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Abstract—Nowadays, amateur broadcasters can massively gen-
erate video contents and stream them across the Internet. For
this reason, crowdsourced livecast services (CLS) are attracting
millions of users around the world. To provide a smooth and high-
quality playback experience to viewers with diversified device
configurations in dynamic network conditions, CLS providers
have to find a way to deploy cost-effective transcoding opera-
tions by distributing the computation-intensive workload among
Cloud, Edge, and Crowd. In addition, it is necessary to control
transcoded streams from million broadcasters to worldwide
viewers. To address these challenges, we propose a novel stochas-
tic approach that jointly optimizes the usage of transmission
resources (e.g., bandwidth), and transcoding resources (e.g., CPU)
in CLS systems that leverage the cooperation of Cloud, Edge, and
Crowd technologies. In particular, we first design an augmented
queue structure that can jointly capture the dynamic features of
data transmission and online transcoding, based on the virtual
queue technology. Then, we formulate a joint resource allocation
problem, using stochastic optimization arguments, and devise an
Accelerated Gradient Optimization (AGO) algorithm to solve the
optimization problem in a scalable way. Moreover, we provide
four main theoretical results that characterize the algorithm’s
steady-state queue-length, optimality, and fast-convergence. By
conducting both numerical simulations and system-level evalua-
tions based on our prototype, we demonstrate that our solution
provides lower system costs and higher QoE performance against
state-of-the-art solutions.

Index Terms—Video transcoding, Transmission, Crowdsourced
livecast services, Cloud computing, Edge computing, Crowd.
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THanks to the impressive capacity magnification that
wireless communication technologies are experiencing

nowadays, we are currently assisting to the explosion of
Crowdsourced Livecast Services (CLS) such as Twitch [1]
and Youtube Live [2]. According to the latest TwitchTracker
[3] stats, Twitch has almost 5.8 million average monthly
broadcasters, over 511 billion minutes watched, and near
1.94 million average concurrent viewers in the first half of
2020. Meanwhile, the latest YouTube’s Statistics revealed that
Coachella’s first weekend earned over 82 million live views [4]
on Youtube Live. The increasing popularity of CLS also brings
new challenges to current CLS systems. CLS platforms need
to continuously deliver a massive amount of contents from
broadcasters to viewers. In the process of delivery, the stream
also needs to be transcoded into multi-quality representations
to match different configurations of networks and end devices.
As a consequence, the deployment of CLS requires very
demanding computing capabilities and bandwidth needs.

Many computing paradigms are considered to address those
challenges [5]–[22]. For example, Dong et al. in [11] pro-
pose a cloud-based architecture that utilizes multiple Content
Delivery Networks (CDN) to distribute and transcode video
content for CLS cooperatively. However, the multiple version-
s of transcoded streams overwhelm the backbone network.
Furthermore, since the Cloud is geographically remote from
the viewers, CLS vulnerable to high delivering latency and
congestion fluctuations in wide area networks which affects the
smoothness video playback and the interactive experience [15].
To overcome these drawbacks, edge servers are considered as
an alternative because they are able to move the workload
closer to viewers [15]–[17]. Ma et al. in [15] present an edge-
assisted mobile personal livecast system which can reduce the
broadcast latency and alleviate the backbone network traffic by
collaboratively leveraging Cloud and Edge servers. However,
renting dedicated Cloud or Edge servers to transcode CLS
video online requires huge volumes of concurrent computa-
tional resources, which is extremely expensive [19].

The viewers devices with increased capabilities and intelli-
gence are becoming an alternative resource to facilitate the de-
velopment of CLS [23], [24]. Many researchers are proposing
to leverage the abundant and cheap computing resources avail-
able at viewers’ devices [19]–[22]. Authors in [19] propose a
fog-assisted computing framework in which the global system
is divided into multiple regions. In each region, a regional data
center is responsible for offloading the transcoding workload
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to viewers and for recollecting the processed contents. Despite
the economic advantages of Crowd compared to Cloud and
Edge-based schemes, each regional data center needs to assign
and recollect live video content to viewers, which exacer-
bate the bandwidth consumption and increase the time-shift
between different viewers. Furthermore, most of the current
solutions are based on deterministic optimization, which may
be infeasible in scenarios characterized by time-varying user
demand and unpredictable network conditions.

In addition, once contents have been transcoded, they need
to be delivered to viewers. This is another challenging task
that is being approached in literatures [25]–[29]. For instance,
Wang et al. in [25] propose a distributed multipath trans-
mission framework to optimally control the data rate of live
streaming with stochastic optimization technology. However,
pure transmission solutions cannot be directly applied to CLS.
As we know, CLS contents may need to be transcoded by
one or more nodes during the delivery from broadcasters to
viewers. Merely considering the path quality may flood a large
amount of data into only a few transcoding nodes experiencing
good network conditions and lead to the overload of those
nodes or, even worse, to the collapse of the CLS system. To
fill the gap, authors in [26] propose an online joint transcoding
and delivery approach to achieve high service quality and low
resource overhead for adaptive video streaming. However, the
authors formulate the problem as a conventional 0/1 knap-
sack problem, which is NP-hard, and design a greedy-based
heuristic algorithm. Consequently, the solution is suboptimal.
Besides, this work also lacks the analysis of performance
guarantee for the heuristic algorithm. Therefore, an optimal
and theory-guaranteed joint resource optimization approach
for CLS systems is still needed. For clarity, we summarize
two main challenges in the design of CLS systems:

• Cooperative Transcoding: The Cloud provides stable and
efficient computing resources, but inflates latencies. On
the other hand, the edge offers low latency but expen-
sive transcoding service, whereas the Crowd supplies
cheap but unstable computing. These three computing
paradigms have unique advantages and drawbacks. How
to integrate their strengths while remedying their short-
comings is crucial to achieve cost-effective services.

• Data Transmission: In a CLS, video contents may be
transcoded by one or more nodes during the delivery
from broadcasters to viewers. Overlooking the workload
of the transcoding nodes may result in the overload of
few nodes, while most other nodes are idle in CLS
systems. With few nodes operating, the systems will
produce transcoding congestion and high latency while
further impairing CLS performance seriously. Moreover,
since resource provision and network conditions are high-
ly dynamic and unpredictable, designing a rate control
algorithm which can timely adapt the variation of network
conditions to provide high-quality CLS is non-trivial.

To address these challenges, we propose a novel stochas-
tic mechanism for data transmission and online transcoding
that jointly optimizes computing and bandwidth resource uti-
lization with quantifiable delay performance. An augmented

queue structure is designed for Cloud-Edge-Crowd (CEC)
cooperation-based CLS systems to capture the stochastic
feature of transmission and transcoding by constructing a
model grounded on dual-queues model. The first virtual queue
represents the workload on transcoding nodes, and the second
one represents the number of packets waiting to be sent. Then,
we formulate the resource allocation problem of transmission
and transcoding as a stochastic optimization problem. We
devise a distributed Accelerated Gradient Optimization (AGO)
algorithm to minimize the long-term cost of both transcoding
and transmission with O

(√
V
)

steady-state queue-length
performance. Since the queuing delay for transcoding and
delivery is the main latency of the CLS content access, re-
ducing the queue-length can improve the service performance
effectively. To the best of our knowledge, we are the first
to provide a theoretical analysis for understanding the cost-
delay trade-off of dynamic CLS systems. In doing so, we
provide analytical answers to assess the workload at each
node, the data transmission rate for viewers with different
device configurations, and the delay that can be incurred at
different nodes and links. The main contributions of this paper
are summarized as follows:

• We propose a novel augmented queue-based structure to
consider data transmission and online transcoding prob-
lems jointly. The augmented queue model mainly consists
of two virtual queues. We show how the two virtual
queues catch the stochastic features of transcoding and
flow control problems. Using this model, we formulate
the joint resource allocation problem as a stochastic
optimization problem.

