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Abstract—Thanks to its inherent capabilities (such as fairly

long radio coverage with extremely low power consumption),

LoRaWAN can support a wide spectrum of low rate use-cases

in industry 4.0. In this paper, both plain and energy harvesting

industrial environments are considered to study the performance

of LoRa radios for industrial automation. In the first instance,

a model is presented to investigate LoRaWAN in industry 4.0

in terms of battery life, battery replacement cost, and damage

penalty. Then, the energy harvesting potential, available within

an industry 4.0, is highlighted to demonstrate the impact of

harvested energy on the battery life and sensing interval of LoRa

motes deployed across a production facility. The key outcome of

these investigations is the cost trade-off analysis between battery

replacement and damage penalty along different sensing intervals

which demonstrates a linear increase in aggregate cost up to

£1500 in case of 5 min sensing interval in the plain (non-energy

harvesting) industrial environment while it tends to decrease after

a certain interval up to five times lower in Energy Harvesting

(EH) scenarios. In addition, the carbon emissions due to the

presence of LoRa motes and the annual CO2 emission savings

per node have been recorded up to 3 kg/kWh when fed through

renewable energy sources. The analysis presented herein could

be of great significance towards a green industry with cost and

energy efficiency optimization.

Index Terms—Industrial automation, cost and performance

evaluation, carbon savings in industry 4.0, energy harvesting,

Industrial IoT, energy-efficient LoRaWAN.

I. INDUSTRIAL INTERNET OF THINGS AND THE FOURTH
INDUSTRIAL REVOLUTION

Industrial Internet of Things (IIoT) [1] is a recent wave of
connectivity and communication technologies, that is being
predicted as the game changer in redesigning and reshaping
the concept of a smart industry witnessing the new industrial
revolution. IIoT introduces a set of standards [2], [3] (e.g.,
high powered wireless access, low-cost wireless access, and
low power wide area) to enable the connectivity of a wide
range of manufacturing equipment to a web-based network
and integrates this data for timely decision making [4]. IIoT
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connects a wide range of sensor devices deployed across
the production line to different analytic systems inducing
the ultimate performance improvement that can lead towards
billions of dollars of savings [5].

Due to their distinct features to meet radio coverage, scala-
bility, and energy requirements for the Industry 4.0 paradigm,
Low Power-Wide Area Network (LP-WAN) [6] are considered
the trendsetters in the evolution of wireless communications.
A plethora of LP-WAN technologies is out in the market
these days that include: Sigfox, Long Range Wide Area Net-
work (LoRaWAN), NarrowBand Internet of Things (NB-IoT),
DASH7, LTE-M1, Ingenu, and Weightless to name a few [6].
Among them, LoRaWAN [7], [8], Sigfox and, Weightless have
already been proposed suitable for most of the Machine-to-
Machine (M2M) communication scenarios in IIoT use-cases
because of their common characteristics (such as, low power
consumption, high scalability with extended radio coverage,
and simple/low-cost network infrastructure) [9].

Despite several low power technologies that have recently
been introduced to cater IIoT use-cases, energy is still one
of the major challenges for this kind of applications. Energy
exhaustive operation of sensor nodes (also known as motes)
installed within a harsh industrial environment or inaccessible
places (e.g., in many industrial monitoring use-cases) makes
it impractical to replenish the batteries frequently. Moreover,
these batteries are an expendable resource with adverse en-
vironmental effects. On the other hand, an optimal sensing
interval to generate alerts can well avoid the fast battery
drainage but, sometimes, even a slight latency in popping-
up an urgent alert costs a bulk of damaged products wasting
the useful resources at the production line. The situation
becomes even more critical when the production costs of
the manufactured products are significantly high and timely
detection of various anomalies at different production stages
can avoid huge financial losses for a smart industry. However,
choosing between the energy optimal operation and the con-
tinuous monitoring during the production process, being the
two contradictory goals, involves a narrow line trade-off.

To bridge this gap, the present manuscript extends [10] with
the following contributions:

• The presented model evaluates the feasibility of
LoRaWAN for plain and energy harvesting industrial
environments.

• The lifetime of Long Range (LoRa) monitoring devices is
calculated considering different sensing intervals and then
the impact of these intervals is studied on the lifetime of
LoRa monitoring nodes.
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• Two significant operational costs (i.e., battery replace-
ment and damage penalty) are assessed and the optimal
sensing interval is suggested.

• The renewable energy potential in the industrial envi-
ronment is exploited to feed LoRa nodes and a socio-
economic analysis is presented.

• The CO2 emissions are evaluated due to the presence
of LoRa end-nodes and total emission savings are high-
lighted in case of energy harvesting LoRa deployments.

The present contribution will focus on the LoRaWAN archi-
tecture, but the developed model can also be extended to apply
to other LP-WAN standards with slight customization.

This manuscript is outlined as follows: Section II summa-
rizes the current state-of-the-art and provides a comparison of
the available LP-WAN options. Section III presents a model to
evaluate the performance of LoRaWAN in the plain industrial
scenario while the model for battery life and sensing interval
evaluation is presented in Section IV for energy harvesting
industrial environment. The results and discussions, covering
both plain and harvesting industrial environments, are provided
in Section V. Finally, the concluding remarks are presented in
Section VI.

II. STATE OF THE ART AND ESSENTIAL COMPARISON OF
LP-WAN TECHNOLOGIES

This section not only outlines the recent developments and
proposals for monitoring the industrial processes but also
discusses the potential of LP-WAN technologies targeting
industrial use-cases [5]-[9]. The following are a few articles
discussing the recent developments in this domain in terms of
highlighting the significance of different LP-WAN solutions
to be adopted for industrial automation and their comparison
based on the range of Key Performance Indicators (KPI’s)
identified as critical for industry 4.0.

