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Model-free radio map estimation in massive MIMO
systems via semi-parametric Gaussian regression

Nicolò Dal Fabbro∗?, Michele Rossi∗‡, Gianluigi Pillonetto∗, Luca Schenato∗, Giuseppe Piro†§

Abstract—Accurate radio maps will be very much needed
to provide environmental awareness and effectively manage
future wireless networks. Most of the research so far has
focused on developing power mapping algorithms for single and
omnidirectional antenna systems. In this letter, we investigate
the construction of crowdsourcing-based radio maps for 5G
cellular systems with massive directional antenna arrays (spatial
multiplexing), proposing an original technique based on semi-
parametric Gaussian regression. The proposed method is model-
free and provides highly accurate estimates of the radio maps,
outperforming fully parametric and non-parametric solutions.

Index Terms—REM, massive MIMO, 5G

I. INTRODUCTION

A radio environment map (REM) is a database of commu-
nication quality metrics (CQMs). In cellular systems, REMs
associate geographical user positions with the CQMs of in-
terest. Designed as intelligent units attached to the existing
network infrastructure, REMs will play a key role in the
resource management of future cellular networks. Indeed, they
will allow boosting the performance of wireless systems by
providing average radio channel quality information for, e. g.,
predictive resource allocation [1], handover optimization [2],
and energy efficient designs [3]. CQMs vary with the user po-
sition and the adopted frequency band [4]. Furthermore, REMs
need to be updated through time [5], [6]. For these reasons,
and given the poor accuracy of REMs built upon empirical
path loss models [4], [5], measurement-based approaches
have been extensively investigated. These approaches consist
in either deploying an ad hoc wireless sensor network [7]
or in crowdsourcing CQMs from mobile users [4]. Spatial
interpolation techniques like Gaussian process regression (or
Kriging) [8] are typically applied to predict CQM values
in unmeasured locations. The majority of the works in the
literature have focused on radio power mapping in systems
with omnidirectional antennas [7], [9], [10], where the main
objective of the estimation is the mean field, determined by the
path loss (PL), together with the shadowing process. Notable
exceptions considering directional antennas are [11], where the
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directional antenna model is parameterized, and [12], where
the directive antenna radiation pattern is reconstructed. 5G
cellular systems are characterized by the use of multiple-
input multiple-output (MIMO) antenna arrays to increase
transmission speed and efficiency [13]. In MIMO systems
the spatial distribution of CQMs is dramatically influenced
by antenna array configurations and transmission techniques,
like spatial division multiplexing. Also, antenna arrays are
subject to production imperfections and impairments [14]
with many consequences such as beam directivity errors [15].
Non-ideal phenomena like mutual coupling can produce sig-
nificant changes in the desired antenna beam shapes [16].
Moreover, practical working conditions of antenna arrays in
cellular systems involve partial faults in the antenna emitting
capabilities, due to the typical characteristics of the outdoor
environment where a base station (BS) is placed, causing
distortions in the generated beams [17], [18]. Hence, relying
on the antenna array model to capture the array impact on the
REM could introduce an unreliable bias. These issues motivate
the study of a model-free solution for the REM estimation
in MIMO systems. In this letter, we address the problem of
crowdsourcing-based Signal to Interference plus Noise Ratio
(SINR) radio map construction in a massive MIMO (mMIMO)
sector (256 transmitting antennas) with grid-of-beams (GoB),
under Joint Spatial Division and Multiplexing (JSDM), in sub-
6GHz bands. In this setup, the spatial multiplexing determined
by spatial directional beams generated by large antenna arrays
at the transmitter has a major impact on the radio map. To
the best of our knowledge, no work in the literature has
so far addressed the problem of crowdsourcing-based REM
construction in a mMIMO cellular system, and this is the first
work proposing a strategy to jointly estimate the combined
effect of the GoB-based mMIMO transmission technology and
of environmental attenuation (PL and shadowing) in the REM
computation. We propose a model-free measurement-based
regression strategy to jointly estimate the mean field - related
to the generated GoB and PL - and the shadowing process. The
proposed approach falls in the framework of semi-parametric
Gaussian Process regression, but, differently from baseline
solutions, the proposed estimator captures the GoB impact on
the REM via the design of an ad hoc parametric space. In par-
ticular, parametric spaces spanned by Fourier bases [19] and
Chebyshev polynomials [20] are experimented with, assessing
their capability of representing the GoB structure.