• To solve the stochastic optimization problem, we pro-
pose Accelerated Gradient Optimization algorithm and
investigate the feasibility and the algorithm complexity
of its practical implementation. We further provide the
theoretical analysis of queue-length bounds, optimality,
and convergence performance for our algorithm. To best
of our knowledge, our work is the first to provide a
theoretical basis for CEC cooperation-based CLS systems
in stochastic conditions.

• We evaluate our algorithm through numerical simulations
and experiments. Based on real datasets, we carry out a
series of track-driven simulations with different parame-
ters. The numerical results are in close agreement with
the theoretical predictions. Further, we build a prototype
to compare the performance of our approach with state-
of-art solutions [15], [22]. The results show that our
algorithm outperforms the current solutions in terms of
resource cost and latency.

The related works are reviewed in Section II. Section III
presents the framework and system model. Section IV formu-
lates the joint resource allocation problem for transcoding and
transmission. Section V introduces the design and implemen-
tation of AGO. Section VI gives four main theoretical results
of our algorithm. We evaluate our design through trace-driven
simulations and prototype test in section VII and present the
conclusion in Section VIII.
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II. RELATED WORKS

So far, many researches consider transcoding or transmis-
sion for livecast, but few studies afford joint transcoding
and transmission optimization solution that makes the CLS
always face the challenge of the balance between improving
CLS viewing experience and saving system overhead. Some
researchers intend to improve the user viewing experience
of CLS by using cloud computing to online transcode live
video for bitrate adaptive [6], [8], [11]. Such as, J. Jiang et
al. [6] proposed a scalable and accurate prediction system by
leveraging CDN based Critical Feature Analytics to provide
near real-time QoE predictions for live streaming services,
thereby reducing 32% buffering time and improving 12%
video bitrate. R. Aparicio-Pardo et al. [8] provide an on-
line video transcoding solution to maximize the QoE with
Cloud computing infrastructure. The authors formulate the
problem as an integer linear program problem and propose
a heuristic algorithm with sub-optimal performance. However,
considering only the QoE improving is not enough, without
effective allocation of massive online transcoding tasks, the
CLS system may suffer a large transcoding load and crash
[9]. Therefore, literatures [5], [7], [9], [10], [12]–[14], [17]
begin to focus on the transcoding allocation problem in cloud
computing. R. Zhang et al. [18] provide a Deep Reinforcement
Learning (DRL) based scheduling algorithm that by assigning
viewers among multiple CDN to optimize resource allocation
and improve the QoE. Y. Zheng et al. [9] consider minimiz-
ing the operational cost of crowdsourced live game video
streaming and propose a Lyapunov-based solution to online
optimize video transcoding with Cloud computing. Moreover,
the authors design an algorithm that can provide good-enough
QoE performance for viewers. Besides, C. Dong et al. [12]
put forward an online algorithm that can minimize system
overhead while ensuring QoE for large CLS providers. A
robust dynamic priority-based resource provisioning scheme is
proposed in [14] to lower transcoding resource consumption
while meeting the delay requirements of CLS with Cloud. F.
Chen et al. [5] propose a cost-effective cloud solution that
provides a fine-grained resource allocation while optimizing
the delivery path from broadcasters, through streaming servers,
to viewers to facilitate the geo-distributed crowdsourced live
streaming. Besides, F. Wang et al. [7] present a generic
framework by leveraging elastic Cloud to accommodate the
time-varying resources demand of global viewers. Although
these methods can effectively reduce transcoding overhead,
passively ensuring service performance can not meet high-
quality CLS requirements of viewers.

To further improve services performance, literatures [15],
[16] propose to employ edge computing for assistance. H.
Pang et al. in [16] conduct a particular analysis of viewer
interaction patterns and propose a novel framework called
PIECE to optimizes personalized QoE. Moreover, it provides,
together with a novel Deep Neural Network (DNN) based
algorithm, high-efficiency transcoding, and good video deliv-
ery over Cloud-Edge infrastructure. But computing resources
of edge servers are expensive and limited, this method is
powerless in the face of massive live video data [19]. Many

researches [19]–[22] suggest leveraging crowd resources to
further save the transcoding cost for the CLS system. Y. Zhu
et al. in [20] propose a Cloud-Crowd collaborative solution
by leveraging end viewers’ devices to assist CLS transcoding.
Compared with the cloud-based approach, this solution can
save 93% of the transcoding overhead. Furthermore, Y. Zhu
et al. extend the Cloud-Crowd solution to the large-scale CLS
system [22]. The authors propose to use ever-grow personal
computing devices to cope with the large-scale live video
transcoding. Although this Cloud-Crowd solution can save
the computation cost of Cloud, the introduction of the Crowd
will increase the scale of the CLS system, making live video
delivery more complex and challenging.

To provide efficient delivery, live data transmission has been
studied extensively in recent years [25]–[29]. For instance, F.
Chiariotti et al. in [27] indicate that consistently reliable data
delivery is essential to provide high-quality live video services.
The authors propose a novel latency control protocol for multi-
path data delivery, which can provide stable transmission with
high throughput and bounded delay. In addition, a novel DRL
based approach is proposed in [28] to enhance the live video
quality and reduce the end-to-end delay by jointly adjusting the
video bitrate and target buffer size. Although these approaches
can enhance the quality of the services by improving the
transmission performance, they cannot be directly employed
in CLS since they ignore the online transcoding. To provide
high-quality cost-effective CLS, it is necessary to provide
a solution to jointly consider transcoding and transmission.
Literature [16] attempts to solve the joint optimization problem
by finding the transcoding delivery path for live video flow.
Authors in [26] formulate joint online transcoding and delivery
problem as an NP-hard knapsack problem and design a heuris-
tic algorithm to solve it. The above approaches have partly
improved system overhead reduction and service performance,
but formulating the joint problem as non-convex optimization
can not guarantee the optimality of their solutions. Compared
with [16], [26], our work has several significant differences
and advantages. First, we build a novel augmented queue
model by converting transcoding task allocation to the virtual
queue control problem (The longer the task queue, the more
transcoding workloads). Secondly, we formulate the joint prob-
lem as a stochastic convex optimization based on the model.
Finally, we design an accelerated gradient descent based
optimization algorithm which can achieve lower queue-length
bound O

(√
V
)

, optimality O(1/V ), and good convergence.