The first effort to highlight the significance of the LP-WAN
paradigm for long-term industrial scenarios was made by
[9]. The authors have identified the few suitable LP-WAN
candidates to fulfill the strict requirements (such as reliability
and energy efficiency) imposed by IIoT networks. The work
classifies the existing industrial solutions into short-range and
long-range communication technologies for IIoT and urges the
latter being the future of IIoT applications for scalability, long
radio coverage, roaming, and energy efficiency.

Similarly, the state of the art of LP-WAN technologies
currently serving IoT applications has been reviewed by [11].
In particular, the authors focus on two famous and widely
accepted LP-WAN solutions; ultra-narrow band technology by
Sigfox and Semtech’s Chirp Spread Spectrum (CSS) tech-
nology introduced in LoRaWAN. They held several experi-
ments for both the solutions to evaluate their performance in
terms of radio coverage and energy consumption. Concluding
their remarks, the authors revealed that private networks in
LoRaWAN are the future of Industry 4.0 because of their
suitability towards a range of IIoT use-cases.

According to [12], the existence of LP-WAN solutions
has made it possible to achieve the goals anticipated by
Industry 4.0. LoRaWAN and Narrow-Band Internet of Things
(NB-IoT) are identified as the key players and performance

evaluation is presented arguing LoRaWAN is the best in terms
of cost, battery life, and energy efficiency while NB-IoT is
unbeatable with respect to Quality of Service (QoS), latency
and, reliability. The authors in [12] conclude that LoRaWAN is
best suited for a bulk of industrial Internet of Things (IoT) use-
cases such as predictive maintenance and anomaly detection.

The QoS was one of the parameters missing in the study
of LoRaWAN for industrial monitoring as mentioned in [12].
[13] proposes analytical models to investigate LoRaWAN
uplink (of class A device) with respect to several parameters
like latency, throughput and collision rate. The authors have
conducted simulations to demonstrate the efficiency of their
model and claim that their model is quite useful for resource
optimization in a cell for a preset QoS requirement.

Another insight of the LP-WAN solutions was presented by
[14] which primarily highlights the notion of Low Throughput
Networks (LTN). The authors evaluate the performance of
different independent LP-WAN technologies flourished out
before the standardization of LTN. For this purpose, they study
three major technologies; LoRaWAN, Sigfox and, OnRamp.
The authors conclude that the studied technologies may only
be suitable for the use-cases where constraints like jitter, delay,
and throughput are relaxed despite their higher radio coverage.

The importance of industrial monitoring and control pro-
cesses in terms of productivity enhancements has been em-
phasized in [15]. They identify a list of factors influencing
performance goals (such as communication throughput, radio
coverage, data security). The authors are convinced that cellu-
lar based IoT solution is inevitable to achieve the required
performance level. Hence, the design and implementation
of IoT network is proposed for industrial monitoring and
control. The authors conclude that their proposed IoT solution
performs well in terms of pre-identified parameters.

Sigfox has been considered by [16] because of its higher
radio coverage, almost equivalent to that of cellular networks
but against a fraction of energy consumption. The authors
investigate Sigfox based heterogeneous network architecture
where they propose the combination of ultra-low energy
consumption star network topology suitable for short-range
communication with a Sigfox gateway. The authors perform
several experiments with energy modeling and claim that this
kind of infrastructure guarantees a large coverage area and
longer battery life (up to 4 years) of end-devices.

In addition to the aforementioned literature, some other
works (e.g., [17]-[20]) also discuss the lifetime of sensor
nodes through duty-cycled operation [19], [20]) on the cost
of communication delays but their studies neither take into
account the complex LoRa deployments nor operating costs
(e.g., battery replacement and damage penalty) in industrial
settings, where trying to curtail the one, compliments the other
type of cost. To the best of author’s knowledge, this work
is the premier to thoroughly investigate LoRaWAN and its
carbon footprints for industry 4.0 services in the presence of
several harvesting sources to pare the reliance on the battery-
powered operation. Salient features of some of the major
LP-WAN players, analyzed and marked suitable for industrial
use-cases so far, are reviewed in Table I. The selection of a
single technology is not straight forward involving different



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. X, NO. X, MARCH 2020 3

TABLE I
COMPARISON OF LP-WAN TECHNOLOGIES STUDIED FOR INDUSTRIAL

MONITORING APPLICATIONS

Parameters LoRaWAN Sigfox NB-IoT

Spectrum Unlicensed ISM Unlicensed ISM Licensed LTE
Business Model Alliance Proprietary Proprietary
Duplex Mode Half Half Half
Modulation CSS BPSK OFDM
Bandwidth 125/250 kHz 100 Hz 180 kHz
Data Rates 290 bps-50 kbps 100 bps 250 kbps
Current (Sleep) 0.1 µA 1.3 µA 5 µA
Link Budget 157 dB 149 dB 164 dB
Uplink Latency <2 s <3 s <10 s
Payload Size 51-243 B 8-12 B 1500-1600 B
Security AES (128 bit) 16 bit 128-256 bit
Scalability Medium Low High
Adaptive Data
Rate

Yes No No

Interference
Immunity

High High Low

Current Draw
@14dBm

44 mA 49 mA 120-300 mA

Private network Yes Yes Yes
Localization Yes (TDOA) Yes (RSSI) No
Deployment
Cost

