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Edge computing and artificial intelligence promise to turn future mobile net-
works into service- and radio-aware infrastructures, able to address the require-
ments of upcoming latency-sensitive applications. For instance, they can be used
to dynamically and optimally manage the Radio Access Network Slicing. How-
ever, this is a challenging goal, due to the mostly unpredictably nature of the
wireless channel. This paper presents a novel architecture using Deep Reinforce-
ment Learning at the network edge for addressing Radio Access Network Slic-
ing and Radio Resource Management. By considering the autonomous-driving
use-case, computer simulations demonstrate the effectiveness of our proposal
against baseline methodologies.
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1 INTRODUCTION

Network slicing emerged as an effective design paradigm for current and future mobile architectures. It allows the cre-
ation of core network segments, dedicated to the provisioning of specific services with their own Service Level Agreement
(SLA) and Quality of Service (QoS) requirements.1 While the infrastructure provider (IP) still represents the owner of
the resources employed for each slice, the slice tenant (TNT), that is the customer from vertical industries, can use those
resources, install its applications, hold its data, and enable its preferred security policies. Thus, the slice appears as a vir-
tualized and independent portion of the overall network, configurable through a service-based approach.1,2 The idea to
support orthogonal logical segments also at the radio interface of Beyond 5G (B5G) deployments recently gained momen-
tum. Unlike the conventional network slicing concept, Radio Access Network (RAN) slicing is less mature and more
challenging,3 because of the intrinsically shared and unpredictable nature of wireless resources and the need of novel
Radio Resource Management (RRM) functionalities.4 Edge Intelligence (EI) is considered as the most powerful enabling
technology for RAN slicing enforcement. By leveraging the native capabilities of both Edge Computing and Artificial
Intelligence, it promises to simplify the large-scale data acquisition, predict the incoming agglomerated per-slice traffic,
and efficiently support resource allocation, management, orchestration, and network automation.5

At the time of this writing, several AI-based solutions to anticipate future offered loads in mobile networks have
been extensively studied.6-8 However, estimating the traffic only represents a partial step for the optimal slice resource
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allocation problem. Even in the presence of perfect traffic estimation, in fact, evaluating the optimal RRM is a very difficult
task owing to the random nature of the radio conditions and, as a matter of fact, the problem of optimal RRM generally
requires unmanageable computational complexity. To make matters worse, the inherent requirements of latency sensitive
services, put further constraints on this problem and call for unconventional, distributed, and scalable slicing approaches.9
For these reasons, Reinforcement Learning (RL) has been recently investigated as a low-complexity and effective solution
for RRM in communication and computing systems.10,11 Here, an RL agent can generate (near-) optimal control actions
on the basis of the reward feedback from interactions with the environment. Instead of simply optimizing the current
reward in a greedy manner, the RL agent can take a long-term goal into account. Thus, RL appears to be particularly suited
for RRM problems when the optimum is very difficult to know, only a reward associated with a given policy is available,
and the reward/loss cannot be related, through a closed-form expression, to the actions.12

In line with these premises, we present in Section 2 a novel architecture for RAN slicing that exploits Deep RL
(DRL)-based EI to serve latency sensitive applications. It considers a virtualized control platform in which both the IP
and TNTs interact for enforcing Network Slices in the RAN. Note that unlike other state-of-the-art studies,6,7,10,11,13,14 the
conceived methodology considers the openness of the network to third parties, hence encouraging TNTs to directly take
control of the resources and drive the slice enforcement without relying on an IP-centralized solution. Besides, this archi-
tecture ensures that the roles of the different involved stakeholders are maintained: the IP is not aware of TNTs’ most
valuable information; the latters, in turn, will have an only partial understanding of the underlying RAN information.9
Section 3 considers a use-case based on autonomous-driving to show the effectiveness of our proposal against baseline
methodologies. Remaining open issues are finally drawn in Section 4 to sketch future research directions.

