
Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

ARTICLE TYPE

A Quantitative Cross-Comparison of Container Networking
Technologies for Virtualized Service Infrastructures in Local
Computing Environments

Awais Aziz Shah1,2 | Giuseppe Piro*1,2 | Luigi Alfredo Grieco1,2 | Gennaro Boggia1,2

1Department of Electrical and Information
Engineering (DEI), Politecnico di Bari, Italy

2Consorzio Nazionale Interuniversitario per
le Telecomunicazioni (CNIT), Italy

Correspondence
*Giuseppe Piro, Department of Electrical
and Information Engineering (DEI),
Politecnico di Bari, Italy.
Email: giuseppe.piro@poliba.it
Present Address
Department of Electrical and Information
Engineering (DEI), Politecnico di Bari, Italy

Summary

Container networking is emerging as a game-changer paradigm for the deployment
of virtualized service infrastructures in a faster and reliable way. Nevertheless, Small
and Medium Enterprises are still skeptical to revise their business in this direction
because of the absence of deep studies showing its effectiveness in real deployments
leveraging local computing environments. To bridge this gap, this paper presents a
quantitative cross-comparison of cutting-edge technologies for container networking
(includingDocker as a container engine, Docker Swarm andKubernetes as orchestra-
tors, bare-metal and OpenStack cloud as deployment platform), properly integrated
to realize a virtualized service infrastructure within a commercial workstation. Ini-
tial experimental tests are conducted to identify the most suitable combination of
technologies for high-load environments, where many clients contact the virtualized
service infrastructure to download files of large size. Obtained results demonstrate
that the combination of Docker and Kubernetes generally ensures better performance
on the bare-metal deployment platform, thus emerging as mature and effective solu-
tions to be used by Small and Medium Enterprises. Finally, the behavior of the
identified virtualized service infrastructure is also evaluated in a smart farm use case,
where containers are in charge of processing images provided by mobile drones for
monitoring purposes. Also, in this case, the conducted study highlights the promis-
ing capability offered by container networking in real deployments, exploiting local
computing environments.
KEYWORDS:
Container Networking, Virtualized Service Infrastructures, Local Computing Environment, Experimental
Analysis.

1 INTRODUCTION

As well known, virtualization gives the opportunity to optimize the usage of hardware resources and to conceive advanced and
isolated services through a common (frequently distributed) platform1,2. Since decades, virtualization was achieved by using
Virtual Machines, that are emulator of computers having their own kernels, managed by a hypervisor system3,4. More recently,
instead, a novel virtualization technology, namely container, is gaining momentum. Different from Virtual Machines, containers

2 Awais Aziz Shah ET AL

act as high-level applications running on top of the sameOperating System5− 7, thus offering quick startup time, rapid application
loading, less memory space requirement, a swift recovery from failure, and portability (e.g., build once and run anywhere).
Furthermore, thanks to the container networking paradigm, containers can interact with each other, while paving the road to a
new way to conceive applications with less cost and reduced time-to-market and revising the industry business8− 10.
At the time of this writing, TechGiants (like VMWare, Xen,Microsoft, Amazon, andGoogle) already offer subscription-based

solutions for deploying virtualized service infrastructures in the cloud11. On the other hand, Small and Medium Enterprises
(SMEs) would like to implement their own virtualized service infrastructures into local computing environments (apart the deep
control and personalization of implemented functionalities, it would erase heavy subscription fees related to the usage com-
mercial clouds)12,13. Theoretically, this is possible thanks to the presence of a number of open-source technologies enabling
container networking14− 41. Nevertheless, SMEs are still skeptical about the usage because of the following two main reasons.
First, the effective usage of container networking requires the selection and the joint integration of container engines (i.e, the
technology that effectively implements the container), orchestrator (i.e, the technology that is responsible for managing, schedul-
ing, and deploying individual containers for applications within the cluster, while offering load balancing and service discovery
functionalities), and many other supporting tools that make possible their implementation and usability in specific platforms.
Unfortunately, this task cannot be successfully and quickly achieved by SMEs with limited technical skills and revenue to spend
on research and development activities42. Second, the scientific literature either investigated the behavior and the performance
of containers against Virtual Machines or the technologies enabling container networking separately (for more details, see the
summary of the state of the art discussed in Section 2). Thus, there are no contributions that address a quantitative investigation
of the joint integration of containerization technologies in local computing environments, along with a clear description of the
pros and cons characterizing the popular solutions available today.
To bridge this gap, this paper presents an experimental cross-comparison of cutting-edge technologies for container network-