$100-
1000/gateway

$700-
1200/gateway

$15000/base
station

Range 2-5km urban,
<15km suburban

10km urban,
50km rural

<15km urban,
<35km rural

convolutions depending upon the individual use-case.
The choice of LoRaWAN for industrial monitoring and

control applications (such as anomaly detection and predictive
maintenance) is justifiable because of the following reasons.
First, LoRaWAN depicts the least current drawn among all
counterparts in similar conditions. Second, despite being the
proprietary physical layer solution itself, LoRa has an open-
source protocol stack as LoRaWAN that seems more open
to adopt. Third, it enjoys a reasonable trade-off for through-
put while operating in the unlicensed ISM band. Fourth,
LoRaWAN packets experience minimum uplink latency that
can be of significance in industrial monitoring scenarios. Fifth,
cost-effectiveness is another decisive factor that may cause
LoRaWAN standing far apart from its counterparts with an
added advantage of fair scalability potential within an industry.
Finally, LoRaWAN has got significant attention in recent years
for its rapid adaption for public network infrastructures already
deployed by several network operators.

III. LORAWAN FOR INDUSTRIAL MONITORING

This section starts with shedding some light on the fea-
sibility of LoRaWAN for industrial monitoring applications.
Furthermore, it presents a system model for evaluating battery
life, battery replenishment cost, and damage penalty.

LoRa has emerged as a robust physical layer propriety
solution in the last few years introduced by French company
Cycleo, later acquired by Semtech. Thanks to its higher
receiver sensitivity, LoRa can enable communications with
a received signal power as low as -137 dBm operating on
the sub-GHz ISM band and employs wide channel band-
width. Following these peculiarities, LoRa has been adopted
as a physical layer technology by LoRaWAN protocol stack
currently being promoted by LoRa

TM Alliance of over 160
members worldwide [21].

The system model envisaged in this paper considers an
implementation of LoRa based monitoring devices in the

industrial environment. Being a part of IIoT, the LoRa end-
devices monitor several industrial parameters (such as pollu-
tion monitoring, fire detection, flow level monitoring, leakage
detection, and temperature monitoring). It is pertinent to note
that an average energy consumption reading for different
LoRa SFs is considered assuming unidirectional (uplink) com-
munication initiated by periodic transmitters in the lifetime
evaluation. Here, the frequency of the periodic transmitter
(monitoring device) to sense and report an anomaly plays a
significant role. Various sensing intervals are considered to
investigate the average battery life against their operation on
different LoRaWAN transmitting powers and Spreading Factor
(SF) (ranging from 7 to 12). Furthermore, no variation in the
energy consumption is evident until the application payload
size of 3 bytes which seems appropriate to several industrial
applications for reporting an anomalous behavior.

The front-end communication in LoRaWAN network ar-
chitecture takes place choosing a combination of SF, Code
Rate (CR), and channel frequency. The SF can be seen as the
logarithmic ratio between symbol rate Rs and chip rate Rc

and can be expressed as SF = log2
Rc
Rs . Let Ta be the time

taken for submitting a packet into the sub-band for onward
transmission (also named as Time on Air and hereafter referred
as Air Time, Ta). Then, Ta, can be evaluated as:

Ta = Tpreamble + Tpayload (1)

The first part of Ta is the time taken by a pream-
ble to transmit and can be calculated as Tpreamble =
(Length of programmed preamble+4.25)·Tsym whereas Tsym

is the time taken to transmit only a single symbol, expressed
as Tsym = 2SF · 1

BW . Here, SF and BW represent the
current spreading factor and bandwidth configurations being
used. Similarly, Tpayload is another part of Ta, the total
time needed to transmit a payload and can be viewed as
Tpayload = No. of payload symbols · Tsym. Let Toff be the
time for which the channel is unavailable for transmission
(also known as Off-Time). In case the channel is unavailable,
the end-node must have to wait for an interval Toff before
it schedules the subsequent transmission. It is to note that,
for the sake of simplicity, the proposed model considers
retransmissions as new transmission after waiting Toff . As
per [22], it emerges that:

Toff = Ta ·
✓

1

d� 1

◆
(2)

Following is an example of evaluating the air time and the
time between subsequent packet starts in case of 0.1%, 1% and
10% duty-cycle allowance against different spreading factors
in LoRaWAN as shown in Table II.

TABLE II
AIR TIME EVALUATION OF LORAWAN FOR DIFFERENT LORA

CONFIGURATION SETTINGS

Time between packet starts (s)
Spreading
Factor

Air Time -
=Ta(ms)

d=0.1% d =1% d =10%

SF7 46.336 46.34 4.63 0.46
SF8 92.672 92.67 9.27 0.93
SF9 164.864 164.86 16.49 1.65
SF10 329.728 329.73 32.97 3.30
SF11 659.456 659.46 65.95 6.59
SF12 1155.072 1155.07 115.51 11.55

The LoRaWAN configuration settings considered in the
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lifetime evaluation are presented in Table III. Here, it is
important to note that all the LoRa configurations settings are
assumed constant throughout this evaluation. Each parameter
in LoRaWAN configuration is critical and modifying this
setting would consequently influence the air time. Further-
more, an application payload size of 3 bytes is considered
for this evaluation as no variation in the energy consumption
is recorded until this payload size which seems appropriate
to several industrial applications for reporting an alert to the
expert systems. For example, it can suffice the need to share
the status of a range of important parameters to be monitored
(such as temperature, pressure, light, acceleration, and so on)
[23]. TABLE III