2 THE PROPOSED ARCHITECTURE FOR RAN SLICING WITH EI

We consider herein a scenario envisaging a single IP that leases part of its network resources to create and manage specific
slices for a set of independent TNTs, or mobile network operators, to realize advanced network services.15 The IP deter-
mines the amount of resources that can be used by the TNTs for each slice. The TNTs, in turn, should adapt in real-time
their requests according to their own users’ requirements, avoiding expenses due to the issue of resources overbuying. As
a consequence, the generation of slice requests, that is, when a TNT defines its needed slice configuration to the IP, and
the slice dynamic enforcement, that is, the adaptation of the slice allocation policy to the time-varying RAN environment,
are the solutions of local optimization problems, which have to be solved in real-time and whose decisions have to be
executed instantaneously to reduce any latency of the system.16 The reference scenario, shown in Figure 1, consists of a
controller that dynamically performs slicing operations at the RAN layer for a cluster of cells, that is, (a) decides which
slice creation requests can be admitted, (b) computes a slicing policy to allocate the available resources to the admitted
slices, and (b) enforces the slicing policy on the underlying physical RAN. The network slices are instantiated by the
interactions of two different entities, the IP subsystem and the TNT subsystem, both virtualized on the Multi-access Edge
Computing (MEC) platform, which is co-located to the same cluster of cells.9

F I G U R E 1 Reference architecture with block diagram of the DDPG algorithm
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Specifically, the IP subsystem is in charge of creating different RAN slices leveraging on the RAN controller and
according to the information coming from both the TNT subsystems and the NetWork Data Analytics Function (NWDAF).
In essence, the IP subsystem is the RAN counterpart of the Network Exposure Function (NEF) in the Core Network. On
the other hand, the TNT subsystem essentially generates the slice requests by processing general information (eg, type
of services to be provided, the duration in time of the slice), as well as high-level control information for successfully
addressing the requirements of the related slice. Hence, the IP must decide in advance the number of resources that will
remain assigned to a slice until the next reallocation takes place.

As for the specific RAN slicing enforcement strategy, we propose a dynamical RAN slicing where each slice is assigned
a given radio resource pool across a cluster of interfering cells in a given service area.4 The number of RBs is dynamically
determined and requested by the TNT on the base of the pieces of information it has access to.

This scenario can be described as a discrete-time stochastic control process modeling a classical Markov decision
process (MDP), where the cellular system is the environment, whose state 𝒮 is represented by the radio conditions of the
nodes and the amount of incoming traffic, the reward R is the efficiency of resource utilization subject to QoS constraints
and the set of actions 𝒜 is the bandwidth allocated to mission critical slices. However, the optimal RRM solution cannot
be known because of the non-convex nature of the problem and for the fact that the TNTs have only partial knowledge
of the underlying RAN information. Indeed, it is worth noting that the details of the radio interface, for example, the
adopted numerology, the scheduling policy, the packet fragmentation rules, and so on, are fully in charge of the IP and are
not known by the TNT agents, which have only a limited knowledge of the radio link conditions of their users. Besides,
the reward that is of interest for the TNT is often a QoS parameter, for example, the latency and the packet loss ratio for
mission-critical users, whose relationship with the allocation decision, for example, the amount of allocated spectrum, is
very hard to establish. Moreover, Pa

s,s′ , which is the transition probability from the state s to the state s′ given the action a
and R(s, a), that is, the average reward R in the state s given the action a, are unknown since they depend on the cellular
environment, whose dynamic is not predictable. In this context, RL emerges as the perfect tool to address the RAN slicing
problem. Nevertheless, the dimensions of states and actions are huge or possibly infinite, therefore Q-learning approaches
are uneffective. As a consequence, one of the most effective way to deal with the problem is through model free RL and,
in particular, with function approximation of the action value function Q(s, a) given by neural networks.12

As illustrated in Figure 1, we chose to train the TNT agent with the Deep Deterministic Policy Gradient (DDPG)
algorithm, which is an off-policy model-free algorithm known to be suitable for dealing with continuous states and
actions.17 Thanks to an actor-critic method, a DDPG agent concurrently learns a Q-function and an optimal policy that
maximizes the long-term reward. Here, the idea is to evaluate the Q function through an approximation Q̂

(
s, a ∣ 𝜃Q) and

to represent the policy through another approximation 𝜇 (s𝜃𝜇). In particular, 𝜃𝜇 and 𝜃Q are the parameters of the actor
and critic neural networks, respectively. In addition, two copies of the actor and critic, that is the target networks, are
used to improve the stability of learning the action-value function, since target values are constrained to change slowly.
The target critic is identified by Q̂′(s, a) and 𝜃Q′ , while 𝜇′(s) and 𝜃𝜇

′ are related to the target actor.
The update of the actor and critic networks occurs with the gradient descent method. In particular, the critic parameter

𝜃Q is updated by minimizing the loss L = 1
M

∑M
i=1

(
yi − Q̂

(
si, ai𝜃

Q))2
, where M is the number of experiences sampled from

the replay buffer, yi = Ri + 𝛾Q̂′ (si, 𝜇
′ (s′i𝜃

𝜇
)
𝜃Q′), and 𝛾 is the future reward discount factor.