ing, properly integrated to realize a virtualized service infrastructure in local computing environments. Specifically, a centralized
orchestrator is configured to offer service discovery and load balancing functionalities (i.e., management of clients’ requests and
their distribution to available containers). At the same time, some containers are deployed to expose resources and advanced ser-
vices to remote clients. By considering the main outcomes of a qualitative analysis of containerization technologies presented
(by the same authors of this work) in43, the set of technologies investigated herein includes: (1) Docker as the container engine,
(2) Docker Swarm and Kubernetes as orchestrators with load balancing and service discovery capabilities, (3) bare-metal and
OpenStack cloud as deployment platforms and (4) Docker-compose, Docker-Machine, Kubeadm, and Flannel as supporting tools
for scheduling and deployment functionalities. Due to the possible combinations between the selected orchestrator technologies
(i.e., Docker Swarm and Kubernetes) and deployment platforms (i.e., bare-metal and OpenStack cloud), four different experi-
mental testbeds have been implemented within a commercial workstation having computing capabilities that are comparable to
those available in most of SMEs realities.
Initial experimental tests are conducted to identify the most suitable combination of technologies for high-load environ-

ments (i.e., when the whole system is in change of managing a high traffic load), where many clients contact the virtualized
service infrastructure to download files of large size. Clients’ requests are generated through the Poisson statistics from a lap-
top, connected to the aforementioned virtualized service infrastructures through a real-world network. Moreover, different Key
Performance Indicators (KPIs), that include CPU utilization, memory footprint, network load, connection delay, and request
completion time, are measured by assuming an average number of requests per unit of time equal to 5 and 10 requests/minute.
Obtained results demonstrate that the integration of Docker and Kubernetes on the bare-metal deployment platform provides
better performance in terms of percentage of CPU used by containers, distribution of the network load over the time and among
the deployed containers, connection delay, and request completion time, while registering a slight (but still acceptable) increment
of the memory footprint.
To provide further insight, the behavior of the more performant technologies is also evaluated in a more complex scenario of

a smart farm use case. Differently from the previous case, a variable number of drones flying in a smart farm is now emulated on
two laptops, connected to the virtualized service infrastructure by means of two different wireless access points. Drones gener-
ate livestock pictures with a Poisson statistic and deliver them to the virtualized service infrastructure. The service orchestrator
forwards these pictures to available containers, which will recognize the type and the number of animals within the pictures
through a machine learning-based image processing elaboration. The outcome of this processing is finally delivered to a remote
server for monitoring purposes. This new campaign of experimental tests remarks that the behavior of the virtualized service
infrastructure is not drastically influenced by the presence of mobile users: in any case, the service orchestrator is able to prop-
erly forward users’ requests to available containers, while guaranteeing a uniform balancing of computing tasks. The execution

Awais Aziz Shah ET AL 3

of heavy tasks inevitably brings to higher computing and memory requirements, while reducing the overall traffic load. Never-
theless, the tests fully confirm that the combination of Docker and Kubernetes on the bare-metal deployment platform represents
a suitable solution for effectively exploiting container networking capabilities in real deployments with local (hence limited)
computing capabilities.
The rest of the paper is organized as follows: Section 2 presents background on container networking and reviews the state

of the art. Section 3 deeply describes the technologies taken into the account in this study and illustrates the implemented
experimental testbeds. The quantitative cross-comparisons, between the identified technologies for container networking are
presented in Section 4. Finally, Section 5 concludes the work and draws future research activities.

2 BACKGROUND ON CONTAINER NETWORKING

Virtualization generally refers to the implementation of an additional layer above the host Operating System, aiming at provid-
ing a separate environment for running applications with virtually allocated resources14. In the past, a popular hypervisor-based
approach was adopted for virtualization, known as Virtual Machines. A Virtual Machine represents an emulated computer
within a virtualization environment, having its own guest Operating System and kernel, and works above the host Operating
System11. More recently, instead, containers emerged as a game-changer in the virtualization context. They can implement ser-
vices and networking functionalities at the application layer of a given Operating System. Since containers emotively share the
same Operating System, they generally ensure better usage of hardware resources through virtualization14. At the same time,
containers embrace their own binaries, libraries, and runtime component, provide portability and agility (i.e., once built, they
run anywhere), and introduce a new disruptive way to design and deploy future applications and services11. The comparison
between containers and Virtual Machines were investigated in many works, including4,6,11,15− 37 44− 50. The majority of these
studies compare CPU and memory usage, disk input/output, execution time, and network load of both virtualization technolo-
gies and clearly highlight that containers perform better or equal to Virtual Machines. According to the container networking
paradigm, containers can interact with each other, while offering the opportunity to deploy novel applications over distributed
and virtualized environments51. To reach this goal, however, it is necessary to integrate technologies implementing container
engine, orchestrator, load balancer, and service discovery tools within a specific deployment platform.
Regarding the deployment platform, two main solutions are adopted today: bare-metal and OpenStack cloud. Bare-metal