LORAWAN ASSUMED PARAMETERS FOR THE LIFETIME EVALUATION
LoRaWAN Parameters Values

Application Payload Size 1-3 B
Payload size 14-16 B
Modulation Method LoRa (based on CSS)
Spreading Factor (SF) 7-12
Coding Rate 4/5
Bandwidth 125 kHz
Number of Preamble Symbols 8
Frequency 865 MHz
Cyclic Redundancy Check enabled
Explicit Header ON
Low Data Rate Optimizer AUTO
Transmit Power 14 dBm

As the LoRa motes are conventionally battery-powered in
nature so they are supposed to adopt duty-cycled operation
to reach a longer battery life. After each measurement, the
monitoring nodes periodically go to sleep before their next
transmission cycle. Let the sensing interval, �Tsense, be
the pause time between consecutive slots, the sleep interval,
�tsleep, be the amount of time for which the LoRa nodes
remain in sleep mode, and �tswitch be the time taken by the
nodes in switching between the active and sleep modes, then
the �Tsense can be represented as:

�Tsense = �tsleep + 2 ·�tswitch. (3)
Sensing interval plays a crucial role for the expert systems

to ensure timely decision making. Where short sensing interval
helps detecting the anomaly at early stages, it also causes
short battery life hence batteries are replenished frequently.
Similarly, long sensing interval lets the monitoring devices
maintain their operation for several years, it may incur delays
in fault detection hence, production efficiency is on the stake.

A. Battery life
Here, it is important to note that the LoRa devices are

assumed to be periodic transmitter where the current draw for
sleep, Isleep, and switching modes, Iswap, are 100 nA and
21.9 mA, respectively [24].

Instead, the average charge, Q, in each state (i.e., tranmit,
sleep, and switch) can be evaluated considering the current
draws in different modes of LoRa monitoring device and the
time duration for which a device remains in a certain state.
For example: Qtx = Itx ·�ttx (4)
where, �ttx is the time duration when a node is in transmit
state and Itx can be seen as the average current drawn in
transmit mode. The total mean charge can be expressed as the
summation of the products for average current draws and the

TABLE IV
ASSUMPTIONS DRAWN FOR BATTERY REPLENISHMENT COST

EVALUATIONS

Cost Parameters Assumed Values

The lifetime (in years) evaluated for Industrial
monitoring devices on 14 dBm power output.

0.10 - 5.14

Current market value per battery (£), Cb. 3.7
The number of batteries installed per node. 1
Variable labor cost per node as per replace-
ment complexity (£), Cr .

3.5 - 10

Cost per node for Disposing-of the batteries
in T period (£), Cdiss..

0.10

time periods when a node remains in a certain state. It could
be represented as:
Qtotal =

X

state

Istate ·�tstate, state 2 {tx, sleep, swap} (5)

Similarly, total mean energy, Etotal, can also be the product
of total average charge calculated in Eq. (5) and voltage
applied (on Semtech’s SX1272) so it can be represented as:

Etotal = Qtotal · VED (6)

The Semtech’s monitoring devices are considered for the
lifetime evaluation assuming the current draw of 44 mA for a
transmit power of 14 dBm assuming the Lithium-Ion battery
[24]. Here, the mean total charge and the energy consumption
refers to average of six different readings for all LoRa SFs
(from 7-12) with 30 repetitions each for a single mote. While
testing the feasibility for a wide range of sensing intervals for
LoRa motes, a fair range of sensing intervals (i.e., from 60s to
300s) is considered to study the impact of varying �Tsense on
the consumption reading of LoRa nodes. Moreover, following
the Eq. (6), the mean energy consumption per day, Eday , and
the mean energy consumed during a whole year can easily be
evaluated. At this stage, it is possible to evaluate the average
battery life, LB , (in years) with the assumption of total battery
capacity, CB , of 1000 mAh (i.e., 11880J @ 3.3V):

LB =
CB
Eday

· 365 (7)

B. Battery replenishment cost
The replenishment cost for the batteries comprises of three

sub-costs; battery purchase, labor, and the dispose-of cost
for the replaced batteries. The first and the third type of costs
can be seen as fixed costs ignoring the inflation factor with
time. While the second cost (i.e., labor) solely depends on the
complexity level of battery replacement and the type of indus-
try where the battery replenishment is needed. For instance,
a monitoring node installed within a machinery structure is
more complex to handle than the one installed on the outer
surface hence, the labor cost would vary accordingly. For
battery replacement cost evaluation, the assumptions drawn
are presented in Table IV.

The first type of cost (i.e., battery purchase cost, Cpurchase)
can be seen as the total capital required for purchasing the
number of batteries needed in a time period as:

Cpurchase = Cb ·Ncycle (8)
Here, Cb is the cost incurred to purchase a single battery and
Ncycle is number of replacement cycles required in a time
period, T , respectively. It is significant to remark that a time
period of 20 years is assumed for the cost evaluation as it is
believed to be the fair lifetime attainable through monitoring
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devices in energy harvesting industrial environment. Likewise,
cumulative labor cost for battery installation, Clabor, is the
variable cost that can be evaluated as:

Clabor = Cr ·Ncycle (9)
where, Cr is the variable labor cost per node for battery
replenishment based upon the complexity of installation. The
dispose-of cost for batteries, Cdiss., is the cost incurred on
disposing-of the replaced batteries, that is not usually higher
but it may still be significant in case of large-scale network
deployment where thousands of nodes need replacement in
a time period. Cdiss. is evaluated considering £1600 as an
average dispose-of cost for every ton of wastage for the expired
batteries as per the recent statistics reported by the UK Gov-
ernment [25]. Therefore, the total battery replacement cost,
Crepl., can be expressed as a summation of the aforementioned
costs in a time period. It could be represented as:
Crepl. =

