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Abstract—Drones are increasingly employed in several appli-
cation domains thanks to their inherent versatility. This work
envisions a scenario in which a swarm of Unmanned Aerial
Vehicles (UAVs) enables the communication between a set of
Sensor Nodes (SNs) and a control center. Considering a general
fading channel model, a Mixed-Integer Non-Linear Program-
ming (MINLP) problem is formulated to maximize the overall
amount of relayed data by jointly optimizing trajectory and
scheduling plan of each drone. Combining convex optimization
and Ant Colony Optimization (ACO) algorithm, a quasi-optimal
solution is obtained. Finally, numerical results demonstrate the
effectiveness of the proposed solution in different parameter
configurations and with respect to a benchmark algorithm.

Index Terms—Internet of Drones, Optimization.

I. INTRODUCTION

Internet of Drones (IoD) is a network architecture which
enables drone-to-drone and drone-to-ground communications.
The huge potential of Unmanned Aerial Vehicles (UAVs) has
been demonstrated in several applications [1], [2] such as
monitoring and surveying activities, moving payloads, and act-
ing as flying Base Stations (BSs). The possibility to organize
UAVs in swarms further eases the accomplishment of complex
tasks. Therefore, cooperative Device-to-Device (D2D) com-
munications play a central role in swarm management. In
such a context, the allocation of network resources becomes a
challenging, yet fundamental, aspect. For instance, [3] studies
a scenario in which cellular networks and relays improve
communications among devices. A network coding aided co-
operative diversity scheme is designed from which the system
data rate expression is derived considering interference among
nodes. A distributed low-complexity algorithm is developed to
solve a coalition formation game, thus jointly optimizing the
allocation of spectrum resources and the relay selection.

Drone swarms are also employed for service provisioning,
thus demanding specific solutions to optimize data processing
and dissemination. To this aim, [4] proposes a holistic mid-
dleware, which employs reinforcement learning to dynamically
balance the broadcast rate and knowledge loss rate. Moreover,
a cooperative dissemination method is designed to fine-tune
storage and energy allocation among drones.

Besides their great potential, drones are constrained devices
which require sophisticated optimization strategies to finely
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tune on-board resources (e.g., energy and memory). From this
point of view, several contributions jointly analyze different
aspects such as energy-efficiency, trajectory design, achievable
data rates, memory occupancy, and scheduling planning. In
this regard, in [5] multiple sources and destinations communi-
cate through a UAV-enabled relaying system. The contribution
aims at maximizing the minimum throughput of all links
and, at the same time, optimizing the UAVs’ trajectories and
transmission power levels. However, the considered channel
model only accounts for Line of Sight (LoS) link. Moreover, it
is assumed that for each source-destination couple a dedicated
drone is deployed, which cannot always be realized.

[6] studies a scenario in which pairs of transceivers need
the support of drones to communicate, thus acting as relays.
The aim is to minimize the total service time, consisting of
communication time and flight duration. Although interesting,
the article assumes that for each pair of nodes the commu-
nication is enabled by only one drone in the whole service
time. Besides, the time spent flying between two consecutive
locations is not employed to serve more nodes.

This letter overtakes limitations highlighted above by en-
visioning a scenario consisting of a variable number of
UAVs and Sensor Nodes (SNs), deployed in a reference area.
Throughout the mission, the same SN can be served by
different drones that continuously relay signals to a control
center, through a BS. Each SN is equipped with a wake-up
receiver which allows (i) to recover from sleep state, thus
saving energy, and (ii) to identify the associated relaying
UAV. Communications reliability has also been considered by
imposing a low Out-of-Service (OoS) probability.

The present contribution aims at maximizing the total
amount of relayed data, while optimizing trajectory and
scheduling plan of each drone of the swarm, considering a
general fading channel model. A Mixed-Integer Non-Linear
Programming (MINLP) problem stems from the derived math-
ematical formulation, which is challenging to solve. Hence,
a quasi-optimal solution is achieved by leveraging Block
Coordinate Descendent (BCD) and Successive Convex Ap-
proximation (SCA) techniques combined with the Ant Colony
Optimization (ACO) algorithm [7]. To the best of authors’
knowledge the combination of these techniques has never been
employed before. Simulation results demonstrate the validity
of the proposed solution in different parameter configurations
and with respect to a benchmark scheme derived from [6].
Moreover, even if convergence cannot be mathematically
proved, it is numerically verified.