The hyperparameters learning and map reconstruction per-
formance of the proposed REM estimation method are eval-
uated through intensive simulations using advanced channel
models, compliant with the 5G new radio standard, under
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different antenna array configurations.
Notation: Vectors and matrices are written as lower and

upper case bold letters, respectively (e.g., vector v and matrix
V). VT , |V| and (V)i,j denote V’s transpose, determinant
and (i, j) entry, respectively. I denotes an identity matrix, 0 a
vector of zeros, E[.] the expectation operator.

II. SYSTEM OVERVIEW

We consider a scenario with three-sectors base stations
(BSs) serving adjacent cells. BSs are equipped with M = 256
antennas and we focus on an operating bandwidth of 25MHz
composed of B = 25 consecutive sub-channels. Specifically,
B = {f0, f1, ..., fB−1} represents the set of sub-channels.
Each BS is transmitting Tl = 2 spatially multiplexed layers
through n = 16 or n = 32 beams. Mobile devices have
Nr = 2 antennas. We consider a BS located at the origin
of the Cartesian reference system. A mobile device located
at position x ∈ R2 receives, in the time-slot tj , a signal
r(x, fi, tj) ∈ CNr×1 through its Nr antennas [21]:

r(x, fi, tj) =
L∑
l=1

Hl(x, fi, tj)
√

QlVl(fi, tj)sl + n, (1)

where, sl ∈ CTl is the symbol transmitted by the l-th BS,
Hl(x, fi, tj) ∈ CNr×M is the channel matrix between the
l-th BS and the considered device for sub-channel fi ∈ B,
Ql ∈ RM×M is a diagonal power allocation matrix, Vl(fi) ∈
CM×Tl represents the downlink precoding matrix of the l-th
BS for sub-channel fi ∈ B, and n ∼ CN

(
0, σ2I

)
describes

the Gaussian distributed uncorrelated noise with variance σ2.
Note that (1) also includes the interference contributions
from within and across sectors [21]. The mMIMO JSDM
scheme [21] implements a 2-stage precoding. In particular,
the precoding matrix Vl(fi, ti) is split into two matrices

Vl(fi, ti) = GlCl(fi, ti). (2)

The 1-stage precoding matrix, Gl ∈ CM×n, realizes the GoB
layout, where n independent signals, namely “the beams”,
are sent in a number of fixed spatial directions spanning the
entire area of a cell sector. The 2-stage precoding matrix
Cl(fi, ti) ∈ Cn×Tl , instead, is configured by the BS to
dynamically adapt the transmission power to the channel
quality experienced by the mobile device. During network
operation, Cl(fi, ti) is adapted to the available CSI on a sub-
channel and time-slot basis, thus related to the small-scale
fading (fast fading) effect. The matrix Hl(x, fi, tj) describes
the quality of the communication channel established between
the BS l and the mobile device. The coefficients of such matrix
specify the loss affecting the signal transmitted by an antenna
of BS l and an antenna of the considered mobile device. That
loss is modeled as the sum of three different propagation
phenomena: path loss (PL), shadowing, and fast fading.

We choose the average effective SINR experienced by a
user located in position x, and denoted by γ(x), as the
REM channel quality metric (CQM) to be estimated, in the
operating bandwidth of interest. Considering a long enough
observation period and averaging over several sub-channels,
the fast fading effect is averaged out (see, e.g., [4], [6]–[8]). As
a consequence, even though the 2-stage precoding matrix Cl

changes during network operation on a sub-channel and time-
slot basis, compensating for the fast fading effect, this does not
affect the average spatial process in the operating bandwidth of
interest, which is the REM estimation target. The CQM γ(x) is
thus related to both the GoB layout generated by the mMIMO
transmission technology, determined by the 1-stage precoding
matrix, Gl, and by the environmental attenuation (path loss
and shadowing). To compute γ(x) from the simulated channel,
we adopt the Mutual Information Effective SINR Mapping
(MIESM) method [22]. In this way, we get the effective SINR
over the set of considered sub-channels B, that we average
both in frequency and time, over an observation period of
adequate length (3s were used for our results).