X

state

Cstate, state 2 {purchase, labor, diss.} (10)

C. Damage penalty
The cost incurred on damaged products manufactured on the

production line due to a possible latency in anomaly detection
can be referred to as the damage penalty. This kind of latency
can also be respected as the damage interval, �Tdamage and
could be expressed as:
�Tdamage = tdetect � toccur ; 0 6 �Tdamage 6 �Tsense

(11)Here, tdetect is the time period after which an anomaly is
detected while toccur is the anomaly occurrence time. Now,
let Pdamage, Rp, and Cu be the damage penalty, the rate
of production at the manufacturing line, and the unit cost of
production assumed for a specific unfinished product, then the
damage penalty can be expressed by the following equation:

Pdamage = �Tdamage ⇥Rp ⇥ Cu (12)
The damage penalty is increased as a function of the

damage interval with an increasing value of �Tsense. It is
important to note that different product categories (such as
very expensive, expensive, medium, and cheap) are considered
for the evaluation of damage penalty in different industrial
scenarios with increasing unit costs, Cu (e.g., 10, 70, 150,
and 500) and decreasing rate of productions, Rp (i.e., 30, 6,
3, and 1)/min, respectively.

IV. ENERGY HARVESTING FOR INDUSTRIAL MONITORING

This study considers an industrial environment with mean
harvesting potential per day for three different harvesting
sources to make the evaluation procedure simple. First, ar-
tificial light bulbs are considered with the potential to harvest
a fair amount of energy during the working hours at 200 lx.
Second, the harvesting potential due to change in temperature
is reported to scavenge a reasonable amount of energy at
two different temperature gradients (i.e., 10 hours @5oC and
5 hours @10oC) employing TG12-2.5-01L with an efficient
thermoelectric effect that is based on Aluminium oxide costing
only £2/kg. The cost of maintaining this thermal gradient
varies depending on the type of element material being used.
Third, the amount of energy harvested due to radio signals
when transmitted with 3W from a distance of 5 m at 9 MHz
based on Powercast P2110 harvester module which features

ultralow power consumption and fairly high efficiency. The
potential referred hereby is exploitable in most industrial
setups and has already been utilized to feed sensors in a variety
of IIoT applications [26], [27].

Surplus harvested energy from the industrial environment
may be useful for achieving two significant milestones. First,
it may serve to reduce the energy requirement of battery-
powered monitoring devices by enabling them to operate on
harvested energy when available. Monitoring devices only go
for a battery-powered operation in the absence of harvest-
ing energy that would eventually prolong the battery life.
Second, as the sensing interval reciprocates damage penalty
in an industrial environment, the newly harvested energy
could be employed to seek the trade-off by shrinking the
sensing interval up to a fair percentage without negotiating
on the lifetime. This flexibility can dramatically improve the
production efficiency of various product lines in industry 4.0
depending upon Cu and Rp of the manufacturing plant.
A. Battery life with energy harvesting

Let A = {e1, e2, ..., em} represents the total amount of
harvested energy supplied to the system through m different
renewable energy sources where; m 2 N, then the amount of
energy available in the energy buffer integrated from all m

sources can be expressed as:

e
buf. =

mX

a=1

ea (13)

Similarly, let S={1, 2, 3,..., n � 1, n} | n 2 R be the
harvesting time divided into n different slots, then the amount
of harvested energy available to the energy buffer at the end
of any ith slot can be represented as:

e
buf.
i = (ebuf.i�1 � e

ins.
i ) + e

har.
i (14)

where, ebuf.i�1 , einsi , and e
har.
i are the energy available in the

buffer until the end of previous slot (i.e., i�1th), the amount of
instantaneous energy consumed during current (i.e., ith) slot,
and the newly harvested energy just added to the system in the
ith slot, respectively. Hence, the amount of energy harvested
over the period of total n slots can be represented realizing
the Eq. 14 as:Z n

0
E

buf.
dn =

Z n�1

0
e
buf.

dn�
Z n

n�1
e
ins.

dn

�
+

Z n

n�1
e
har.

dn

(15)
given that

R n�1
0 e

buf.
dn >

R n
n�1 e

ins.
dn for an uninterrupted

operation which implies that the amount of energy remained
in the buffer during previous slots should always be greater
than the energy required in the next slot. Here, replacing the
value of ebuf. from Eq. (13) in the above expression:
Z n

0
E

buf.
dn =

"
mX

a=1

Z n�1

0
e
buf.
a dn�

mX

a=1

Z n

n�1
e
ins.
a dn

#
+

mX

a=1

Z n

n�1
e
har.
a dn

(16)
If there are n slots in a day, then the average amount of energy
harvested per day, E

h
day , is equal to the amount of energy

added to the system over n time slots as follows:

E
h
day =

Z n

0
E

buf.
dn (17)

Now, substituting the value of
R n
0 E

buf.
dn from Eq. (16), we

can rewrite the above equation as:
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E
h
day =

"
mX

a=1

Z n�1

0
e
buf.
a dn�

mX

a=1

Z n

n�1
e
ins.
a dn

#
+

mX

a=1

Z n

n�1
e
har.
a dn

(18)
Here, the new energy requirement per day, E

0
day , can be

seen as a difference of previous energy demand drawn per
day, Eday , derived by the Eq. (6) and the amount of newly
harvested energy per day, E

h
day , that becomes the part of the

system. It can be expressed as:
E

0
day = Eday � E

h
day (19)

The new battery life of LoRa monitoring nodes is reeval-
uated employing Eq. (7) once the new energy requirement
per day, E

0
day , is established. This is evaluated considering

the same assumptions regarding the capacity of the battery
and applied voltage (1000 mAh @ 3.3 V) as followed in non-
energy harvesting life evaluations. Here, the newly calculated
lifetime would also contribute to reducing the total battery
replacement cost, Crepl., with the damage penalty being the
constant.