refers to the conventional physical system, where available hardware resources (e.g., compute, storage, and other resources)
are managed by the computer’s main Operating System. Here, all the resources are acquired by a single user52. During the
latest years, instead, OpenStack emerged as a leading open-source solution for the setup of both small and large scale cloud
operating environments7. It provides virtualized resources and workspace to multiple independent users44 49. Surely, containers
can be deployed within both bare-metal and OpenStack deployment platforms53− 56. However, the work discussed in38,39 remark
that containers deployed in OpenStack cloud load quicker as compared to bare-metal systems. However, there are no other
contributions that investigate the performance of containers deployed on bare-metal and OpenStack cloud in other directions.
In the container networking context, the deployment of scalable applications over multiple nodes is achieved through an

orchestrator. Specifically, the orchestrator automates and controls many tasks, such as provisioning and deployment of contain-
ers, redundancy, and availability of containers, scaling, and removing containers to spread application load evenly across host
infrastructure. The role of orchestrator is very important in large and dynamic environments. Surveys conducted on this topic
report that there is a need for research activities to evaluate the impact of technologies implementing orchestration functionalities
in the container networking context40,41.
The horizontal distribution of traffic across multiple containers in a cluster is carried out by a load balancer. This task is

necessary to prevent containers from getting overloaded and ensure service availability. At the time of this writing,4 is the only
contribution presenting some technological details related to the orchestrator used in their test. Also in this case, however, the
contribution does not discuss a comparison among different technologies offering the same functionalities.
A qualitative cross-comparison of emerging technologies for container networking (including container engines, orchestrators,

load balancers, and service discovery tools) have been performed by the same authors of this work in43. The results of the
comparison highlight that Docker is a powerful emerging container engine that works onmultiple platforms, and that Kubernetes
and Docker Swarm are the open-source orchestration technologies that come up with built-in scheduler, load balancer, and
service discovery functionalities.

4 Awais Aziz Shah ET AL

TABLE 1 Summary of the investigated state of the art.

Re
fer

enc
eP

ape
rs

Co
nta

ine
rre

sou
rce

uti
liz
ati
on

Co
mp

ari
son

wi
th

Vir
tua

lM
ach

ine

Ne
two

rk
per

for
ma

nce

Or
che

str
ati
on

Im
ple

me
nta

tio
ni

nt
he

Clo
ud

Im
ple

me
nta

tio
no

nb
are

-m
eta

l

loa
db

ala
nce

r

4 ✓

11 ✓ ✓ ✓

15 ✓ ✓ ✓

16,18,37 ✓ ✓ ✓

17,19,20,26,31− 35 ✓ ✓ ✓ ✓

21 ✓ ✓

22,36 ✓ ✓ ✓

23,24,57 ✓ ✓

27 ✓

28,58 ✓ ✓

29 ✓

30 ✓ ✓ ✓ ✓

38 ✓ ✓

39 ✓ ✓ ✓ ✓

40 ✓

41 ✓ ✓ ✓

59,60 ✓ ✓

61 ✓ ✓

62 ✓ ✓

63 ✓

This work ✓ ✓ ✓ ✓ ✓ ✓

Table 1 summarizes the topics covered by the current scientific literature, including the analysis of container resource utiliza-
tion, comparison with Virtual Machine, network performance, orchestration, implementation in the cloud and bare-metal, and
load balancer implementation. It emerges that at the time of this writing, to the best of the Author’s knowledge, there are no

Awais Aziz Shah ET AL 5

contributions that implement the integration of state of the art enabling technologies for container networking. For this reason,
there is a need for a quantitative cross-comparison of cutting-edge technologies for container engine, and orchestrators with load
balancing and service discovery features deployed on multiple deployment platforms.

3 INTEGRATION OF CUTTING-EDGE TECHNOLOGIES ENABLING THE CONTAINER
NETWORKING PARADIGM

This section presents a detailed description of the developed virtualized service infrastructure based on container network-
ing. Starting from the main outcomes of the qualitative cross comparison of container networking technologies presented in43,
Docker has been selected as the reference container engine, whereas Docker Swarm and Kubernetes are considered as possible
orchestrators offering load balancing and service discovery capabilities. Note that the integration of these technologies requires
the usage of additional supporting tools (i.e., Virtualbox, Docker-compose, Docker-Machine, Kubeadm, and Flannel), as dis-
cussed below. The whole virtualized service infrastructure, instead, has been realized through bare-metal and OpenStack cloud
deployment platforms.
Without loss of generality, the developed scenario embraces virtual machines. One of them hosts the orchestrator and a

container application. The rest of the virtual machines, instead, implements container applications only. The virtualized service
infrastructure is able to receive multiple requests issued through the HTTP protocol. In particular, the former request is handled
by the container placed within the virtual machine hosting the orchestrator. In case of multiple requests, instead, the orchestrator
activates the load balancing functionality to distribute them across the rest of the available containers.
Given the possible combinations of orchestrator technologies and deployment platforms, four different experimental testbeds

have been realized:
• Testbed 1: integration of Docker and Docker Swarm on bare-metal. In the bare-metal deployment platform, the