We generate the REM via computer simulations, consid-
ering a spatial grid with a resolution of 1 square meter.
Regarding the propagation model, an Urban Macro-cell IMT
scenario with outdoor users is considered. The PL is modeled
according to the M.2135 model [23]. The fast fading is
modeled through pre-computed traces generated according
to [24]. The shadowing is also simulated based on the same
3GPP specification. In Fig. 2-(a), we show the outcome of a
simulation run: the impact of the spatial power distribution
due to the GoB technique is evident from the power patterns.

III. ESTIMATION METHOD

We represent the spatial process of the average effective
SINR γ(x) as a random field in the two-dimensional space. In
what follows, spatial functions are expressed in the dB domain.
We have

γ(x) = µ(x) + δ(x), (3)

where µ(x) denotes the mean field and δ(x) is the so-called
residual process, both functions of the position x ∈ X = R2.

For the map estimation, we decide to consider the residual
process δ(x) to represent the shadowing process, that in the
dB domain is usually modeled (see, e.g., [8]) as a Gaussian
process (GP) with positive semidefinite covariance K : X ×
X −→ R, then we have γ(x) ∼ GP(µ(x),K(x,x′)). The GoB
effect and the path loss, instead, are represented by the mean
field µ(x).

A. Regression

The regression consists in jointly estimating the mean
field and the shadowing process. To apply the regression all
the hyperparameters of the systems are required: in Section
III-C we illustrate the learning strategies that we adopt. The
shadowing is modeled as a Gaussian process (see [8]) with
covariance function

K(x,x′) = λ2 · exp (−‖x− x′‖
dc

),

where dc is the shadowing correlation distance and λ2 is the
process variance. The mean µ(x) of the process in (3) is here
modeled as a linear combination of m basis functions defined
on the space domain,

µ(x) =
m∑
k=1

wkφk(x), {φk : X −→ R}mk=1. (4)

We consider a dataset D = {xi, yi}Ni=1 of N crowd-
sourced measurements y1, ..., yN collected at spatial positions
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Fig. 1: Sets of used basis functions: Fourier bases and Cheby-
shev polynomials.

x1, ...,xN . In what follows, y = [y1, ..., yN ]T . We consider
the standard measurement model yi = γ(xi) + εi, where
ε ∼ N (0, σ2I), ε = [ε1, ..., εN ]T . Given a well defined kernel
function K(x,x′) associated with a map γ(x) with mean µ(x)
(see (4)), it is well known (see [25], [26]) that the optimal
least-squares measurement-based estimate of the process in
position x is

γ̂(x) =
N∑
i=1

ĉiKxi(x) +
m∑
k=1

ŵkφk(x), (5)

where Kxi(x) = K(xi,x), and, defining ŵ := [ŵ1, ..., ŵm]T

and ĉ = [ĉ1, ..., ĉN ]T , the optimal coefficients are as follows,

ŵ = (ΦTA−1Φ)−1ΦTA−1y, (6)

ĉ = A−1(y −Φŵ), (7)

(K̄)i,j = K(xi,xj), A = K̄ + σ2I, (Φ)i,j = φj(xi). (8)

With respect to equation (5), a fully parametric estimator
would use only a linear combination of the basis functions
φk(x), while a fully non-parametric estimator only linear
combinations of the kernel sections, Kxi(x).