B. Sensing interval with energy harvesting
In some industrial environments, the damage penalty causes

far more harm than the frequent battery replacements. Control-
ling Crepl. would not be a feasible option in those cases. To
avoid/control Pdamage, sensing interval can be shortened to
more frequently update the expert systems in the presence of
harvested energy while maintaining the existing battery life.
This provision of interval contraction depends on the actual
amount of harvested energy available at buffer in a particular
instance that can be equal to the relaxation in energy quota
due to the availability of harvested energy at an instant. It
can be seen as the ratio of the average harvested energy per
day, E

h
day , to the energy demand per day, Eday . Thus, the

contracted interval in case of energy harvesting availability,
�T

0
sense, could be represented as:

�T 0
sense = �Tsense �

"
�Tsense ·

E
h
day

Eday

#
(20)

This contracted sensing interval would enable the fair re-
duction of the damage penalty, Pdamage, setting the battery
replacement cost as a constant.

V. RESULTS AND DISCUSSION

This section spans the results of LoRaWAN evaluation
following the proposed model (elaborated in Sections III
and IV) along with a detailed discussion on these results. It
can be divided into two sub-sections; i) standard LoRaWAN
evaluation for industrial monitoring and ii) LoRaWAN in
industrial monitoring with energy harvesting capabilities.

A. LoRaWAN evaluation in industrial monitoring scenarios
1) Energy consumption : Energy consumption can be seen

as the foremost LoRaWAN parameter that serves to evaluate
the battery life in the industrial environment. Figure 1 presents
the average energy consumption of LoRa monitoring node per
day against a range of fair sensing Intervals. The average
energy consumption is the average value of all the energy
consumptions reported while operating on different LoRaWAN
spreading factors. The maximum value of energy consumption
(almost 85 J a day) is reported when the node senses every

minute. It is obvious to note that the average consumption
goes on decreasing as the sensing interval is increased. For
example, the average value of energy consumption per day
is at the minimum when LoRa monitoring nodes sense and
report for an anomaly every five minutes.

2) Battery life with different transmitting powers: After
evaluating the energy consumption, the average battery life
can also be calculated as reported in Figure 2. As LoRa
monitoring devices are capable of transmitting with different
output powers, the results are taken with four different power
configurations ranging from 13 dBm to 20 dBm. The battery
life is significantly increased between 1 min and 5 min

sensing intervals. The maximum battery life (of approximately
8 years) can be observed in case of 13 dBm as the current draw
in this configuration is minimum (28 mA) as compared to the
configuration of 20 dBm when the monitoring nodes undergo
maximum current draw (125 mA) yielding less than 2 years
of battery life [24].

Here, 14 dBm is the maximum transmission power allowed
for an emitter in 1% duty-cycle sub-band under European
legislation for transmission power restrictions. Figure 3 zooms
into the 14 dBm power configuration setting where the mon-
itoring nodes successfully achieve a lifetime of 5 years when
they wake back every 5 min to measure and transmit. The
monitoring nodes with a sensing interval of less than 1 min

are not able to last for even a year. Here, it is interesting to
note that the delay of every minute after the first minute in
the sensing interval yields an almost one-year increment in the
overall battery life of monitoring node in this case.

3) Sensing intervals compatible with LoRaWAN: The num-
ber of messages per day in LoRaWAN depends on the two
different factors. First, the choice of spreading factor for
communication as every SF in LoRaWAN incurs different air
time. Second, the duty-cycle of a particular sub-band available
for communication as there may be multiple sub-bands at each
transmission with different duty-cycle allowance (e.g., 0.1%,
1%, or 10%). Figure 4 gives an overview of the maximum
number of messages that can be transmitted by a monitoring
node deployed across the production line when different active
and sleep periods are selected. The higher the duty-cycle
allocation, the higher the number of messages. The number
of messages reduces significantly moving along the SFs up
to only a few messages per day in case of SF12 and 0.1%
duty-cycle.

Figure 5 shows how different sensing intervals are sup-
ported by different SFs in LoRaWAN in terms of number of
messages compatibility. For example, only SF7 can support
the maximum number of messages with 5 s sensing interval
and monitoring nodes cannot employ other spreading factors
available in LoRaWAN to practically transmit this number
of messages. It is obvious that LoRa monitoring nodes only
support the sensing intervals above 60 s to avoid violating
of duty-cycle compliance. It implies, a fair range for sensing
interval in LoRaWAN can only be in terms of minutes (i.e.,
from 1 min to 5 min). Therefore, the rest of the results assume
this range of sensing intervals.

4) Statistics for battery replacement cost: The higher man-
agement in a smart industry always finds it difficult replacing
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the batteries of monitoring nodes for two reasons; (i) it incurs
a lot of industrial resources in terms of cost and time, (ii) the
entire production process needs to be in the non-operational
state that results in huge financial losses and deteriorates
production efficiency. Figure 6 presents cumulative battery
replacement cost as a function of variation in the installation
labor cost when it is considered between £3.5 to £10 per
replacement as per the complexity of the spot. These costs
are anticipated for a fair range of sensing intervals identified
in Figure 5. It is obvious that cumulative battery replacement
cost keeps increasing when shortening the sensing interval as
the extra number of replacement cycles are required when
the LoRa devices wake back frequently (such as in 1 min

interval). Likewise, variation in the replacement cost does not
affect much for the sensing intervals above 2 min and is
reported just over £100.