Docker-Machine supporting tool is used to deploy the whole virtualized service infrastructure. First of all, four virtual
machines are created through Virtualbox. According to the Docker Swarm technology, one of these virtual machines has
been configured as the Swarm Manager, which represents the orchestrator running service discovery and load balancing
functionalities. The setup of the Swarm Manager implies the creation of the Docker Bridge and the Docker API Proxy
System. The former provides a communication bus for interconnected containers. The latter defines a unified interface
between the real-world network and the virtualized service infrastructure. A join-token provided by the SwarmManager is
used by other virtual machines for establishing a connection with the Swarm Manager and the Docker API Proxy system.
After joining the Swarm Manager, the other three virtual machines are configured as slave nodes, namely Swarm Work-
ers. From this moment on, Swarm Manager and Swarm Workers can also interact with each other through the Docker
Bridge. At the same time, Swarm Manager and Swarm Workers can communicate with the external real-world network
through the Docker API Proxy System, as depicted in Figure 1.
On the Swarm Manager, a YAML file is used to describe the structure of the virtual environment to be deployed and
the services to be executed in each container. Then, the Docker-compose supporting tool is used to launch the container
application on each virtual machine.
Now, a client can issue its request, that will be delivered to the developed virtualized service infrastructure through the
real-world network. Figure 1 explains the resulting communication pattern. First, the client request is received by the
Swarm Manager via the Docker API Proxy System (step 1). Then, the Swarm Manager distributes the incoming requests
among available containers. The distribution follows a round-robin approach, starting from the container available within
the nodes hosting the Swarm Manager. The example reported in Figure 1 shows that the request is forwarded to the
container installed on the first Swarm Worker through the Docker bridge (step 2). Then, the Swarm Worker answers to
the given client by sending back the requested content through the Docker API Proxy System (step 3). Finally, the Swarm
Worker updates its status with the Orchestrator on the Docker Bridge (step 4).

• Testbed 2: integration of Docker and Kubernetes on bare-metal. This testbed still uses the bare-metal deployment
platform. The virtualized service infrastructure depicted in Figure 2 highlights the presence of four virtual machines
created through Virtualbox. Docker and Kubernetes packages are installed into each virtual machine.
The Kubernetes cluster embraces two kinds of nodes: Kube Master and Kube Worker. The former one is the orchestrator,
which implements service discovery and traffic load functionalities. The latter one, instead, refers to the generic node

6 Awais Aziz Shah ET AL

FIGURE 1 Testbed 1: integration of Docker and Docker Swarm on bare-metal.

controlled by the orchestrator and exposing a service or a resource. On the other side, the Flannel supporting tool is
properly configured to create an overlay network that interconnects the nodes belonging to the Kubernetes cluster. The
Kube Manager is declared and a Kube Proxy System is created, which manages the communication with the client. The
join-token returned by the Kube Manager is used by the other virtual machines for establishing a connection with the
orchestrator. From now onwards, the Kube Workers are connected with the Kube Master, Kube API Proxy System for
communication with the client, and the Flannel overlay network for exchanging internal information.
A YAML file is used to describe the structure of the virtual environment to be deployed and the services to be executed
in each container. Then, the deployment of containers is created and exposed in the cluster through Kubernetes.
Now, the virtualized service infrastructure is ready to handle the client requests. Figure 2 describes the resulting commu-
nication pattern: First, the client request is received by the Kube Master via the Kube API Proxy System (step 1). Then,
the Kube Master distributes the incoming requests among available containers. The distribution exploits the round-robin
approach, which starts by delivering the first client request to the container installed on the same machine of the Kube
Master. The example shown here demonstrates that the request is forwarded to the container deployed on the first Kube
Worker through the Flannel overlay network (step 2). Then, the Kube Worker answers to the given client by sending back
the requested content through the Docker API Proxy system (step 3) Finally, the Kube Worker exchange its state with the
Kube Master on the Flannel overlay network (step 4).

FIGURE 2 Testbed2: integration of Docker and Kubernetes on bare-metal.