The rest of the work is organized as follows: Section II
describes the adopted system model. Sections III and IV
discuss the problem formulation and the proposed solution.
Section V presents the obtained numerical results. Finally,
Section VI concludes the work and draws future research
perspectives.

II. SYSTEM MODEL

The total mission time T is split into N intervals with
duration δt. The swarm is composed by D drones having the
same hardware and capabilities, each one following a trajec-
tory discretized into N points qk,z ∈ R2, k : 1...N, z : 1...D
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and flying at speed vk,z ∈ R2, k : 1...N, z : 1...D, at constant
altitude H . In particular, Qk = {qk,z∀z} and Vk = {vk,z∀z}
refer to the position and velocity matrices of all drones in
the k-th timeslot, respectively. UAVs are in charge of relaying
data from S SNs placed in uj ∈ R2, j : 1...S to a control
center, through a BS located at qb. Without loss of generality,
when the swarm flies over the area of interest, the generic
j-th SN has already generated an amount of sensed data oj .
Throughout their mission, each UAV has to select which SN
to serve, in each timeslot. This scheduling plan is described
through a binary 3D matrix X ∈ {0, 1}N×D×S which is
composed by vectors, i.e, X = {xk,j ∀k, j}, or equivalently by
2D matrices, i.e., X = {Xj ∀j}, that can be obtained through
indexes. It is assumed that each drone has two dedicated
antennas for SN-UAV and UAV-BS links, while SNs have
just one. As a consequence, it is necessary to guarantee that
(i) each SN is served by only one drone in each timeslot k
and (ii) a UAV can communicate just with one SN per time
interval. Moreover, the transmission power of j-th SN and
z-th UAV are defined as P S

j and P D
k,z , respectively. Indeed,

it is assumed that drones adopt a power control mechanism
such that 0 ≤ P D

k,z ≤ P D
MAX, whereas SNs can only transmit

with a fixed power level. Besides, the whole system employs a
modulation scheme such that interference among SNs, UAVs,
and BS is avoided. Let gk,j be the gain of the quasi-static
flat-fading channel between the relaying UAV and a SN j. In
each time interval k, gk,j =

√
µk,jhk,j where µk,j accounts

for pathloss, while hk,j (E(|hk,j |2) = 1) is a random variable
describing a generic channel model coefficient, which remains
unchanged in each k but may vary among timeslots [8].
Therefore, it results that:

µk,j = β0d
−α
k,j , (1)

dk,j =

√
H2 +

∥∥∥xk,jQk
T − uj

∥∥∥2

, (2)

where β0 is the reference channel power gain, α is the pathloss
coefficient, and dk,j is the euclidean distance of the UAV-SN
link. Thanks to Shannon’s equation, the channel capacity is
defined as:

ck,j = Bj log2

(
1 +

P S
jβ0|hk,j |2

σ2
jd
α
k,j

)
, (3)

with σ2
j = N0Bj as the noise power and Bj as the available

SN’s bandwidth. However, ck,j cannot be exactly know in each
instant k since the instantaneous channel coefficient |hk,j | is
stochastic. Therefore, to guarantee that the OoS probability
pk,j remains below or equal to a threshold ζ, it is necessary
to impose the following:

pk,j = P
(
ck,j < rS

k,j

)
= P

|hk,j |2 < σ2
jd
α
k,j(2

rS
k,j
B − 1)

P S
jβ0


= F

σ2
jd
α
k,j(2

rS
k,j
B − 1)

P S
jβ0

 ≤ ζ, ∀ z : 1...D − 1,
j : 1...S,

(4)

being F (·) the Cumulative Distribution Function (CDF) of
|hk,j |2. In order to ensure a reliable transmission, the max-
imum tolerable OoS probability is considered i.e. pk,j =
ζ ∀k, s. Therefore, the maximum achievable data rate is

rS
k,j = Bj log2

(
1 +

P S
jβ0F

−1(ζ)