5) Statistics for damage penalty: The damage penalty can
be seen as the second type of cost but higher enough to be paid
significant attention by the administration of a smart industry.
The longer the sensing interval, the longer the damage interval
it may cause. The best case can be the lower bound of sensing
interval so that to avoid any delays in detecting the anomalous
situation. Similarly, the worst case may be the longest sensing
interval when the anomaly occurred just after the previous
cycle and the expert system would be able to detect this
anomaly in the next cycle at the earliest after waiting for the
whole sensing interval (e.g., �Tsense = 5 min).

Figure 7 compares four different product lines from industry
4.0 with different unit costs and production rates given in
Section III. Although there is not a noticeable difference
between the damage penalty of all four cases on the lower
part of sensing interval, but as we move on to higher sensing
interval, the difference appears to be significant. The product
with minimum unit cost and higher production rate seems to
be the most ideal case when the penalty does not go beyond
£1500 even with the longest sensing interval (i.e., 5 min). The
damage penalty may go up to £2500 in case of maximum unit
cost and lowest production rate following the same sensing
interval.

6) The overall cost in non-energy harvesting scenarios:
The overall cost includes both types of contradictory costs
evaluated previously; battery replacement cost and damage
penalty. Figure 8 throws light on an overall picture depicting
both types of cost to estimate a clear contribution of each
type of cost. It is significant to note that the results in
all four product categories witnessed the same trend (i.e.,
linear increase in cost) hence, due to the space limitations,
the only instance (i.e, Cu = £10 and Rp = 30/min) was
opted to demonstrate the trend as in Figure 8. To present
an example, the damage penalty is recorded when the unit
cost of production is £10 and the rate of production reaches
30 products per minute. Initially, the proportion of battery
replacement cost is 44% in comparison to the overall cost that
goes down to 3% of the overall cost when the LoRa monitoring
nodes reach 5 min of sensing interval. On the other hand,
the damage penalty is doubled over every minute of sensing
interval starting from £300 (when sensing interval is 1 min)
to £1500 in case of �Tsense= 5 min.
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B. LoRaWAN in industrial monitoring scenarios with energy
harvesting capabilities

Industrial potential for renewable energy comes into play
in two different ways. First, due to the presence of harvested
energy from the industrial environment, LoRa monitoring
nodes can be fed by newly harvested energy minimizing
the battery-powered operation. Second, thanks to the energy
scavenging capabilities present in the industrial environment,
sensing interval appears to be flexible and can be contracted
as per the relaxation in energy quota. This section highlights
the benefits of exploiting the harvesting potential in terms of
extended battery life and flexible sensing interval and provides
insight of how LoRaWAN performs far better in the presence
of harvested energy as compared to the evaluations drawn in
the previous sub-section.

1) Prolonging the battery life: Extended battery life is
the first milestone that can be achieved by taking energy
harvesting into account within the industrial environment. The
damage penalty and the battery replacement cost both are
significant but exhibiting an inverse relationship. It implies
that if we try to control one, the other may go up in the
plain industrial environment. While the potential for harvesting
energy within an industry 4.0 can turn them around.

a) Lifetime of LoRa motes in harvesting industrial envi-
ronment: In the harvesting environment, the extra harvested
energy is able to further prolong the lifetime of monitoring
nodes several times as compared with plain industrial settings
when moving along the sensing intervals, as shown in Figure 9.
The updated lifetime would significantly contribute to reducing
the Crepl., as shown in Figure 10. It can be observed that
even in the case of shortest sensing interval of a minute,
the battery life can be extended many folds when utilizing
harvested energy without changing the sensing interval.

b) Battery replacement cost in harvesting industrial en-
vironment: The battery replacement cost can also be trimmed
by prolonging the lifetime of monitoring nodes in a harvesting
industrial environment. Figure 10 clearly argues about chop-
ping Crepl. as low as just over £13 when �Tsense approaches
over 3 min in comparison to counterpart where it jumps over
£80. Moreover, Crepl. keeps rising as the sensing interval is
reduced. As extra battery replacement cycles are required if the
LoRa motes wake up back and forth (like in 1 min interval).
Whereas Crepl. maximally reaches £50 in energy harvesting
scenario even when the �Tsense = 1 min in comparison with
non-energy harvesting scenario where Crepl. is reported over
£230 for the same interval.

2) Contracting the sensing interval:
a) Interval contraction rate: As mentioned in section

V-B, the flexibility in the sensing interval can be achieved as
an added advantage in addition to prolonging the lifetime of
LoRa devices. Figure 11 demonstrates the interval flexibility
rate (in percentage) at which �Tsense could be reduced in case
of renewable energy. Here, it is worth mentioning that the rate
of interval contraction ranges from 14% to 70% moving from 1
min to 5 min sensing interval based on the amount of newly
harvested energy available. The greater the sensing interval,
the higher the relaxation in the energy quota and consequently,
the higher the percentage of interval flexibility. It implies, a
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5 min preset sensing interval for an IIoT application can be
reduced to as short as 1.5 min whenever needed to reduce
the long damage interval, �Tdamage, and to diminish higher
damage penalty, Pdamage.