• Testbed 3: integration of Docker and Docker Swarm on OpenStack cloud. This testbed is based on a different deploy-
ment platform, which is an OpenStack cloud. It firstly requires the configuration of key components of the OpenStack
cloud, that are: 1) Nova, the primary computing engine behind OpenStack), 2) Swift, a storage system for objects and files,
3) Cinder, a block storage component that allows access to specific locations on a disk drive, 4) Neutron, the entity provid-
ing the networking capability to the overall virtualized environment, 5) Keystone, the security manager, and 6) Glance, the

Awais Aziz Shah ET AL 7

component providing virtual machine images. Once installed on the physical machine, OpenStack cloud can be initially
managed through its graphical user interface or command-line instructions. Different from the bare-metal deployment
platform, OpenStack cloud does not require the Virtualbox tool. It is able to autonomously create virtual machines, which
are simply referred to as instances.
By default, OpenStack cloud creates a virtual network infrastructure made up of private and public networks. All the
instances are installed within the private network. They have their private IP addresses and can communicate with the
external real-word network through a virtual router running the Network Address Translation (NAT) protocol.
The integration of Docker and Docker Swarm into the private network of the OpenStack cloud is achieved by means of
the same approach already explained for the Testbed 1. One of the OpenStack cloud instances is designed as the Swarm
Manager. The setup of the Swarm Manager implies, as expected, the creation of both Docker Bridge and Docker API
Proxy System which handles the client communication. The join-token returned by Swarm Manager is used by other
virtual machines for establishing a connection with the Swarm Manager and the Docker API Proxy system. The other
three virtual machines are configured as slave nodes, namely Swarm Workers.
From this moment on, Swarm Manager and Swarm Workers can interact with each other through the Docker Bridge
and with the client through the Docker API Proxy System, within the private network created in the OpenStack cloud,
as depicted in Figure 3. The Docker-compose supporting tool has been used to launch a container application in each
virtual machine. Now, the client requests can access to the virtualized service infrastructure. The resulting communication
process has been presented in Figure 3. The Swarm Manager receives the client request via Docker API Proxy System
(step 1). Likewise, Testbed 1, the Swarm Manager distributes the incoming requests to the available containers according
to the round-robin technique. In this example, the request is forwarded to the container installed on the first SwarmWorker
through the Docker bridge (step 2). Then, the Swarm Worker answers to the given client by sending back the requested
content of the container through the Docker API Proxy System (step 3). Finally, the SwarmWorker updates its status with
the Swarm Manager through the Docker bridge (step 4).

FIGURE 3 Testbed 3: integration of Docker and Docker Swarm on OpenStack cloud.

• Testbed 4: integration of Docker and Kubernetes on OpenStack cloud. In this final deployment, the OpenStack cloud
is used to create the four instances within the private network. Then, Kube Manager and Kube Workers are configured as
already discussed for the Testbed 2.
Indeed, the Kube Manager is declared by means of the kubeadm tool. As mentioned before, a join-token be used by the
other virtual machines for establishing a connection with the orchestrator, within the private network of the OpenStack
cloud. Within the Kube Manager, a YAML file is used to describe the structure of the virtual environment to be deployed

8 Awais Aziz Shah ET AL

and the services to be executed in each container. The Flannel supporting tool is properly configured to create an overlay
network that interconnects the nodes belonging to the Kubernetes cluster. Also, in this case, a virtual router is implemented
with NAT rules that connect the virtualized service infrastructure with the real-world network.
Then, Kubernetes creates and exposes the deployment of the containers in the cluster. From this moment on, the Kube
Manager and Kube Workers are connected to the Kube API Proxy System for communication with the client and the
Flannel overlay network for exchanging information.
Now the client can make a request, that will be delivered to virtualized service infrastructure. As seen in Figure. 4, the
client’s request is handled in the same pattern by the Orchestrator as already discussed in Testbed 2.
Now, the client requests can access to the virtualized service infrastructure. The resulting communication process has been
presented in Figure 3. The Swarm Manager receives the client request via Docker API Proxy System (step 1). Likewise,
Testbed 1, the Swarm Manager distributes the incoming requests to the available containers based on the round-robin
technique. In this example, the request is forwarded to the container installed on the first Swarm Worker through the
Docker bridge (step 2). Then, the SwarmWorker answers to the given client by sending back the requested content of the
container through the Docker API Proxy System (step 3). Finally, the Swarm Worker updates its status with the Swarm
Manager through the Docker bridge (step 4).

FIGURE 4 Testbed 4: integration of Docker and Kubernetes on OpenStack cloud.

4 CROSS COMPARISON AND PERFORMANCE ASSESSMENT

This Section presents a cross-comparison and performance assessment of the reviewed and integrated cutting-edge technologies
enabling the container networking paradigm. Specifically, two campaigns of experimental tests are discussed below. First, the
behavior of four Testbeds described in Section 3 is investigated in a high-load environment, where many clients contact the
virtualized service infrastructure to download files of large size. This study is useful to identify the most suitable combination
of technologies ensuring better performance in computing environments typically available for Small and Medium Enterprises.
Second, the performance of the identified virtualized service infrastructure is also evaluated in a smart farm use case, where
containers are in charge of processing images provided by mobile drones for monitoring purposes. In this case, the analysis
would highlight the promising capabilities offered by container networking in real deployments, exploiting local computing
environments.
The computing architecture adopted in both tests is a commercial workstation with Intel® Xeon(R) E5-16200 CPU (made

up of 8 cores working at 3.60 GHz each), 16 GHz RAM, and Ubuntu 18.04.2 LTS Operating System. Of course, the proposed

Awais Aziz Shah ET AL 9

implementation can be safely and easily extended to develop more complex scenarios, by using machines with higher computing
capabilities.
Moreover, the conducted analysis considered two groups of KPIs, simply referred to as infrastructure KPIs and end-user KPIs.