B. Parametric space for GoB estimation

The mMIMO JSDM scheme strongly impacts the radio map
because of the many directional beams emitted in different
angular directions producing the GoB configuration. Given
this symmetric peculiarity of the GoB impact on the REM,
we introduce a parametric space made up of bases that, con-
sidering a reference system with origin corresponding to the
BS location, are functions of the angular variable. Considering
for convenience polar coordinates, we write: x = (x1, x2) =
(ρ, θ) = (‖(x1, x2)‖, arctan(x2/x1)). We consider a basic
PL estimator using the bases (φ1(x), φ2(x)) = (1, ρ), while
the parametric space for GoB estimation is spanned by the
basis functions ψ1(θ), ..., ψmθ (θ). The overall set of bases thus
becomes

(φ1(x), ..., φm(x)) = (1, ρ, ψ1(θ), ..., ψmθ (θ)),

where mθ represents the number of bases we use for θ. We
consider two sets of bases for the angular variable, specifically
Fourier bases (ψ(F)

k (θ)) and Chebyshev polynomials (ψ(C)
k (θ))

ψ
(F)
k (θ) = cos (kθ), ψ

(C)
k (θ) = cos (k cos−1(θ)).

Fourier bases are widely used for function approximation [19],
while Chebyshev polynomials are orthogonal polynomials that
have been used in the context of antenna radiation pattern
reconstruction [20]. In Fig. 1, some of the bases are plotted
for both function types.

Given the dataset D, the matrix Φ takes the form

Φ =

1 ρ1 ψ1(θ1) . . . ψmθ (θ1)
...

...
...

1 ρN ψ1(θN ) . . . ψmθ (θN )

 .
A good value for the hyperparameter mθ can be learned from
the data by cross-validation. Clearly, to limit the estimator
complexity, mθ shall be kept as small as possible. Simulation
results for the selection of mθ are discussed in Section IV.

C. Hyperparameters learning

The set of model hyperparameters is P = {σ, λ, dc}. In
what follows, we denote the matrix A of equation (8) by
A(P) = AP to underline its dependence on P . The basic
approach is to exploit (6) to set up a maximum marginal like-
lihood (ML) estimation procedure, i.e., the hyperparameters
maximize the total probability where the shadowing process
is integrated out. In particular, plugging equation (6) into the
likelihood function, omitting terms not depending on P , one
gets [26]

L1(P ; y) = −1

2
log(|AP |)−

1

2
yTP(AP)y, (9)

where

P(AP) = A−1P −A−1P Φ(ΦTA−1P Φ)−1ΦTA−1P , (10)

where Φ is as in (8). To learn the hyperparameters one then
needs to maximize (9) over P . This method is known to be
biased because of the loss in the degrees of freedom from
estimating ŵ [26]. To compensate for this bias, an alternative
approach is to consider not only the shadowing function as a
zero-mean Gaussian process, but also the coefficients wk as
random, by modelling them as zero-mean Gaussian random
variables with variance a and rewriting γ of (3) as

γ̃(x) =
m∑
k=1

wkφk(x) + δ(x),

where δ(x) ∼ GP(0,KP(x,x′)), and w ∼ N (0, aI), w =
[w1, ..., wm]. If γ̂(x) is the optimal least squares solution to
the estimation problem, defining γ̃a(x) = E[γ̃(x)|y1, ..., yN ],
we have that (see [25] for a proof), lima→∞ γ̃a(x) = γ̂(x) for
any fixed x. For a finite, we get the data covariance matrix as

K̃
(a)
P = E[yyT ] = aΦΦT + AP .

We can then learn the hyperparameters by maximizing the
standard log-likelihood with the obtained covariance matrix

L
(a)
2 (P ; y) = −1

2
yT (K̃

(a)
P )−1y − 1

2
log |K̃(a)

P |. (11)

As we take the limit over a, there exists a closed form
expression for the resulting covariance matrix, in particular
(see [25], (1.5.12)), we have

lim
a→∞

(K̃
(a)
P )−1 = P(AP), (12)
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Fig. 2: Comparison of estimated maps for N = 150 measure-
ment points (black circles) for an antenna array configuration
with n = 16 beams.

where P(AP) is defined in equation (10). The likelihood
function obtained plugging (12) into (11) can be rewritten as

L2(P ; y) := lim
a→∞

L
(a)
2 (P ; y)

= L1(P ; y)− 1

2
log |ΦTA−1P Φ|,

(13)

which is equivalent to the so-called restricted maximum like-
lihood (REML). In [27], REML was proposed to perform
hyperparameters learning for REM estimation, but in that work
a small number of basis functions was used and only to capture
the path loss effect. Furthermore, REML and ML were not
compared and no numerical results were provided. Differently,
in Section IV we provide a detailed numerical performance
analysis for the considered hyperparameters learning strate-
gies.