b) Damage penalty in harvesting industrial environment:
It is even critical for the smart industries manufacturing costly
products (i.e, higher Cu) where each damaged product causes
a far huge penalty as compared to Crepl.. Therefore, instead
of attaining the longer battery life in the Section V-B1, we
can utilize newly harvested energy to derive a shorter sensing
interval, �Tsense as permissible by the quota of harvested
energy available at hand. Thanks to the interval contraction via
harvested energy, it is possible to restrict the damage penalty
(see Figure 12) to an upper bound of £1040 above the interval
of 85s (120s previously i.e., up to 29% shorter), even when
considering the most expensive product category. The damage
penalty can be confined as low as £520 in the smart industries
with lower Cu.

c) Aggregate costs in harvesting industrial environment:
Figure 13 exhibits the overall cost picture where the aggregate
of both costs (i.e., Pdamage and Crepl.) is compared with non-
energy harvesting scenario in Figure 8. The impact of interval
contraction on both costs clearly argues about the non-linear
increase in Pdamage and Crepl. moving along higher intervals.
With the increase in the contraction rate in the harvesting
environment, the aggregate cost tends to go significantly down
along the higher sensing intervals. The cost reported by most
right bar in Figure 13 on �Tsense = 360s are even lower
than the value reported on �Tsense = 60s which favors the
selection of greater interval.

3) Carbon footprint analysis for LoRa devices: Follow-
ing the ascent in the global warming curve, serious efforts
have been put in place by various segments of the society
to de-carbonize the environment, fairly reducing the carbon
footprints. The smart industries are also well on their way
to green industrial revolution by taking several measures to
reduce carbon footprints from different industrial processes.
The employment of renewable energy sources not only offers
industrial cost savings but also contributes to fairly drop the
extent of the carbon footprint caused by conventional power
generation.

Despite the green energy solutions, it is important to note
that each kind of renewable energy source is associated
with a certain amount of carbon per kWh of generation. By
distributing these carbon emissions on the lifetime of the
system, we can consider an amount of carbon associated
with each type of renewable energy source as 15g/kWh,
20g/kWh, and 30g/kWh for thermoelectric, photoelectric,
and RF energy respectively [28], [29] as compared to the
CO2 emission of fully battery-powered monitoring devices as
150g/kWh [30]. Let CO

batt.
2 , CO

TE
2 , CO

PE
2 , and CO

RF
2 are

the carbon emissions associated with fully battery-powered,
thermoelectric, photoelectric, and RF energy respectively and
Eyear = V ·I ·24·365, then by multiplying the carbon footprint
associated with a renewable energy source to Eyear yields an
annual carbon emission of corresponding energy source.

Similarly, annual carbon emission savings per LoRa node
can also be evaluated by subtracting the annual CO2 emis-
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sion in the presence of energy harvesting sources from the
expected carbon emission in fully battery-powered solution
(i.e., 4.58Kg/kWh). It can be expressed as:
CO

savings
2 = Eyear · (CO

batt.
2 )� (CO

TE
2 +CO

PE
2 +CO

RF
2 )
(21)

Figure 14 presents the annual CO2 emission savings per LoRa
node against the sensing interval. The longer the sensing
interval of LoRa monitoring nodes, the greater the savings
on carbon emissions. It is significant to note that a saving up
to 3.22kg/kWh per LoRa node is possible annually on the
sensing interval of 5 min that accounts for tons of annual
carbon emission savings for a large scale network. Figure
15 demonstrates the annual emission savings in a large scale
LoRa network as a function of the number of end-devices.
It can be concluded that even a medium scale LoRa network
deployment with energy harvesting devices may save several
tons of carbon emissions annually which is quite encouraging
for the industrial administrations to consider energy harvesting
LoRa deployments to actually realize the dream of the green
industrial revolution.

To summarize, the work yields the following important
developments. First, Pdamage is always higher than Crepl. for
greater intervals and the curves belonging to these costs meet
across the sensing interval of 1 min. Second, Crepl. goes down
significantly because of the longer lifetime achieved through
harvested energy without having any impact on �Tsense.
Third, the surplus harvested energy also induces the flexibility
for the interval contraction towards generating recent alerts.
Fourth, the proper exploitation of harvested energy in an
industrial setup cuts down both types of costs (i.e., Pdamage

and Crepl.) to end up with the reduced aggregate cost in
caparison with non-energy harvesting industrial environment.
Fifth, the aggregate cost does not depict a linear increase in
the harvested environment and starts declining when �Tsense
= 240s. It goes down to as minimum as £300, especially when
�Tsense = 360s, even lower than the aggregate cost recorded
on �Tsense = 60s.

VI. CONCLUSION AND FUTURE ACTIVITIES

The work first presented a model to evaluate the energy con-
sumption, estimating the battery life of LoRaWAN monitoring
devices in an industrial environment. It then exploited several
renewable energy resources available in a smart industry to
highlight the impact of harvesting potential on the battery
replacement cost and damage penalty. Furthermore, it studies
the interesting relationship between the aforementioned costs
in industry 4.0 to understand how these costs reciprocate
each other in a smart factory where the damage penalty can,
sometimes, be far huge compared to battery replacement cost.
Moreover, the results first evaluate several critical parameters
of LoRaWAN in a plain industrial environment and then a
comprehensive comparison is provided with energy harvesting
industrial environment. Future work would consider applying
a similar model on 802.11ah, 802.11ax, and 802.11be (EHT).
Moreover, the work can also be extended towards formulating
an optimization problem where maximizing the lifetime is an
objective function with both the costs (i.e., battery replacement
costs and damage penalty) as constraints.
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