σ2
jd
α
k,j

)
, (5)

where F−1(·) denotes the inverse CDF. With the same ratio-
nale, it is possible to define the BS-UAV channel model and,
hence, the data rate as:

rD
k,z = Bz log2

(
1 +

P D
k,zβ0F

−1(ζ)

σ2
zd
α
k,z

)
, (6)

with dk,z =
√
H2 +

∥∥qk,z − qb

∥∥2
. For the sake of notation,

define the data rate vectors of sensors as rS
j = {rS

k,j ∀k} and
rS
k = {rS

k,j ∀j}.
It is worth specifying that, in this work, the exchange of

signaling and control data is neglected because assumed to be
less demanding than data transmission in terms of time and
bandwidth [9].

III. PROBLEM FORMULATION

Let be Q = {Qk ∀k} and V = {Vk ∀k}. The main focus
of the present work is to solve the following problem, which
is formulated as follows:

(P1) : max
X,Q,V

S∑
j=1

D∑
z=1

(
XT
j rS
j

)
z

s.t.

xk,zrS
k
T ≤ r̂D

k,z, ∀k : 1...N, z : 1...D, (7)

δt

D∑
z=1

(
XT
j rS
j

)
z
≤ oj , ∀j : 1...S, (8)

qk+1,z = qk,z + δtvk,z, ∀k : 1...(N − 1), (9)

q1,z = qN,z, ∀z : 1...D, (10)

‖vk,z‖ ≤ vMAX, ∀k : 1...N, z : 1...D, (11)
‖vk+1,z − vk,z‖

δt
≤ aMAX, ∀k : 1...(N − 1), z : 1...D,

(12)
v1,z = vN,z = 0, ∀z : 1...D, (13)
‖xk,z‖ = 1, ∀k : 1...N, z : 1...D, (14)
‖xk,j‖ = 1, ∀k : 1...N, j : 1...S. (15)

Problem (P1) aims at maximizing the total amount of trans-
mitted data from SNs to BS through every drone of the swarm
by jointly optimizing their scheduling plan X, trajectory Q and
speed V. In particular, (7) states that SNs’ data rate cannot be
higher than r̂D

k,z i.e. maximum achievable relaying UAVs’ data
rate. Constraint (8) implies that, for each j, transmitted sensing
data must be lower than the acquired. Equations (9) and (10)
describe the 2D movement of UAVs and the correspondence
between start/end point of the trajectory. (13) imposes the
initial/final speed of drones. Constraints (11) and (12) denote
the speed and acceleration upper-bounds, respectively. Finally,
(14) and (15) guarantee that a drone serves just one SN and
viceversa.
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IV. PROPOSED SOLUTION

Problem (P1) is a MINLP problem, which is hard to solve.
To tackle this issue, BCD technique is applied. Therefore,
(P1) is divided into two sub-problems, which are more
tractable, and alternately solved until convergence to a quasi-
optimal solution is achieved.

A. Sub-Problem 1: Trajectory optimization
The first sub-problem aims at optimizing the trajectory-

related parameters Q and V. Therefore, X is initialized or
assumed to be known. The envisioned sub-problem is:

(P2) : max
Q,V

S∑
j=1

D∑
z=1

(
XT
j rS
j

)
z

s.t.

(7)− (13).

Unfortunately, (P2) is a non-convex problem. In fact, the ob-
jective function is neither convex nor concave with respect to
Q, as well as constraints (7) and (8). However, they are convex
whereas

∥∥qk,z − qb

∥∥ and ‖xk,jQk‖
T − uj are considered. To

tackle this issue, SCA technique can be employed in order to
obtain an approximate optimum solution. Indeed, reminding
that first-order Taylor expansion is a global understimator for
convex functions, it is possible to lower-bound r̂D

k,z for each
local point qrk,z as:

r̂D
k,z ≥ r̃D

k,z = Ark,z − Irk,z(
∥∥qk,z − qb

∥∥2 −
∥∥qrk,z − qb

∥∥2
),
(16)

where Γ =
PD

MAXβ0F
−1(ζ)

σ2
d

, Irk,z = Bz log2 e(α/2)Γ

drk,z
α/2(drk,zα/2+Γ)