III. FRAMEWORK AND SYSTEM MODEL

In this section, we illustrate the framework of CEC
Cooperation-based CLS system. We give the network model
present the augmented queue structure with dual virtual queues
to model. We use lowercase italic symbols to indicate scalars.
Vectors and Sets are written in lowercase italics bold type
and uppercase italics typo, respectively. Besides, matrices are
denoted using uppercase, italics and bold front. We let ∆
denotes the differential operator while | · | and ‖ · ‖ denote
the 1 and 2-norm, respectively. Table I lists the mathematical
notations used in this paper.
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TABLE I
MATHEMATICAL NOTATIONS

Symbol Description
N,m number of live channels and video resolution
F , f Set of the live channel and a specific one
B, b Set of video resolution and a specific one

G (V,L) Undirected graph of the topology for CLS system
V,L Set of nodes and links for the CLS system

P,S, C Broadcasters, Cloud and Edge, the viewers
cu[t] Available transcoding capability of node u at time t
cl[t] Available bandwidth of link l at time t
On Order set of video resolution for n-th channel

G′ (V ′,L′) Directed graph of transcoding process
V ′,L′ Set of virtual nodes and links for the CLS system
wl Weight of bandwidth cost per bit at link l
wh Weight of transcoding cost per bit from b0 to bh
T Set of the time-slotted system

p+[t] Vector of input rate for transcoding flow at t
p−[t] Vector of output rate for transcoding flow at t
i+[t] Vector of input rate for transmission flow at t
i−[t] Vector of output rate for transmission flow at t
m+[t] Vector of generating rate for transcoding task at t
m−[t] Vector of processing rate for transcoding task at t
s+[t] Vector of enqueue rate for transmission flow at t
s−[t] Vector of send out rate for transmission flow at t
q[t] Vector of transcoding task queue at t
q′[t] Vector of transmission data queue at t
Fl(u) Set of flows sending by node u through link l
Fu(u) Set of flows transcoding by node u
wi Weight of transcoding cost per bit for flow i
wi,u Weight of resource cost per bit for flow i on node u
β Weight factor between resource cost and the utility

U(x̄i),U(x̄) Utility function of the flow i and Objective function
ψu[t], ψl[t] Nesterov’s weight for node u and link l at time t

P , Pv Vector of alternative paths, selected path by node v
ε Distance between the rate x and the system capacity

A. CEC Cooperation-based CLS System

We define that the live streaming library consists of N
different channels which are denoted by F = {f1, f2, ..., fN}
where each channel f contains m versions of different reso-
lutions denoted by B = {b1, b2, ..., bm}. We define the bitrate
of highest resolution video as b1 and the lowest as bm, so we
have b1 > b2 > ... > bm. Besides, we assume that the viewers
can leverage their additional or idle resources to assist to the
video transcoding and transmission for CLS.

As shown in the Fig. 1, we consider a CEC Cooperation-
based CLS system, in which multiple types of nodes are
involved, including broadcasters, Cloud Servers (CSs), Edge
Servers (ESs) and viewers with diversified terminal devices
(TDs i.e., personal computer, laptop). We define three roles for
the nodes in this system: Requester, the viewer who issues a
request for a specific channel f ; Transcoders, an intermediate
node (CSs, ESs or viewers) which receives the video from
broadcaster or other Transcoders and converts them into the
resolution asked by the Requester. Provider, the broadcaster
who continuously generates and uploads the original data
to the CLS and the intermediate nodes which contain the
demand video contents or higher resolution version. As Fig.
1 shows, in CLS, a flow i starting from the Provider may go
through multiple Transcoders and then reach the Requester.
How to select the Providers and the Transcoders for different
Requesters determines the performance of content delivery
and transcoding. In order to achieve a highly efficient se-
lection, the ESs maintain a candidate routing table which
contains some alternative route paths to all Providers and the
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Fig. 1. Diagram of CEC cooperation-based CLS system

workload information of intermediate Transcoders on each
path. These routes can be obtained by routing algorithms
such as [30] or [31]. Since valid routing strategies already
exist, this manuscript omits a discussion on routing issues
and assumes that Requesters can directly obtain the candidate
routing table from nearby ESs. The alternative Transcoders
can be CSs, its ESs, and viewers which are in possess of
the asked video or higher bitrate version. Due to topological
proximity, once a Requester generates a request for channel
f , the request will first be captured by the nearby ESs. Then,
the Requester will select a transmission path based on the
candidate routing table provided by the ESs and establish a
delivery path with the Provider. If the Provider only have the
higher resolution video, the Transcoders on the selected path
will collaboratively transcode the video content provided by
the Provider to deliver the resolution asked by the Requester.
Otherwise, the Transcoders only need to deliver the content to
the Requester. As Fig. 1 shows, if Requester j asks the same
channel as Requester i, then Requester j might access the
demand content from an intermediate node ESs 2, which is one
of the Transcoders of flow i. Besides, to face mobile scenarios,
the ESs need to update the candidate routing table periodically
for the Requesters. The unpredictable computing provision and
network condition of the intermediate Transcoders may further
affect the content access of the Requester. Thus, the control of
the data transmission rate from Provider to Requesters strongly
impacts the quality of service provided by the CLS system.
For this purpose, the Provider will determine the optimal
transmission rate based on the path condition and the workload
of all the Transcoders in the delivery path.

B. Network Model

We consider the CLS system as an undirected graph G(V,L)
where V and L are the sets of nodes and links. Let P,S, C ⊂ V
denote the broadcasters, the Cloud or Edge servers, and the
viewers, respectively. We assume that node u ∈ V has
transcoding capability, and the available computing resource
for CLS at time t is denoted by a time-varying variable cu[t].
That is, the actual transcoding times for real-time video like
CLS are often stochastically distributed due to the available
resource of node u are uncontrolled [32]. Thus, we have
cu[t] ∈ [0, cmaxu ] where cmaxu is the maximum available
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computing resources. We consider l = (u, v) ∈ L, u, v ∈ V as
a network link from node u to node v. When live video stream-
ing goes through link l, it consumes wl transmission resources
(e.g., bandwidth) per bit. Since the live video streaming are
subject to various cross-traffic from other applications, we
denote the available bandwidth capacity of link l for CLS as
random variable cl[t] ∈ [0, cmaxl ] where cmaxl is the maximum
available bandwidth. According to [33], the higher quality
video streaming can be transcoded to lower quality versions,
but not vice versa. Therefore, the video transcoding model
can be described by a state transition of different versions.
As mentioned above, the order set of version for the n-
th channel is denoted by On = {b0, b1, ..., bm} which can
be represented as a directed graph G′(V ′,L′). Each vertex
v′h ∈ V ′ corresponds to a version of video bitrate bh and each
edge, such as l′ = (0, h) ∈ L′ represents the transcoding
process from version b0 to bh. The required computation
resources (e.g., CPU usage time) per bit for transcoding from
b0 to bh is denoted by wh unit where h ∈ {1, 2, ...,m}.

C. Augmented Queue Model

We consider a time-slotted system where time is denoted
by T = {0, 1, 2, ...}. In order to comprehensively consider
transcoding and transmission effects, we augment each node
u ∈ V with the dual-queues structure shown as Fig. 2. The
augmented queue model mainly includes two parts: Transmis-
sion Part and Transcoding Part. Once node u receives the
content from other nodes, the received contents will first enter
the Transmission Part from the scheduler’s INPUT and then
be split into two portions. One will enter the Transcoding Part
for transcoding, and the other will wait to be sent in the Send
Queue. For ease of understanding, we consider the flow rate
vector of contents requiring transcoding at time t as p+[t] =[
p+

1 [t] , p+
2 [t] , ..., p+

i [t] , ...
]

and the vector of contents wait-
ing to be sent at time t as i+[t] =

[
i+1 [t] , i+2 [t] , ..., i+i [t] , ...

]
where {1, 2, ..., i, ...} represents flow index for different view-
ers i. Once the content enters the Transcoding Part, it will wait
to be processed in the Pending Queue. The TASK INPUT (TI)
will estimate usage time of CPU processing for different flow
p+
i [t] according to its transcoding requirements (e.g., transcode

to 720P). For convenience, we define the processing time unit
of per bit for flow i as wi, so we have the task generating
rate of flow i is equal to m+

i [t] = wip
+
i [t]. To analyze the

transcoding process, we construct the Task Queue q′[t] to
represent the process of content in the Pending Queue. We
denote m−[t] as processing rate and have the Task Queue
evolution as follow:

q′[t+ 1] =
{
q′[t]−m−[t] +m+[t]

}+
(1)

When the content is transcoded, the transcoded data leaves
the Transcoding Part and returns to the Transmission Part.
We define the leave rate as p−[t], and the transcoded content
will merge into the Send Queue q[t] with flows i+[t] .
Thus, the enqueue rate of Send Queue can be represented
as s+[t] = i+[t] + p−[t]. We define the send out rate as
s−[t] =

[
s−1 [t], s−2 [t], ..., s−j [t], ...