Infrastructure KPIs are introduced for describing the behavior of integrated technologies within the virtualization platform. They
include:

• CPU utilization: it refers to the percentage of CPU utilized by the container. It has been monitored by running bash
scripts on each virtual machine for gathering data through the Docker Stats command, which returns a live data stream of
the containers.

• Memory footprint: it represents the amount of main memory consumed by the container, measured in MB. Similar to
the previous case, it was collected by executing bash scripts containing on each virtual machine using the same Docker
Stats command.

• Network load: it reports the average amount of data sent by the container in a unit of time. Indeed, it is expressed in terms
of Mbps. It was measured by running bash scripts inside the containers for monitoring data flow on the internal bridge of
the container, using the brctl command.

On the other hand, the end-users KPIs are defined to evaluate the quality of service experienced by the clients willing to retrieve
the video file exposed by the virtualized service infrastructure. They include:

• Connection delay: it is the amount of time required to establish the connection between the client and the virtualized
service infrastructure at the transport level. It was measured in minutes by running a bash script running at the client-side,
which exploits its TCP features.

• Request completion time: it refers to the amount of time required to download the whole video file. It was measured in
minutes by running a bash script running at the client-side.

4.1 Cross-comparison in a high-load environment
In order to compare the behavior of the four Testbeds described in Section 3 in a high-load environment (i.e., when the whole
system is in change of managing a high traffic load), the virtualized service infrastructure is configured to expose resources to
remote clients. In particular, to verify the right capability of the load balancing functionality to distribute incoming requests
among available containers, each container was configured to host the same data content, which represents a video file of 13
minutes (i.e., a trailer taken from YouTube), encoded at an average rate of 1.45 Mbps. A laptop, connected to the virtualized
service infrastructure through the real-world network, is used to emulate many remote clients willing to retrieve the aforemen-
tioned video content. In this regard, a Python script is used to generate client requests, and the communication between clients
and remote containers is established through the HTTP protocol. To test the impact of the traffic load on system performance,
requests are generated according to the Poisson statistics, where the average number of requests per minute, �, is set to 5 and
10. Finally, while each test lasts 20 minutes, the results are extracted from an intermediate observation interval of 15 minutes.

4.1.1 CPU utilization
Figures 5 and 6 show the CPU usage of different containers deployed within the four investigated testbeds when the average
number of client requests is set to 5 and 10 per minute, respectively. In all the cases, it emerges that the CPU usage registered
by the available containers is almost similar during the time. This demonstrates the ability of all the selected technologies, and
in particular of the load balancing functionalities implemented by the orchestrator, to offer a fair distribution of tasks within the
whole virtualized service infrastructure, independently from the traffic load.
However, to better investigate the different behavior of developed testbeds, the cumulative distribution function of the CPU

utilization values measured for all the containers belonging to a given testbed is reported in Figure 7. From the statistical
perspective, it emerges that the integration of the Kubernetes orchestrator within the bare-metal deployment platform registers
the lowest CPU utilization. On the contrary, the virtualized service infrastructure exploiting the Docker Swarm orchestrator
and using the OpenStack deployment platform achieves the worst performance. In the OpenStack cloud, several components
(previously mentioned in Testbed3) are involved in providing the virtual computing, storage, and networking resources to the

10 Awais Aziz Shah ET AL

0 5 10 15

Time [Min]

0

5

10

15

20

25

C
P

U
 u

sa
g
e

[%
]

Container 1
Container 2
Container 3
Container 4

(a) Testbed 1

0 5 10 15

Time [Min]

0

5

10

15

20

25

C
P

U
 u

sa
g
e

[%
]

Container 1
Container 2
Container 3
Container 4

(b) Testbed 2

0 5 10 15

Time [Min]

0

5

10

15

20

25

C
P

U
 u

sa
g
e

[%
]

Container 1
Container 2
Container 3
Container 4

(c) Testbed 3

0 5 10 15

Time [Min]

0

5

10

15

20

25

C
P

U
 u

sa
g
e

[%
]

Container 1
Container 2
Container 3
Container 4

(d) Testbed 4

FIGURE 5 CPU utilization measured when � = 5 requests/minutes.

