediction horizons, which, however, should
be of a correct length to make the optimization algorithms
benefit from it. Therefore, a good balance between prediction
horizon and accuracy must be found.



III. PRELIMINARY INVESTIGATION

The preliminary results discussed in this position paper refer
to the prediction functionality presented in Section II-B. The
autonomous driving use case is considered as an example and
the distribution of mobile users in the spatio-temporal domain
is given by realistic mobility traces.

A. Dataset

This short paper considers the dataset presented in [29],
which reports the movements of 316 taxi cabs in the center
of Rome, from 1 February 2014 to 2 March 2014, with a
granularity of about 15s. Fig. 2 shows an example of the taxi
distribution at 1:00 pm and 1:59 pm. The considered geograph-
ical area of around 110km2 is bounded by the coordinates
pairs (41.793363, 12.372258) (41.991896, 12.616472). It has
been divided using 11× 10 square cells, so that each grid cell
covers a square area of 1km × 1km. Therefore, the training
dataset has been conveniently pre-processed to be managed by
the adopted deep learning architecture. The traces are used to
generate a temporal sequence, with a time granularity of 1s,
of matrices, whose elements represent the number of taxi in
one of the 110 square cells.

(a) (b)

Fig. 2. Example of taxi distribution at (a) 1:00 pm and (b) 1:59 pm in Rome.

B. Evaluation Setup

The conceived architecture has been implemented in Keras,
a high-level neural networks API written in Python, running
on top of TensorFlow [30]. The observation window T of the
spatio-temporal dynamics is set to 20s. The Adam optimiza-
tion, with a learning rate equal to 0.001, is used to iteratively
update the network weights. The other training hyperparam-
eters, that have been chosen for the scheme implementation,
are set as follows: number of filters = 200, kernel size = 3×3,
number of epochs = 30, and batch size = 64. To preliminary
evaluate the mobility prediction, we select the daily time slot
from 1:00 pm to 1:59 pm as an example of hour with peak
taxi activity.

C. Mobility prediction

To evaluate the prediction performance of the conceived
approach, we select two significant cells (i.e. cell ID 45 and
55) as examples to plot the observed and the predicted trends
over time of spatio-temporal users’ dynamics. Fig. 3 shows the
observed and the predicted trends over time of spatio-temporal
users’ dynamics for two significant cells. In particular, the blue
solid line represents the ground truth of the number of users,
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Fig. 3. Prediction of the number of users for example two cells.

while the red dashed line describes the predicted number of
users, that are rounded up to the nearest integer. It can be noted
that the two trends are almost overlapped. Fig. 4 reports the
Mean Absolute Error (MAE) values for the different cell IDs.
Generally, MAE is lower than 0.6; only a few cells present
peaks equal to 0.8.
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D. Resource Planning

Services for the autonomous vehicles require 16 GB Syn-
chronous Dynamic Random Access Memory (SDRAM) and
100 Mbps as bandwidth [18], [31]. Knowing the spatio-
temporal users’ dynamics and the minimum requirements of
autonomous vehicles, we can preliminary estimate the overall
radio and computing resources to be allocated in each cell,
according to the following relation: R̂ = N̂j ·r, where N̂j is the
predicted number of users in the j-th cell and r is the resource
requirement in the Cloud-RAN. Fig. 5 shows the actual and the
predicted resources in the example two cells, i.e. cell ID 45 and
55. The predicted resources’ trend follows the number of users
in the cell due to the basic multiplicative estimation proposed
in this short paper. As previously anticipated, the actual and
the predicted trends are almost overlapped. Therefore, the
conceived architecture has good prediction performance of
spatio-temporal users’ dynamics and resource requests.

IV. CONCLUSIONS

This work has preliminarily presented the design of an
ETSI-NFV compliant architecture that can optimally manage
the 5G Cloud-RAN. Its components and functionalities have
been sketched, with a focus on mobility prediction. In fact,
spatio-temporal users’ dynamics have been predicted through
a Convolutional Long Short-Term Memory scheme by con-
sidering one-hour mobility traces. Then, the outcomes of the
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Fig. 5. Estimation of (a) radio resources and (b) MEC resources for cell ID
45 and 55.

prediction process have been used to quantify the resources
to allocate in the Cloud-RAN for the autonomous driving use
case. Further research activities will investigate the interaction
between Software-Defined Networking controllers and the
other entities of the network. Moreover, we will analyze the
prediction approach with different configuration parameters
and distributed learning solutions. Then, mobility prediction,
with a trade-off between prediction horizon and accuracy,
could aid optimization algorithms to dynamically configure
the 5G Cloud-RAN.
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