, and

Ark,z = Bz log2

(
1 + Γ

drk,z
α/2

)
. Clearly, the same rationale

can be used for rS
k,j :

rS
k,j ≥ r̃S

k,j = Ark,j−

Irk,j(‖xk,jQk‖
T − u2

j −
∥∥∥xk,jqrk

T − uj
∥∥∥2

). (17)

However, it can be verified that (17) is still a concave func-
tion, raising an issue with respect to constraints (7) and (8).
Therefore, introducing a set of slack variables W = {wk,j ≥
0,∀k, j}, the sub-problem is reformulated as follows:

(P2.1) : max
Q,V,W

S∑
j=1

D∑
z=1

(
XT
j wj

)
z

s.t.

r̃S
k,j ≥ wk,j , ∀j : 1...S, (18)

xk,zwkT ≤ r̃D
k,z, ∀k : 1...N, z : 1...D, (19)

D∑
z=1

(
XT
j wj

)
z
≤ oj , ∀j : 1...S, (20)

(9)− (13). (21)

Solving problem (P2.1) is equivalent to solve (P2). In fact,
wk,z can always be increased until equality holds in (18). Even
if there exists a constraint in (19) or (20) satisfied for strict
inequality in (18), there will always be xk,z or XT

j such that
(7) and (8) hold. Furthermore, (P2.1) is a standard convex
optimization problem, which can be solved by several tools
such as CVX [10]. Since the objective function is lower-
bounded by a finite value it is guaranteed to converge.

B. Sub-Problem 2: Scheduling Optimization

Given {Q,V}, the scheduling plan X is hereby optimized.
The related problem is stated as follows:

(P3) : max
X

S∑
j=1

D∑
z=1

(
XT
j rS
j

)
z

s.t.

(7), (8), (14), (15).

(P3) is a MINLP problem and due to its combinatorial
nature is challenging to solve. Therefore, the well-know ACO
algorithm is employed, which has been proved to converge to
optimality [7], [11]. (P3) is a large-scale optimization problem
since the number of possible states exponentially grows with
N and D, i.e., (S+1)ND. To face this issue, problem (P3) is
solved for each k and z, where it is put in place a colony of L
ants which can move among the possible S+1 states, described
by a matrix MS×(S+1) = [0 IS ]T. In particular, 0 defines
the No-Transmission (NT) state, while IS , i.e, identity matrix,
expresses the communication with one of the S SNs. As a
consequence, constraint (14) is inherently satisfied. The ant’s
transition among states happens with a probability described
by ek,z = {ek,z,m ∀m : 1...S + 1}, defined as:

ek,z =
τ k,z(1−

∑z−1
i=1

ek,i
D )γ∑S+1

m=1 ek,z,m
, ∀k : 1...N, z : 1...D, (22)

being τ k,z = {τk,z,m ∀m} the vector of S+1 pheromone
trails, 1−

∑z−1
i=1

ek,i
D a specific coefficient which discourages

adoption of states already selected by other components of
the swarm, thus satisfying (15), and γ an exponential penalty
coefficient. Further, fixed j, a stochastic vector κ is updated
with the current cumulative sum of sensing transmitted data:

κj = κj + xk,zrS
kek,z,j+1, ∀k : 1...N, z : 1...D. (23)

Therefore, employing penalty function method, the resultant
expression Kl,k,z , with l : 1...L, that characterizes each ant is:

Kl,k,z = 1− xk,zrS
k
T

rS
MAX + ε︸ ︷︷ ︸
Cost

+η1

xk,zrS
k
T − r̂D

k,z

r̂D
k,z︸ ︷︷ ︸
C1

+η2
κj − oj
oj︸ ︷︷ ︸
C2

.

Cost tends to zero when SN-UAV data rate xk,zrS
k
T ap-

proaches its maximum, i.e., rS
MAX, that cannot be reached.