0 5 10 15

Time [Min]

0

5

10

15

20

25

C
P

U
 u

sa
g
e

[%
]

Container 1
Container 2
Container 3
Container 4

(a) Testbed 1

0 5 10 15

Time [Min]

0

5

10

15

20

25

C
P

U
 u

sa
g
e

[%
]

Container 1
Container 2
Container 3
Container 4

(b) Testbed 2

0 5 10 15

Time [Min]

0

5

10

15

20

25

C
P

U
 u

sa
g
e

[%
]

Container 1
Container 2
Container 3
Container 4

(c) Testbed 3

0 5 10 15

Time [Min]

0

5

10

15

20

25

C
P

U
 u

sa
g
e

[%
]

Container 1
Container 2
Container 3
Container 4

(d) Testbed 4

FIGURE 6 CPU utilization measured when � = 10 requests/minutes.

Awais Aziz Shah ET AL 11

0 5 10 15 20

CPU usage [%]

0

0.2

0.4

0.6

0.8

1

C
D

F

Testbed 1
Testbed 2
Testbed 3
Testbed 4

(a) �=5 requests/minute

0 5 10 15 20

CPU usage [%]

0

0.2

0.4

0.6

0.8

1

C
D

F

Testbed 1
Testbed 2
Testbed 3
Testbed 4

(b) �=10 requests/minute

FIGURE 7 Cumulative distribution function of CPU utilization measurements.

instances running into the considered deployment platform. This additional computational overhead justifies the higher CPU
usage registered by the testbed leveraging the OpenStack cloud deployment platform.

4.1.2 Memory footprint
Figures 8 and 9 show the amount of memory occupied by the different containers deployed within the four investigated testbeds
when the average number of client requests is set to 5 and 10 requests per minute, respectively. Apart from the different mem-
ory footprint experienced by each testbed, it is very important to highlight these two considerations. First, when the bare-metal
deployment platform is used, the virtual machine hosting orchestrator and container (that is the first one in the presented
implementations) experience a higher memory usage. Second, the memory footprint slightly grows during the first half of the
experiment, when the number of parallel requests is increasing. This behavior is more evident when the average number of
requests per minute is set to 10. Here, in fact, the increment of the traffic load brings to higher memory consumption.
The cumulative distribution functions of the memory footprint values measured for each testbed are depicted in Figure 10.

Results demonstrate that the lowest memory footprint is registered by the integration of Docker Swarm orchestrator into the
OpenStack deployment platform. On the contrary, the adoption of Kubernetes within the bare-metal deployment platform con-
sumes the highest amount of memory. These results reverse the considerations discussed for the CPU utilization: the testbed
registering the highest CPU utilization ensures the lowest memory footprint, whereas the testbed registering the lowest CPU
utilization achieves the highest memory footprint. Indeed, the containers deployed with Kubernetes on the bare-metal platform
perform their tasks by utilizing more memory and less CPU than the technologies available on other testbeds.

4.1.3 Network load
The average amount of traffic generated by each container in a unit of time, when the average number of client requests is set
to 5 and 10 requests per minute, is reported in Figures 11 and 12, respectively. In the case of � = 5 requests per minute, the
deployments with Docker Swarm produces consistently low throughput. On the contrary, the deployment of Kubernetes as the
orchestrator achieves high throughput, thus ensuring that the requests are generally completed in a lower amount of time.

12 Awais Aziz Shah ET AL

0 5 10 15

Time [Min]

15

20

25

30

M
em

o
ry

 u
sa

g
e

[%
]

Container 1
Container 2
Container 3
Container 4

(a) Testbed 1

0 5 10 15

Time [Min]

15

20

25

30

M
em

o
ry

 u
sa

g
e

[%
]

Container 1
Container 2
Container 3
Container 4

(b) Testbed 2

0 5 10 15

Time [Min]

15

20

25

30

M
em

o
ry

 u
sa

g
e

[%
]

Container 1
Container 2
Container 3
Container 4

(c) Testbed 3

0 5 10 15

Time [Min]

15

20

25

30

M
em

o
ry

 u
sa

g
e

[%
]

Container 1
Container 2
Container 3
Container 4

(d) Testbed 4

FIGURE 8 Memory footprint measured when � = 5 requests/minutes.

0 5 10 15

Time [Min]

15

20

25

30

M
em

o
ry

 u
sa

g
e

[%
]

Container 1
Container 2
Container 3
Container 4

(a) Testbed 1

0 5 10 15

Time [Min]

15

20

25

30

M
em

o
ry

 u
sa

g
e

[%
]

Container 1
Container 2
Container 3
Container 4

(b) Testbed 2

0 5 10 15

Time [Min]

15

20

25

30

M
em

o
ry

 u
sa

g
e

[%
]

Container 1
Container 2
Container 3
Container 4

(c) Testbed 3

0 5 10 15

Time [Min]

15

20

25

30

M
em

o
ry

 u
sa

g
e

[%
]

Container 1
Container 2
Container 3
Container 4

(d) Testbed 4

FIGURE 9 Memory footprint measured when � = 10 requests/minutes.