]
where s−j [t] denotes the

send out rate of one-hop downstream receiver j. Since s−j [t]

may contain multiple viewers’ flows, it can be rewritten as
s−j [t] =

∑
i∈V(j) s

−
i [t] where V(j) represents the set of flows

send to receiver j and {1, 2, .., i, ...} is flow index. The Send
Queue update can be expressed as:

q[t+ 1] =
{
q[t]− s−[t] + s+[t]

}+
(2)

where {·}+ , max{0, ·}. In addition, according to [34] [35],
we introduce the definitions of mean rate stability and strong
stability as follows.

Definition 1. (Mean Rate Stability) For any queue q[t] over
discrete time t ∈ {0, 1, 2, ...} if:

lim sup
t→∞

E {‖q[t]‖} <∞ (3)

The queue-length is finite in steady-state and q[t] is mean rate
stable.

Definition 2. (Strong Stability) For any discrete queue q[t],
that satisfies the following equation

lim sup
t→∞

1

t

t−1∑
τ=0

E {‖q[τ ]‖} <∞ (4)

We say that the q[t] is strongly stable.

IV. PROBLEM FORMULATION

Our goal is to find the lowest resource consumption solution
of cooperation transcoding and flow control for the CLS
system while satisfying the viewers’ service demands. Firstly,
we consider the transmission cost. As previously mentioned,
s−j [t] refers to the send rate of flow j at time t. We have the
average send rate of flow j :

s̄j , lim
t→∞

1

T

T−1∑
t=0

∑
i∈V(j)

s−i [t] =
∑
i∈V(j)

s̄i[t] (5)

Where s̄i[t] is the average send rate of flow i. We can write the
transmission resource cost of link l as

∑
j∈Fl(u) wls̄j where

Fl(u) represents the set of flows sending by node u through
link l, and wl is transmission cost per bit of link l. Besides,
the average transcoding rate for flow i ∈ {1, 2, ..., n} can be
expressed as

m̄i , lim
t→∞

1

T

T−1∑
t=0

m−i [t] (6)

Similarly, the transcoding overhead for node u ∈ V can be ex-
pressed as

∑
i∈Fu(u) wim̄i, where Fu(u) represents the set of

flows transcoding by node u, and wi is the required transcod-
ing resources per bit for flow i. Because s̄ and m̄ have similar
formalization, we use x̄ to represent {s̄, m̄} for convenience.
Therefore, the consumption of node u ∈ V can be expressed
as
∑
i∈F(u) wi,ux̄i, where F(u) = Fl(u) ∪ Fu(u), and wi,u

represents the resource overhead (including of transcoding cost
wi and transmission cost wl) per bit for flow i on node u.
The total resource cost is the sum of overall transcoding and
transmission resource consumption. We formulate the joint
resource allocation problem of data transmission and online
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Fig. 2. Diagram of augmented queue structure for node u

transcoding as the following stochastic optimization problem.

∀t : U(x̄) = Min

∑
u∈V

∑
i∈F(u)

wi,ux̄i − β
∑
i∈F

U(x̄i)

 (7a)

s. t.
∑

i∈Fu(u)

wi,ux̄i[t] ≤ cu[t], ∀u ∈ V (7b)

wl
∑

j∈Fl(u)

∑
i∈V(j)

x̄i[t] ≤ cl[t], ∀l ∈ L (7c)

x̄i[t] ∈ [0, xmax], ∀i ∈ C (7d)

where β is the weight factor, U(x̄i) the utility function of
flow i.

∑
u∈V

∑
i∈F(u) wi,ux̄i represents the overall consump-

tion of the CLS system. The objective function U(x̄) (7a)
is to minimize the sum of all nodes consumption and the
negative overall utility. Due to the limited transcoding and
link bandwidth resource, the constraint (7b) and (7c) indicate
that the transcoding and transmission rate cannot exceed the
node and link capacity. The above restrictions also establish
the queue stability constraint of node u, which means there
is a balance between enqueue and dequeue in the long-time
term, and the pending time in the queue is bounded. The (7b)
and (7c) can be rewritten as lim supt→∞ E {‖qu[t]‖} < ∞
and lim supt→∞ E {‖q′u[t]‖} < ∞, respectively. Therefore,
reducing the steady-state queue-length can effectively decrease
the access delay of CLS content. Besides, (7d) is the boundary
constraints of data transmission rate for different flow i, where
xmax represents the maximum data rate.

V. ALGORITHM DESIGN

In this section, we first give a brief introduction of Nes-
terov’s accelerated gradient descent method. Afterwards, to

solve the problem (7a), we design an Accelerated Gradient
algorithm, which iteratively optimizes the resource allocation
of transmission and online transcoding in a distributed manner.

A. The Nesterov’s AGD Method

The Nesterov’s AGD method [36] is a powerful tool
which aims at solving unconstrained minimization problem
minx∈Rn f(x), where f(·) is a convex function and twice
continuously differentiable. However, our problem (7) is con-
strained and the convexity of objective function is depend
on U(·). To apply the powerful method, we first need to
reformulate the problem to unconstrained form, and then set a
appropriate function U(·) since the overall network consump-
tion is linearly dependent on x̄. Fortunately, several forms such
as utility function in [37] can make the objective function
satisfy the convex and twice continuously differentiable. We
defined the Hessian matrix of f(·) about x as H(x) and the
Lipschitz constant of the f ′(·) as b where f ′(·) is the gradient
of f(·). Besides, we define two constants a and b that satisfy
aI 6H(x) 6 bI , ∀x where 0 6 a 6 b and I is the identity
matrix. From [38] Chapter 2.2.9 (p.80), the author gives the
constant step scheme II of the Nesterov’s AGD Method:

Initialization: Choose an n-dimensional vector α[0] ∈ Rn
and γ[0] ∈ (0, 1). Define an auxiliary variable θ[0] and set
θ[0] = α[0], ξ = a

b . Step of the t-th Iteration (t > 0):
1) Compute f(θ[t]) and f ′(θ[t]), and set:

α[t+ 1] = θ[t]− f ′(θ[t])

b
. (8)

2) Based on the quadratic equation γ2[t+1] = γ2[t]−γ[t+
1]γ2[t] + ξγ[t + 1], get γ[t + 1] ∈ (0, 1), and calculate
the value of η[t]:

η[t] =
γ[t](1− γ[t])

γ2[t] + γ[t+ 1]
(9)

3) Compute θ[t+ 1] by:

θ[t+ 1] = α[t+ 1] + η[t] (α[t+ 1]−α[t]) (10)

According to [38], it shows that for the strongly con-
vex objective function, the Nesterov’s AGD method achieves[
O(1/V ),O

(√
V
)]

utility-delay trade-off which is better
than [O(1/V ),O(V )] performance of traditional queue-based
solution [34], Based on that, we consider the stochastic op-
timization problem (7) which aims at minimizing the overall
resource consumption under the queue stability constraints and
capacity limitations of node and link. The objective function
(7a) is convex and twice continuously differentiable. However,
the Nesterov’s AGD method is only suitable for optimization
of unconstrained problems. Therefore, we need to reshape the
form of (7). We defined ψ as the auxiliary weight and build
the min-drift-minus-penalty expression of (7) shown as follow:

min

V U(x̄)− ψu

 ∑
i∈Fu(u)

wix̄i − cu[t]