Let J be the environment start distribution. Indeed, the actor policy 𝜃𝜇 is updated by following the sampled policy
gradient to maximize the expected discounted reward: 𝛻𝜃𝜇J ≈ 1

M

∑M
i=1𝛻𝜇(si)Q̂

(
si, 𝜇 (si) 𝜃Q)𝛻𝜃𝜇𝜇 (si𝜃

𝜇).
The action a ∈ 𝒜 is the amount of bandwidth requested every allocation period to the IP. The state s ∈ 𝒮 is a vector

of some Key Performance Indicators related to the RAN as well as traffic information. The state can be either directly
computed by the TNT (eg, the agglomerated slice traffic) or communicated by the IP and is used to determine the
amount of bandwidth requested for the next period. The reward R(s, a) takes into account the amount of bandwidth
the TNT saves with respect to the maximum bandwidth as well as some other QoS indicators. The TNT action is thus
dynamically chosen on the base of the available observations (state) with the goal of maximizing a discounted average
future reward. We consider a ∈ [0.1,0.9], that is, the action is a continuous value between 10% and 90% of the maximum
bandwidth allocated to the TNT. The state is defined as s = (l, r, d, o), where l is the total per-slice agglomerated traf-
fic to be sent, r is the average rate of the user experiencing the worst channel conditions (averaged over the allocation
period), d is the maximum delay experienced by the users of the slice, and o represents the number of QoS outages hap-
pened in the episode. The reward R is computed as: R = 1 − a, if the QoS requirement is satisfied, or R = −1 otherwise.
In other words, the less the bandwidth requested by the TNT while satisfying the target QoS requirement, the higher
the reward.
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3 PERFORMANCE EVALUATION

To evaluate the performance of the proposed model in a realistic environment, we consider a specific use-case based
on autonomous-driving. Since we focus on a latency-sensitive scenario, we assume that the TNT slice requests must be
always accepted by the IP, that is, neither an admission control nor a resource allocation negotiation policy is enforced
(for instance, see18 for further details on DRL-based admission control.) The service level agreement between the
latency-sensitive TNT and the IP sets a maximum amount of bandwidth to be used in each cell and, by providing for
a unitary cost associated with each bandwidth resource, enforces pay for what you get mechanisms to prevent from
over-provisioning the TNT. Note that, if the TNT does not require the whole bandwidth, the unexploited bandwidth
may be safely reused by other TNTs. Indeed, the TNT subsystem should dynamically determines and requests only the
resources it needs.

Without loss of generality, we focus on a single cell scenario, that is, we do not consider the effect of inter-cell inter-
ference. As a matter of fact, the proposed framework leverages on the capability of the DRL agent to predict the mutual
interactions of the involved nodes in determining the actual system performance. As a consequence, it is naturally suit-
able to encompass a multi-cell scenario, provided that the state variables include some interference related parameters,
for example, the mutual position of the nodes. Channel modeling considers the 3GPP UMa scenario,19 whose path loss
and lognormal shadowing are implemented. The data rate of each active link is then derived based on the Shannon
capacity formula. In the following, we focus on the downlink case. Similar considerations and results can be obtained
for the uplink case.

Our scenario contains one single macro Base Station and a single TNT subsystem, which is assumed to provide
autonomous driving services. In the considered setting, vehicles use their own sensors (eg, HD camera, LiDAR), as well
as sensor information from other vehicles, to perceive the environment and obtain a 3D model of the world around them.
The main QoS requirement of the slice is a maximum experienced packet delay of 5 ms, which is half the maximum value
of latency envisioned for the High Definition Sensor Sharing, which is one of the main Autonomous Driving use cases.20

The packet length is assumed to be fixed and equal to 32 bytes (as per the ITU-IMT2020 Urban Macro-URLLC usage sce-
nario). The number of slice subscribers, that is, the autonomous vehicles, is modeled according to real mobility traces.*
The TNT is allocated a maximum bandwidth of 10 MHz, organized into slots of 1 ms, according to the 5G NR numerology
with Δf = 15 KHz. The MAC scheduling strategy enforced by the IP is the Throughput to Average scheduling, in order
to guarantee a minimum level of service to every user, hence reaching a high fairness index. The DDPG agent performs
its actions every allocation period of 1 second.

As for the actor and critic neural networks, they are composed of two fully connected layers, each with 2000 and 1500
neurons, respectively. The learning rate is set equal to 0.001 for the actor and 0.0001 for the critic.