Indeed, ε > 0 is an arbitrary small value that guarantees
Kl,k,z 6= 0,∀l, k, z. Moreover, C1 and C2 account for the vio-
lation of constraints (7) and (8), whereas η1 and η2 are weight
penalty coefficients. Since all terms are normalized between 0
and 1, it is sufficient that η1 and η2 are greater, by some orders
of magnitude, than max(Cost) + max(C1) + max(C2) = 3
whereas constraints are not satisfied, zero otherwise. Finally,
the pheromone trails τk,z,m are updated at each iteration as
follows:

τk,z,m = τk,z,m +
1∑L

l=1Kl,k,z

, τk,z,m = (1− ρ)τk,z,m,

(24)

with ρ denoting the evaporation rate. The overall time com-
plexity of the proposed algorithm is O(RNDL), where R
denotes the number of iterations. It is worth specifying that the
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conceived ACO-based approach leads to a quasi-optimal solu-
tion, which theoretically does not guarantee the convergence of
the BCD technique. However, it has been numerically verified
that convergence to a stationary point is always achieved in
considered scenarios.

V. NUMERICAL RESULTS

In this Section an assessment of the envisioned solution is
proposed. To this end, four different scenarios are investigated:

1) The first aims at showing the relation between the trajec-
tories and the scheduling plans obtained with different
number of drones, in a simple context.

2) The second analyzes the trajectories and the total relayed
data when mission time varies, in a more complex
situation.

3) The third considers a larger number of UAVs and SNs
with different transmission power levels.

4) The fourth demonstrates the effectiveness of the pro-
posed hybrid approach with respect to an algorithm
derived from [6].

Parameter Value Parameter Value
η1,η2 103 [#] β0 -60 [dB]

R 500 [#] α 2 [#]
L 40 [#] ρ 0.05 [#]
δt 1 [s] H 50 [m]
Kc 10 [dB] vMAX 50 [m/s]
P D

MAX 1 [W] aMAX 5 [m/s2]
ζ 0.01 [#] qb [500 500]T [m]
N0 -174 [dBm/Hz] γ 78.2 [#]

TABLE I: Parameter settings.

The adopted channel model is the Rician fading one, charac-
terized by Rician factor Kc. The CDF F (·) can be modeled as
F (u) = 1−Qm(

√
2Kc,

√
2(Kc + 1)u), where Qm(·, ·) is the

Marcum Q-function [12]. As for the transmission, according to
IEEE P802.16t, bandwidth Bj = 10 kHz ∀j, whereas P S

j = 10
mW ∀j. Further, for each j, the generated sensed data is oj = 2
Mbit. Drones take-off/land from/at [500 0]T. Similarly to [13],
the remaining simulation parameters are summarized in Table
I. All the above are common to the configurations analyzed
hereafter, if not otherwise specified. The first considered
scenario compares a single-drone setup with a 2-drones one. In
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Fig. 1: Trajectories followed by drones and association with
SNs in the first scenario.
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Fig. 2: Data rate in the first scenario.

particular, S = 4 SNs are randomly deployed as shown in Fig.
1 with a fixed mission duration time T = 60 s. As can be seen,
in both configurations, drones approach SNs to maximize the
amount of relayed data. Specifically, in the first setup the UAV
starts serving SN located at [700 100]T and then it proceeds
towards the closer one, i.e., SN #1. This process repeats also
for the node placed at [400 700]T. Similar considerations can
be done for 2-drones configuration. In particular, in Fig. 1b
it is shown that SNs #1 and #2 are exclusively associated to
UAV #1, while SN #3 and SN #4 are cooperatively served by
both drones.

A considerable difference between the two setups lies in
the absence of NT state in Fig. 1a with respect to Fig. 1b. In
fact, due to the lack of time, in T s, the single-drone setup is
only able to partially relay data from the three served nodes,
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Fig. 3: Trajectories and total relayed data in the second
scenario.
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i.e., ∼ 5.33 Mbits, while ignoring the farthest one. On the
opposite, two drones are more than sufficient to fulfil the
mission, thus implying NT timeslots during the mission in
order to satisfy (8). This is further highlighted in Fig. 2b in
which valleys are present differently from Fig. 2a where a
continuous transmission is depicted.