−ψl

wl ∑
j∈Fl(u)

x̄j − cl[t]


(11)
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where V is a nonnegative penalty parameter. It’s noted that
the min-drift-minus-penalty is associate with x̄ and ψ. Then
we can represent the function (11) as min g(x̄,ψ). Thus,
according to the equation (8), we can get the first iteration
step of the Nesterov’s AGD method for our problem g(x̄,ψ)
as follow:

α[t+ 1] = ψ[t]− g′(ψ[t])

b
(12)

where α[t + 1] is auxiliary variable, g′(ψ) is the first-order
derivative of g with respect to ψ and b is the Lipschitz constant
of g′(ψ). According to (11), we have g′(ψ) = wx̄ − c.
For j ∈ Fl(u), we get g′(ψl[t]) = wl

∑
j∈Fl(u) x̄j [t] − cl[t]

where x̄j [t] is the average send out rate of Send Queue for
receiver j and cl[t] is the maximum transmission capacity
of link l. Because x̄j [t] and cl[t]

wl
can be represented by q[t],

we have g′(ψl[t]) = −
∑
j∈Fl(u){qj [t + 1] − qj [t]}+/wl =

−
∑
j∈Fl(u){∆qj [t]}+/wl. Similarly, we have g′(ψu[t]) =∑

i∈Fu(u) wix̄i[t] − cu[t]. Since m+
i [t] = wix̄i[t] and cu[t]

is equal to the process rate m−i [t], we have g′(ψu[t]) =
−
∑
i∈Fu(u) {q′i[t+ 1]− q′i[t]}

+
= −

∑
i∈Fu(u) {∆q′i[t]}

+.
We use the queue variation ∆q[t]

w to represent the gradient
− g
′(ψ[t])
b where w is the vector of weight parameters for

different nodes or links. Thus, (12) can be rewritten as follow:

α[t+ 1] = ψ[t] +
∆q[t]

w
(13)

For convenience, we denote q†[t] as q [t]/w. According to (10)
and (13), we can get ψ[t+ 1] as:

ψ[t+ 1] = ψ[t] + ∆q†[t] + η [(ψ [t] + ∆q† [t])

− (ψ [t− 1] + ∆q† [t− 1])]
(14)

where the η is the condition number.

B. The AGO Algorithm

We consider CEC cooperation-based CLS system which
contains broadcaster, CSs, ESs and viewers with transcoding
capability. ESs in this system act as coordinators to maintain
the candidate routing table for the Requesters. We propose a
practical Accelerated Gradient Optimization algorithm to solve
the joint resource allocation problem of data transmission and
online transcoding. We give the pseudo-code (Algorithm 1) of
AGO and describe it from the Requesters v ∈ C perspective.

As the algorithm shows, we set the initial value of the
queue-length q†[−1] = q†[0] = 0 and the Nesterov’s weight
ψ[−1] = ψ[0] = 0 for all node u ∈ V . Since the nonnegative
parameters V and the condition numbers η can influence the
queue backlog, algorithm optimization and the convergence
rate, we omit the discussion of them there and give the
details in the next two sections. In every time slot, ∆T , each
Requester will get the candidate routing table from the nearest
ESs. The table provides alternative routing paths information
with the weight vector ψ[t] of nodes and links on each path.
The Requester will select the path with the minimum sum
of weight

∑
P ψ[t] and establish a delivery path with the

Provider. After the path established, in each iteration, the
Provider will decide the data rate for the Requester according
to (16) where U ′−1(·) is an inverse derivative of objective

Algorithm 1: Accelerated Gradient Optimization Algo-
rithm
Input:
Choose the nonnegative parameters V and η ∈ [0, 1);
For each link l ∈ L ∪ L′, set the q†[−1] = q†[0] = 0;
Set the initial Nesterov’s weights ψ[−1] = ψ[0] = 0;

1 foreach time slot ∆T do
2 foreach Requesters v ∈ C do
3 Obtain the alternative paths P from nearby ESs;
4 Select the transmission path Pv:

Pv = arg min
P∈P

{∑
P

ψ[t]

}
(15)

5 Establish a delivery path Pv from Provider to
Requester;

6 end
7 end
8 while t ∈ T do
9 foreach Provider b ∈ P do

10 Determine the data rate x[t] for all Requesters;

x[t] = min

{
U ′−1

(∑
P

ψ[t]

V

)
,xmax

}
(16)

11 end
12 foreach node u ∈ V do
13 Transcoding rate p+[t] Decision:

p+[t] = min

{
U ′−1

(
ψ[t]

V

)
,
cu[t]

w

}
(17)

14 Processing and sending-out rate x−u [t] decision:

x−u [t] = min

{
argmax
i∈F(u)

(ψi[t]),
c

w

}
(18)

15 Update queue ∆q†[t] = q†[t+ 1]− q†[t];
16 Update Nesterov’s weight ψ[t+ 1] by (14);
17 end
18 end

function (11). Besides, each node u ∈ V calculates the
transcoding portion p+[t] =

{
p+

1 [t], p+
2 [t], ..., p+

i [t], ...
}

based
on equation (17) where w = {w1, w2, ..., wi, ...} and i is the
flow index. Meanwhile, the node will select the flow with
maximizing ψ[t] to process and determine the rate by equation
(18). In addition, the links and nodes need to update the ψ[t+1]
according to the queue variation ∆q†[t].

C. Implementation and Complexity Analysis

According to the algorithm description, AGO mainly in-
cludes three parts: (1) delivery path selection at Requester;
(2) the determination of data rate at Provider; and (3) the
enqueue/dequeue rate decisions of video processing at inter-
mediate nodes. The delivery path selection only needs the
Nesterov’s weight of nodes and links on the delivery path.
Since the weight is maintained by ESs, the Requesters can
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obtain the information directly. Besides, the Provider also
needs the Nesterov’s weight information which can be only
easily updated by exchanging information with nodes and
links on the communication path. This weight update can be
done during data transmission. For example, the Transcoders
can periodically add the Nesterov’s weight to the data packet
header and then deliver it to the Provider. In addition, for
each intermediate node u, all updating processes require only
local information. Neither global communication between all
servers (CSs and ESs) nor interaction with the Crowd is
required to perform our algorithm. Hence, AGO algorithm
can be deployed in a distributed manner with only on-path
information exchange.

The complexity of the first part depends on the number of
candidate paths |P |, and the number of intermediate nodes
on the path that is no more than |V|. Because the delivery
path selection requires the Requester to calculate the sum of
Nesterovs weight of all nodes on each delivery path, the space
complexity and time complexity at Requester side are both
O(|P | · |V|). Compare with the number of nodes |V|, the
number of hops on the delivery path is relatively small and this
processing is triggered every ∆T slot. Hence, the process of
delivery path selection is lightweight. The complexity of AGO
algorithm at Provider side is mainly determined by the number
of Requesters who access the Provider. In each iteration, the
Provider calculates the inverse gradient of the function (11)
for each Requester with the sum of on-path Nesterovs weight.
Since the weight can be obtained by accumulating the weight
of nodes on the delivery path, as well as the complexity of
equation (15) is O(1), the processing at the Provider side run
in O(|C|) time and space. In the third part, the intermediate
nodes need to calculate enqueue rate p+[t] and schedule
sending-out data for each flow, as well as update the virtual
queue and Nesterovs weight locally. According to equations
(13), (16), and (17), the time complexity at intermediate nodes
is O(|F|) where |F| is the total number of flows processed
in the nodes. Besides, the intermediate nodes only need to
store two time-slot information of queue-length and Nesterovs
weight for each flows. The space complexity is also O(|F|).
To prove the feasibility of our algorithm, we further evaluate
the complexity and the bandwidth cost of signalling compare
with two mainstream methods [16], [22] in Section VI.