IV. RESULTS

In this section, we assess the effectiveness of the proposed
techniques in reconstructing REMs in a massive MIMO sector.

While the results shown were obtained with dc = 25m,
that is a typical value for the shadowing in urban environ-
ments, similar results were also attained with dc = 10m and
dc = 15m, other typical values for the shadowing correlation
distance. The other hyperparameters are set to λ = 6dB
and σ = 10−2. The choice of mθ was made through cross-
validation via parametric estimation - thus assuming the kernel
function to be unknown - from a set of N = 250 measurement
points. A good choice turned out to be mθ = 50.

In Fig. 2, we show the original radio map along with those
estimated using three different approaches: (a) is the original
map, (b) is the map obtained by restricting the parametric part
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Fig. 3: Comparison of the hyperparameters learning strategies
illustrated in Sec. III-C for the estimation of dc. Results are
shown for an antenna array configuration with n = 16 beams.
The red line denotes the true correlation distance used to
simulate the shadowing process, dc = 25m.
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Fig. 4: MSE performance vs number of measurement points,
N . The two semi-parametric estimation approaches (Fourier
and Chebyshev) are compared, together with hyperparameters
learning strategies. Results for n = 16 (left) and n = 32 (right)
antenna beams are shown.

of the estimator to the PL. This approach is referred to as non-
parametric, as the GoB effect is entirely captured by means
of non-parametric estimation. Map (c) is obtained by only
relying on parametric estimation for both PL and GoB, where
the latter is estimated via Fourier bases. Map (d) is obtained
using the proposed semi-parametric regression method, where
Fourier bases are used as described in Section III-A.

In Fig. 3, we show the results of the two hyperparameters
learning strategies described in section III-C for the most
relevant hyperparameter, dc. To optimize L1 and L2, we iterate
along possible values of the hyperparameters, considering
a sufficiently small granularity in their domain sets, and
compute the values of the function in the considered domain
points. From the obtained grid we obtain an estimate of the
maximizing tuple of hyperparameters. The box plots display
the median, first and third quartiles, minima, maxima and
outliers. For this graph, we executed p = 40 experiments
in which N = 200 measurement points were randomly
selected according to a uniform spatial distribution. The results
demonstrate the improvement provided by L2 in terms of
learning accuracy, and also confirm that L1 is biased.

In Fig. 4 and 5, we evaluate the map estimation accuracy
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Fig. 5: MSE estimation performance vs number of measure-
ment points, N . Results for n = 16 (left) and n = 32 (right)
antenna beams are shown. SP stands for semi-parametric
estimation.

in terms of Mean Squared Error (MSE) against the number of
measurement points, N . For each choice of N , we executed
p = 40 experiments and plotted the average MSE and the
median confidence interval by randomly selecting the test
points in unmeasured locations.

In Fig. 4, we compare the two basis functions (called
Chebyshev and Fourier for brevity) and the hyperparameters
learning strategy (L1 vs L2) for n = 16 and n = 32 antenna
beams. For each experiment (a point in the plot), the learned
hyperparameters (see Fig. 3) are used to define the kernel
function. The results indicate that the Fourier basis provides
the best accuracy. Furthermore, while using L1 in place of L2

provides a worse performance for Chebyshev, the difference
is minimal for Fourier.

Finally, in Fig. 5 we compare the Fourier-based semi-
parametric method against two competing strategies: the non-
parametric and the purely parametric approaches, which were
respectively used to obtain Figs. 2-(b) and 2-(c). The proposed
method (“SP-Fourier bases” in the figure) achieves the best
estimation accuracy for all the considered values of N .

V. CONCLUSION AND FUTURE WORK

In this letter we studied crowdsourcing-based REM con-
struction in a massive MIMO system through intensive simu-
lation. Future research includes the study of the effectiveness
of the proposed approach with datasets built upon real-world
measurement campaigns and the extension of the setup to
realistic 5G cellular systems like, e.g., urban and vehicular
scenarios, including mobility and multiple base stations.
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