Figure 2A shows the running average (with a window length of 100 episodes) of the reward during the training process
of the agent. The figure shows that the proposed DRL approach allows to converge to a bandwidth occupancy of around
35% (65% of bandwidth left to other usages). During an initial exploration phase, the agent is not able to address the
QoS requirement, hence the low reward. After approximately 1200 training episodes, rewards begin to grow, since the
algorithm successfully learned how to satisfy the latency constraint. Figure 2B shows the probability density function of
the bandwidth requested by the DRL agent of the TNT. Samples are related to 10 000 independent simulations. On the one
hand, it demonstrates how the agent effectively learned to perform a variety of actions, that is, it learned to dynamically
adapt to the environment. On the other hand, it shows that the agent usually tries to request as low bandwidth as possible,
hence indicating a well-engineered reward function. Please note that this figure and the following are obtained by running
the agent obtained at the end of the learning phase over the dataset considered for the testing phase. In this way, it is
possible to assess the capability of the proposed DRL approach to generalize the proposed control strategy to every possible
data traffic and radio channel conditions.

To better demonstrate the importance of DRL, we compare the simulation results with the following methods: Fixed
Allocation, in which the TNT requests always the same amount of bandwidth; Heuristic strategy, characterized by a perfect
prediction (ie, ideal) of the incoming traffic and a bandwidth request that is directly proportional to the incoming traffic
at each step; Optimum allocation, in which at each step the minimum bandwidth allowing to fulfill the slice QoS require-
ments is determined through iterative adjustment. Clearly, this last approach is unfeasible in a real system, although it
can be easily simulated.

Figure 3A shows the bandwidth requested by the TNT during a representative test episode. It clearly illustrates how
the agent learned to request an amount of bandwidth close to the optimum, by taking into account only the state vari-
ables. In other words, the agent is dynamically adapting to the changes occurring in the environment. Furthermore,
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F I G U R E 2 (A) Reward during the training phase of the agent.
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F I G U R E 3 (A) Bandwidth requests in a representative test
episode. (B) Average bandwidth satisfying a given QoS availability

it is of the utmost importance to highlight how the proposed DRL solution outperforms the heuristic approach. In
other words, even though the prediction of the incoming traffic is accurate, it is not sufficient to guarantee an opti-
mal bandwidth request. As a matter of fact, it is necessary to take into account what actually happens in the RAN
to accomplish such a decision. For instance, it is clear that the incoming traffic grows substantially after 60 seconds.
However, it is reasonable to assume that general radio channel conditions improve as well, therefore it is not strictly
necessary to claim more bandwidth. Figure 3B shows the bandwidth requested by the TNT to ensure a certain level
of QoS availability, that is, the probability associated with the main QoS requirement being satisfied. Specifically, the
actions taken by both the trained DRL agent and the heuristic are successively weighted to obtained different behav-
iors. The results are then averaged over 10 000 independent simulations. The most noticeable feature is that the proposed
DRL mechanism always outperforms the other strategies. Even though requested bandwidth always grows with more
stringent requirements on the QoS Availability probability, the DRL agent requests up to 50% less bandwidth com-
pared to the fixed allocation. Moreover, the variation of the bandwidths requested by the TNT DRL agent are incredibly
smaller, confirming how the agent learned a near-optimal allocation strategy starting from the limited information
available.

4 CONCLUSIONS AND OPEN CHALLENGES

We presented a novel architecture in which both the Infrastructure Provider and tenants interact for enforcing Network
Slices in the next-generation RAN. It exploits Deep Reinforcement Learning at the edge for supporting effective enforc-
ing of RAN slicing, where tenants are encouraged to take control having an only partial understanding of the underlying
RAN status. Besides, focusing on the autonomous-driving use case, our proposal’s effectiveness against baseline method-
ologies is investigated through computer simulation. Results confirm that the prediction of the incoming agglomerated
per-slice traffic is not sufficient for an effective RAN slice enforcement strategy and resource over-provisioning is remark-
ably inefficient. Even though the proposed solution proves its success, there are still different open challenges to deal
with in future works. First, the tradeoff between the definition of the DRL state and the overhead in the communication
between the Infrastructure provider and Tenants subsystems appears crucial to improve performance further. Second, it
is important to use cutting-edge methodologies (eg, transfer learning) for developing flexible and interoperable software
agents, in order to guarantee reconfigurability and continuous deployment. Moreover, how to provide sufficient and pow-
erful resources for running AI at the edge in an economically sustainable way, is another important aspect to address for
properly preparing for the advent of EI.
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