To provide further insights, a second more complex scenario
is investigated hereby. In particular, S = 9 SNs are randomly
deployed in the reference area. In this case, given a fixed
number of drones D = 3, the mission duration is made
varying. In the first setup T = 50 s, while in the second
T = 70 s. In Figs. 3a and 3b, the trajectories adopted by
the UAVs are shown. It clearly emerges that, in the first
configuration, due to the lack of time, the swarm focuses
on relaying signals from the regions closer to the starting
point and with higher SNs density. This is further confirmed
by Fig. 3c, where nodes located at [700 800]T, [800 500]T,
and [200 700]T result to be the most penalized. Indeed, the
total amount of transmitted data is ∼ 13.9 Mbits. On the
opposite, in the second configuration, the swarm has enough
time to successfully complete the mission. Remarkably, in both
scenarios, the proposed approach converges to a quasi-optimal
solution (see Fig. 4) in 4 iterations. Besides, all solutions result
to be feasible with respect to (15) because no overlap has been
registered.
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Fig. 4: Convergence in the first two scenarios.

To demonstrate the applicability to larger simulations, a
swarm of D = 7 drones and a set of S = 30 SNs are con-
sidered in the third scenario. Moreover, to provide parameter
variability with respect to previous scenarios, two values of
sensors’ transmission power is probed, i.e, P S

j = {1, 10} mW,
in a mission of N = 80 time intervals. As can be seen in
Figs. 5a and 5b, the area covered by the swarm is wider when a
higher transmission power is granted and, viceversa, it restricts
with a lower P S

j . This is due to the fact that is more convenient
maximizing the data rate of nodes closer to the starting point
when the transmission power is limited. Moreover, the amount
of relayed data, for each sensor, is less when a lower P S

j is
considered, as highlighted in Figs. 5c and 5d. This is further
confirmed by Fig. 6a that shows the average data rate of the
swarm in the two configurations. Furthermore, as depicted in
Fig. 6b the overall algorithm converges, thus granting a total
amount of relayed data equal to ∼ 34.55 Mbits, for P S

j = 1
mW, and ∼ 48.34 Mbits, for P S

j = 10 mW. Note that, in both
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Fig. 5: Trajectories and total relayed data in the third scenario.

configurations, mission time and nodes’ transmission power
are not sufficient to completely relay the sensing data to the
BS.

Lastly, in the fourth scenario, the proposed solution is
compared with a benchmark approach derived from [6], in
a mission with a set of S = 12 randomly deployed SNs. In
particular, each drone of the swarm relays data of a SN group
by hovering over multiple optimum locations, thus maximizing
the data rate of each UAV-SN-BS link. The locations can
be easily obtained by solving a problem similar to (P2),
which is omitted due to space restrictions. Nonetheless, since
Bd � Bs, these spots correspond, on x-y plane, to the SNs’
positions which minimize the distance, i.e., dk,j = H ∀k, j.
Moreover, each UAV flies at constant speed vMAX among
assigned locations adopting a rectilinear motion, moving from
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Fig. 6: Average data rate of swarms and convergence in the
third scenario.
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Fig. 7: Trajectory plans comparison in the fourth scenario.

the current position to the closer one. Therefore, all nodes
are equally divided among UAVs, as shown in Fig. 7a, where
the related swarm path plan is depicted. Besides, trajectories
obtained by the proposed hybrid approach are illustrated in
Fig. 7b. It results that, the trajectory plan derived from the
hybrid proposed approach allows drones to accomplish the
mission by cooperatively relaying all the data in 70 s. On
the contrary, when the benchmark algorithm is employed,
the swarm completes the mission in 81 s. This leads to a a
performance gain of ∼ 14%. It is worth specifying that this
result is a lower-bound in terms of performance: drones in
benchmark approach fly at speed vMAX without taking into
consideration the acceleration limitations, as in the hybrid
approach.

VI. CONCLUSIONS

This work presents an optimization problem aiming at
maximizing the total amount of relayed data through a swarm
of UAVs, generated by SNs. The solution is conceived as
a hybrid approach combining convex optimization and ACO
algorithm. The simulation campaign demonstrates its validity
through different parameter configurations and by comparing
it with a benchmark algorithm. Future research perspectives
include energy consumption and memory models. Further, a
deeper study regarding the choice of penalty weights, which
affect the solution quality, will be conducted. Besides, a formal
mathematical convergence proof for the proposed hybrid ap-
proach will be investigated. Finally, more sophisticated criteria
will be applied for scheduling plan design.
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