VI. MAIN THEORETICAL RESULTS

In this section, we will reveal four theoretical results of
AGO. Firstly, we introduce the queue-length reduction perfor-
mance, which is associated with the non-negative parameters
V and the condition numbers η.

Theorem 1. Given V and η ∈ [0, 1), the steady queue-
length over node u generated by AGO algorithm satisfied the
following equation:

lim sup
t→∞

E {‖q[t]‖1} = O
(

(1 + η)
√
V
)

+O ((1− η)V )

Thus, if we choose an η which increases speed faster then
1−O

(
1/
√
V
)

, the average steady-state queue-length can be

rewritten as:

lim sup
t→∞

E {‖q[t]‖1} = O
(√

V
)

Theorem 1 reveals several essential points. When η is a
constant value and V → ∞, the queue-length is dominated
by O ((1− η)V ). Hence, the queue backlog is approximately
1− η fraction of the traditional queue-based algorithm O(V ).
Moreover, when η variation within the asymptotic regime
1 − O

(
1/
√
V
)

, the scale of the queue backlog reaches

O
(√

V
)

. The physical implication of the queue length for
all nodes and links on the delivery path represents the ac-
cumulation of transcoding tasks and the data waiting to be
sent, respectively. When the network processing capacity is
determined, longer queues may result in more processing time,
which also means a large delay for viewers to access the CLS
content [25], [39]. Therefore, the reduction of queue length
is one way to reduce the queue time of transmission and
transcoding. The accelerated gradient approach can effectively
reduce the mean of queue length O

(√
V
)

, so it is very
suitable for CLS.

Next, we discuss the optimality of our algorithm. According
to equation (11), we define the optimal data transmission rate
of our problem as x∗ = [x∗1, x

∗
2, ...] and the AGO algorithm

solution as x∞ = [x∞1 , x
∞
2 , ...]. Besides, we define the gap

between AGO and optimal solution in terms of x and U(·) as
Gx = ‖x∞ − x∗‖ and Gu = U (x∞)− U (x∗) respectively.

Theorem 2. Under the iteration of (14)(16)(17)(18), the rate
gap Gx is bounded by O

(
1/
√
V
)

. Meanwhile, the utility
gap Gu is bounded by O(1/V ). These imply that x∞ → x∗

asymptotically as V increases.

Theorem 2 shows that the optimality of AGO is indepen-
dent of η. However, V affects both the optimality and queue
length of AGO. Choosing a larger V can obtain a better result
but will increase the queue length. Since our algorithm can
provide an O

(
1/
√
V
)

near optimal service rate, for our dual-
queue model, it means that our algorithm can make full use
of the system resource and quickly process the backlog data
of the transmission or transcoding queues in the CLS system.
The last theoretical result of our algorithm is convergence.
We denote the convergence rate by the required number of
time-slots to get the O

(
1/
√
V
)

near optimal solution.

Theorem 3. Let η ∈ [0, 1) and V ∈ (Ω,∞). The Hession
matrix of the objective function (11) for x∗ is denoted asH∗ ∈
RN×N . We denote εH∗ = {ε1, ε2, ..., εN} as the eigenvalues
vector of H∗. Then, E {x[t]|w[t]} satisfies linear convergence
with a coefficient OR(V, η):

OR(V, η) ≤ 1

2
max
ε∗i ,∀i

[∣∣∣∣∣ (1 + η)

(
1− ε∗

V

)
±√

(1 + η)
2

(
1− ε∗i

V

)2

− 4η

(
1− ε∗i

V

)∣∣∣∣∣∣
 < 1
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The optimization of convergence is OR(V, η) =
(
√
ξ−1)√
ξ

,
where ξ = a/b is the condition number of Hession matrix H.
According to [40], the optimal convergence rate O′R of the
queue-based algorithm is

√
ξ − 1/

√
ξ + 1. This implies AGO

algorithm is always superior to the traditional queue-based
algorithm in the rate of convergence. Faster convergence rate
can improve the adaptability of the algorithm to the dynamic
environment, thus improving the quality of CLS. Theorem 1
only guarantees the performance of long-term average queue-
length, and do not consider the variation and stability of queue
backlog. We give Theorem 4 that shows the AGO algorithm
can provide finite average queue backlog:

Theorem 4. Suppose there exist a positive value ε for the AGO
algorithm in our problem (7) that makes the steady queue-
length satisfying the following inequality:

lim sup
t→∞

1

t

t−1∑
τ=0

E {‖q[τ ]‖1} ≤
K + V Umax

ε

where K =
∑
i E
{

(x+
i [t])

2
+(x−i [t])

2

2

}
and Umax is the upper

bound of utility function (7a).

According to the proof of Theorem 4, there always exist
a positive ε in the feasible region that makes AGO algorithm
satisfies E

{∑
i

[
x−i [t]− x+

i [t]
]}
≥ ε. Based on equations (16)

(17) (18), x−i [t] is related to the capacity of links and nodes
in CLS system and x+

i [t] depends on the optimality of the
AGO algorithm. Since Theorem 2 shows that the rate gap
‖x∞ − x∗‖ of AGO algorithm is bounded by O

(
1/
√
V
)

,

and thereby the rate x[t] of our solution is O
(

1/
√
V
)

near
optimal. Thus, the rate gap and constraints (7b) (7c) confirm
that the q[t] generated by the AGO algorithm is strong stability
and the upper bound of the average queue-length is K+V Umax

ε .
Due to space limitations, we omit the proofs of Theorems

1-4, which can be found in the supporting document.

VII. PERFORMANCE EVALUATION

In this section, we introduce the datasets we used, ex-
perimental scenario and parameter settings. Then we analyse
the numerical results of our method compared with Content
Delivery Network-based (CDN-based) [16] and Crowd-based
[22] solutions. Finally, we evaluate the performance of our
solution in a prototype system.

A. Datasets and Experiment Setup

We conduct a series of simulations to demonstrate the
validity of the theoretical result and realise a prototype im-
plementation based on an open-source framework srs [41] for
further verification. To better evaluate the effectiveness of our
approach, we use a real-world dataset [42] that crawled from
the official APIs [43] to reconstruct a more realistic evaluation
environment. The dataset contains trace records of more than
1.5 million broadcasters and 9 million streams from Feb. 1st to
28th, 2015. Each trace records every 5min including stream
ID, source resolution, stream start/end time, the number of
viewers, and so on. Since the channel streams traces with

TABLE II
BANDWIDTH REQUIREMENT AND TRANSCODING COST

resolution 1080p
60fps 1080p 720p

60fps 720p 480p 360p

bandwidth
(Mbps) 5.86 4.45 2.75 1.93 1.10 0.52

transcoding
(vCPU use) 454% 333% 210% 142% 81.6% 50.5%

TABLE III
PARAMETER SETTING FOR NUMERICAL SIMULATION

Parameters Values
Number of CS, ESs and Viewers 1,8,1000

Number of Fixed Viewers and Mobile Viewers 200,800
Bandwidth of Wire Link Between CS and ESs 300Mbps

Bandwidth of Wire Link Between Servers and Viewers 10Mbps
Maximum Bandwidth of ESs’ Sharing Link 100Mbps

Maximum Bandwidth of D2D Link 10Mbps
Number of CLS channel 40

Number of resolution for each channel 6
Maximum Transmission Unit 1500B
Total Time-Slot of Simulation 1000, 2000

Weight of Transcoding Cost at ESs, CS and Viewers 5,3,1

too few viewers often has small variation on the number
of audiences, we selected the traces with around 1000 peak
viewers as driving data to generate requests for our simulation.

To evaluate the numerical performance of our AGO algo-
rithm, we consider a simulation scenario similar to Fig. 1
which includes one Cloud Server (CS), eight Edge Servers
(ESs), and 1000 viewers. We divide the scenario into nine
regions. One is equipped with a CS and the other with one
ESs in each. The ESs are connected to the CS via 300Mbps
wire link and communicate with viewers within its coverage
through 100Mbps shared wireless link. In addition, we set up
800 mobile nodes and 200 fixed network nodes as broadcasters
and viewers. Mobile nodes can communicate with ESs through
wireless links and directly connect to other mobile nodes by
Device-to-Device (D2D) within their coverage. We set the
maximum D2D bandwidth to 10Mbps. Besides, all fixed nodes
are connected to CS or ESs with 10Mbps wire link. We set the
number of CLS channel to 40, and each channel has six video
resolution. According to [16], we set up the cost of bandwidth
and transcoding at different resolution as shown in Table II,
which are measured by Twitch’s official video statistic tool
and AWS c4.8xlarge instance, respectively. Besides, we list
some important simulation parameters in Table III.

B. Methodology and Numerical Result

We use the dataset to drive our simulation and evaluate the
performance of the steady-state queue-length, convergence rate
and optimality with different η and V. Fig. 3 (a) presents the
queue length for one of transmission link in the edge servers
with various η. We let V=100 and increase η from 0 to 0.95.
We can see that when η is equal to 0, 0.5, 0.8, 0.9 and 0.95,
the steady-state queue-length is about 312, 130, 81, 62 and
45. According to Theorem 1, the stable theoretical value of
queue length satisfies the 1− η reduction, which confirms the
O ((1− η)V ) +O

(
(1 + η)

√
V
)

result. Furthermore, Fig. 3
(b) shows that the receive rate initially decreases and then
stabilizes to the same value as the iteration. This proves that
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Fig. 5. Comparison of main theoretical results. (a) The variation of average throughput with different number of concurrent requests; (b) The average delay
of viewers in different numbers of concurrent requests; (c) Bandwidth cost of signalling with different number of concurrent requests; (d) The complexity
analysis of the three solutions.

the optimality of our algorithm is independent of η. Besides,
the convergence rate initially increases and then decreases as
η varies from 0 to 0.95. Fig. 3 (c) shows the relationship
between the queue-lengths and V with η=0.95. As V increases
from 50 to 800, the queue-length increases proportionately and
the convergence speed decreases, which satisfies Theorem 2.
From Fig. 3 (d), the receive rate of different V converges to
the optimal value, and the larger V corresponds to smaller
fluctuations. We also test the numerical result of receiving
delay for viewers under different η and V which are shown
in Fig. 4 (a) and Fig. 4 (b). Fig. 4 (a) shows that as the η
increases, the receiving delay decreases accordingly. This was
following the expectation since larger η correspond to a lower
queue-length and faster convergence (Converge to the optimal
data sending rate). This result also reveals that our algorithm
with large η can quickly converge to the optimal transmission
rate, thereby reducing the transmission queue and providing
lower delay. By the same token, a lower receiving delay can
be achieved with smaller V since the queue-length increases
linearly with V. Although the converge rate decreases with V,
the rate is bound by

√
ξ−1√
ξ

, see Theorem 3. Thus, the receiving
delay is dominated by queue-length variation under different

V. Moreover, we investigate the variation of transcoding queue
and the sum of overhead and of the ESs. We can see from Fig.
4 (c) and Fig. 4 (d) that, as the η increases, the convergence
rate increases and the cost decreases. Different from the
transmission, the transcoding process has more violent jitter
of the stable-state queue-length. Besides, as shown in Fig.
4 (c), the larger η, the less transcoding overhead. This is
because faster convergence allows the CLS system to reach
optimality quicker. Different from the transmission, the length
of transcoding queues with different η (0, 0.5, 0.8, 0.9, 0.95)
converge to the same value. The reason for this phenomenon
is that when the nodes on the delivery path are in a stable
state, the optimal transcoding tasks allocation is determined
accordingly. Similarly, when the algorithm has a faster con-
vergence rate, the transcoding queue of the system can reach
a steady state faster.

We compared our solution with two mainstream solutions:
1) Content Delivery Network based architecture [16] (CDN-
based): for this architecture, the video transcoding is mainly
performed in the CS and ESs. Viewers can access the CLS
from the CS and ESs. 2) Crowd cooperation-based archi-
tecture [22] (Crowd): this architecture mainly schedules the
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transcoding task to CS, ESs and stable viewers. When the
viewer watches the video long enough, it will be selected
as stable viewers. We set the threshold to 5 minutes. This
strategy mainly uses the resources of ESs and Crowd, and
the CS act as a backup resource. We analyze the Average
Throughput (AT), the Average Delay (AD) of all viewers
and the resource overhead of transmission and transcoding
under different number of concurrent viewers in the steady-
state network. Fig. 5 (a) illustrates the trend of AT for four
strategies (CDN-based, Crowd, η=0 and η=0.9) as the number
of concurrent requests increasing. The CDN-based solutions
start at a plateau, then decreases as the number of concurrent
requests reaches 30. In Crowd and our approach (η=0 and
η=0.9), as the requests increasing, AT first experiences a brief
increase, then quickly reaches a peak, then begins to decline,
and finally gradually reaches a plateau. The decreasing trend
is due to the computing resources, which is caused by the
increasing number of arrival requests. Because the backhaul
bandwidth is the bottleneck in our experiment settings, the
CDN-based solution has the fastest descent speed and the
worst performance under a large number of concurrent view-
ers. The reason why the Crowd and our approach has a
temporary increase at the beginning is that the use of edge
resources offloads backhaul network traffic. So some backhaul
bandwidth resources are idle when the number of concurrent
viewers is less than 30. When the number reaches 80, our
solution increases AT by 50% and 22.7% compared with
the CDN-based and Crowd solution, respectively. Besides,
compared with the CDN-based and Crowd solutions, AGO
reduces the AD by 38.5% and 16.7%, as shown in Fig. 5
(b). Besides, we count the average bandwidth cost per second
of signalling used to optimize transmission and transcoding
in CLS system as the Control Overhead (CO). As Fig. 5
(c) shows, the CO of all three solutions experiences a sharp
growth and then reaches a phase with stochastic fluctuation.
In AGO, the CO is mainly the traffic of the candidate routing
table and Nesterov’s weights information of nodes and links.
In the CDN-based solution, The signalling overhead is mainly
caused by the communication between different servers (CS
and ESs). In the Crowd solution, the regional Data Center
needs to maintain the viewing state of the Crowd and allocate
the transcoding task, which requires to monitor viewer status
continuously. Our method is superior to the Crowd solution.
Although the CDN-based solution has better CO performance
than AGO, this comes at a price in terms of higher complexity
and video transmission and transcoding cost. We also estimate
the average-case complexity of three solutions. According to
Fig. 5 (d), the time complexity is the best among the three
solutions. Since the CDN-based solution needs to traverse the
viewer-server pairs to realize the cloud-edge selection for all
viewers, the complexity is O(|C||S|) where |C| and |S| are the
number of viewers and cloud-edge servers, respectively. In our
simulation, the number of cloud-edge servers is fixed (nine)
and the time complexity increases linearly with the number of
concurrent requests. The crowd solution selects stable viewers
as transcoders to offloading transcoding tasks for Cloud. The
transcoder selection needs to traverse all viewers to elect a
certain number of candidates. This processing is similar to

(a) Average Bandwidth Cost of Network Nodes (b) Average CPU Usage of Network Nodes

Fig. 6. Resource cost of three solutions (η=0.9, V=100) (a) Average
bandwidth cost of the system nodes (b) Average CPU usage of the nodes.
a sorting algorithm and the worst-case time complexity is
O(|C|log(|C|)). Besides, the complexity of AGO is linearly
increasing with the number of concurrent requests. Note that
our algorithm requires more units of storage resource than
time since it needs to store two-slot queues and Nesterovs
weight information. Fig. 6 shows the comparison of our
approach (η=0.9) with CDN-based and Crowd in term of
Average Transmission Cost (ATC) and Average transCoding
Cost (ACC) for each node in CLS system under different
arrival rate of viewers. In the beginning, compared with the
CDN-based solution, our approach has a higher transcoding
cost. However, as the arrival rate grows, our approach has an
increasing advantage in transmission consumption. Compared
with the Crowd solution, our approach has dominance in both
transmission and transcoding overhead.

C. Evaluation over System Prototype
We build a prototype system based on an open-source

framework srs [41] and evaluate the performance of CDN-
based, Crowd and AGO. The topology of our system is
shown in Fig. 7, including one broadcaster, one CS, two
ESs, two fix viewers and two clusters of mobile viewers.
We rent ecs.g5.2xlarge (Intel Xeon Platinum 8163, Eight-Core
2.5Ghz/32GB) of aliyun as CS. Further, we used two servers
(Xeon Bronze 3104, Six-Core 1.7Ghz/32GB) to deploy ESs
and set up two virtual containers (Intel i7-7700k, Quad-Core
4.2Ghz/16GB and AMD Ryzen 5 Quad-Core 3.2GHz/16GB)
as fix viewers through Docker [44]. All of our experiments
are conducted on the operating system, which is Centos 7. We
use yasea [45] (an Real-Time Messaging Protocol (RTMP)
live streaming client for Android) to push the streaming from
the broadcaster (HUAWEI Mate 20 pro) to CS through the
wireless network. When the viewers request a livecast service,
they need to request the ESs first and decide the transcoding
path. After that, the broadcasters will upload the content to
CS through RTMP. The ESs and CS will use FFmpeg [46]
to transcode the RTMP streaming into required resolution. For
CDN-based solution, the CS complete most of the transcoding
and then push the contents to ESs. Viewers can get CLS from
all the servers. Besides, the transcoding is mainly processed
by the ESs and fixed viewers in Crowd solution. When Crowd
resources are insufficient for the transcoding, CS will be used.

Fig. 8 illustrates the architecture of our prototype system
consists of four main modules included a resource monitoring
module, a streaming module, a scheduling module, and a web-
based video player. The resource monitoring module is respon-
sible for monitoring the resource status, such as CPU usage,
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memory, network I/O, etc. of each host. The collected resource
status will be periodically fetched by the scheduling module
with a submodule called ResMonitor. Further, the ResMonitor
translates the status into virtual queues and normalizes them
as Nesterov’s weight input to the srsController, another sub-
module of the scheduling module. With the srsController, the
scheduling module can control transcoding task assignment
among different hosts and user streaming access by using
FFmpeg in the streaming module. We modified the source
codes of srs and built the streaming module that supports the
control of the scheduled module by local interface files. To
achieve fast and flexible deployment at different devices, we
use virtualization technology to package the streaming module
and the scheduling module into a Docker container [44] as
well as open source on a public Docker hub [47]. To monitor
the video playback status, we also deployed a Web-based
streaming player similar to srsPlayer [48].

We used the prototype to compare the performance of three
methods on buffering time, average download delay, resource
efficiency and Quality of Experience. We set the start-up delay
of the livecast service to 5 seconds and Group of Picture (GoP)
to 2 seconds. More details of experimental parameters are
shown in Table IV. In prototype tests, we first evaluate the
download delay of the three solutions. As shown in Fig. 9,
we test the average/maximum/minimum GoP download time

TABLE IV
PARAMETER SETTING FOR SYSTEM PROTOTYPE

Parameters Values
η, V 0.95, 100

Group of Picture 2s
Start-up Delay for Buffering 5s

Playback Buffer Length 5s
Duration of a Time-Slot 60s
Bandwidth of Wire Link 100Mbps

Maximum Bandwidth of Wireless Link 400Mbps
Operating Frequency of Access Point 5GHz

Maximum Interface Queue Length 100 packets
Frame Duration 16ms

Application-Layer Protocol RTMP
Codec Library/Transcoder FFMPEG/x264

Fig. 9. Average download delay of GoP under the various number of
concurrent viewers in three solutions.

of accessing the content in about a one-hour monitoring and
the delay variation under a different number of concurrent
viewers. The transparent blocks (blue/red/yellow) represent
the maximum-minimum delay interval of the three solutions,
respectively. With the increasing of concurrent viewers, the
average download time of the three methods shows an increas-
ing trend. We can see that our solution has the slowest increase
in latency, which indicates our solution has better performance
in terms of system capacity. Although the CDN-based solution
has the lowest delay when the number of concurrent viewers
is less than 11, as the number of viewers grows continuously,
its access delay increases sharply. In addition, our approach
has better delay performance compare with the Crowd and is
the only solution that can provide download delay less than
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(a) QoE performance (b) Integrated QoE vs Time

Fig. 10. QoE performance evaluation (a) different QoE performance indicators
(b) the variation of integrated QoE over time.

2s with 20 concurrent viewers. According to [49]–[51], we
compare QoE of three solutions with three main indicators
including latency [s], stalling time [s] and buffering time [s]
and the QoE score transform function are shown as following:

QoEk = 1− ak ×
rkO
rkM

, k ∈ K (19)

where K = {1, 2, 3} represent the index set of latency, stalling
and buffering time. ak is the weight of different indicators. rkO
and rkM are the observed value and the historical worst value
of indicator k, respectively. We set a1 = 10%, a2 = 60% and
a3 = 30% [51]. In Fig. 10 (a) we examine average throughput,
latency, buffering time and stalling time on our prototype
system with 20 concurrent requests. Fig. 10 (b) shows the
variation of integrated QoE and it can see that the QoE score
of all three methods goes through a process of decreasing,
increasing, and finally stabilizing. Our approach is the first
to reach a stable stage and has better performance than the
other two methods. Also, we use the python package psutil
[52] to get the resource usage of Linux server, including CPU
utilization [%] of each nodes and import/export bandwidth
[kbps] of CS and ESs. As Fig. 11 (a) shows, compared with
CDN-based solutions, our approach reduces the network traffic
by about 35.9%. Our method can allocate transcoding tasks
effectively, which saving CPU utilization by about 15% and
25% compared to the other two solutions respectively.

VIII. CONCLUSION

In this paper, we propose a novel augmented queue-based
model for CEC cooperation-based CLS systems, which clev-
erly combines transcoding and transmission by two virtual
queues to achieve low-delay and resource-efficient CLS. We
further analyze the queue variation of the augmented queue
and formalize the resource allocation problem of transcoding
and transmission. We design a distributed algorithm called
AGO based on accelerating gradient for the resource allocation
problem and present four theoretical results of the AGO
algorithm. Theoretical results show that, compared with the
traditional queue-based solution, AGO has better performance
in queue length and convergence. We use real-world data
set to design simulation and verify the theoretical results.
Besides, compared with two current mainstream solutions
through simulation and prototype test, experimental results
show that our approach provides a significant improvement
in resource efficiency and service quality.

（a）Average In/Out Throughput of Servers （b）Average CPU Usage of Nodes

Fig. 11. Resource usage of the network nodes (a) average in/out throughput
of Cloud and Edge servers (b) average CPU utilization of different nodes.
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