Awais Aziz Shah ET AL 13

10 15 20 25 30

Memory footprint [MB]

0

0.2

0.4

0.6

0.8

1

C
D

F

Testbed 1
Testbed 2
Testbed 3
Testbed 4

(a) �=5 requests/minute

10 15 20 25 30

Memory footprint [MB]

0

0.2

0.4

0.6

0.8

1

C
D

F

Testbed 1
Testbed 2
Testbed 3
Testbed 4

(b) �=10 requests/minute

FIGURE 10 Cumulative distribution function of memory footprint measurements.

The cumulative distribution functions of network load measurements are reported in Figure 13. The results show that high
network throughput is achieved by the integration of Kubernetes on the bare-metal deployment platform. On the opposite side,
the deployment of Docker Swarm on the bare-metal platform produced lower throughput. This behavior is more clearer when
the average number of requests per minute is set to 10. As anticipated before, OpenStack builds on several components that
provide the virtualized network resources to the instances inside the OpenStack cloud. It can be the reason behind the average
network throughput in the case of deployments on OpenStack.

4.1.4 Connection delay and request completion time
To conclude the cross-comparison, the KPIs introduced to evaluate the impact of developed testbeds on the quality of experience
registered by remote clients are discussed below.
As the first set of results, Figures 14 and 15 show the connection delay measured when the average number of client requests

is set to 5 and 10 requests per minute, respectively. As expected, different requests experience different connection delays,
ranging from hundreds of milliseconds to a few seconds. Connection delays tend to increase with the traffic load, because of
the increment of both traffic and tasks the virtualized service infrastructure handles. However, what clearly emerges from the
reported curves is that the adoption of OpenStack as a deployment platform always provides higher connection delays. The
delayed responses from OpenStack cloud is mainly due to the presence of NAT, which introduces an additional communication
latency to the message exchange between clients and the virtualized service infrastructure.
More specifically, the integration of Docker Swarm within the OpenStack deployment platform registers higher connection

delays. Whereas, clients connected to a virtualized service infrastructure embracing the Kubernetes orchestrator and adopting
the bare-metal deployment platform generally registers lower connection delays.

14 Awais Aziz Shah ET AL

0 5 10 15

Time [Min]

0

10

20

30

40

T
h
ro

u
g
h
p
u
t

u
sa

g
e

[%
] Container 1

Container 2
Container 3
Container 4

(a) Testbed 1

0 5 10 15

Time [Min]

0

10

20

30

40

T
h
ro

u
g
h
p
u
t

u
sa

g
e

[%
] Container 1

Container 2
Container 3
Container 4

(b) Testbed 2

0 5 10 15

Time [Min]

0

10

20

30

40

T
h
ro

u
g
h
p
u
t

u
sa

g
e

[%
] Container 1

Container 2
Container 3
Container 4

(c) Testbed 3

0 5 10 15

Time [Min]

0

10

20

30

40

T
h
ro

u
g
h
p
u
t

u
sa

g
e

[%
] Container 1

Container 2
Container 3
Container 4

(d) Testbed 4

FIGURE 11 Network load measured when � = 5 requests/minutes.

0 5 10 15

Time [Min]

0

10

20

30

40

T
h
ro

u
g
h
p
u
t

u
sa

g
e

[%
] Container 1

Container 2
Container 3
Container 4

(a) Testbed 1

0 5 10 15

Time [Min]

0

10

20

30

40

T
h
ro

u
g
h
p
u
t

u
sa

g
e

[%
] Container 1

Container 2
Container 3
Container 4

(b) Testbed 2

0 5 10 15

Time [Min]

0

10

20

30

40

T
h
ro

u
g
h
p
u
t

u
sa

g
e

[%
] Container 1

Container 2
Container 3
Container 4

(c) Testbed 3

0 5 10 15

Time [Min]

0

10

20

30

40

T
h
ro

u
g
h
p
u
t

u
sa

g
e

[%
] Container 1

Container 2
Container 3
Container 4

(d) Testbed 4

FIGURE 12 Network load measured when � = 10 requests/minutes.

Awais Aziz Shah ET AL 15

0 5 10 15 20 25 30

Network load [Mbps]

0

0.2

0.4

0.6

0.8

1

C
D

F

Testbed 1
Testbed 2
Testbed 3
Testbed 4

(a) �=5 requests/minute

0 5 10 15 20 25 30

Network load [Mbps]

0

0.2

0.4

0.6

0.8

1

C
D

F

Testbed 1
Testbed 2
Testbed 3
Testbed 4

(b) �=10 requests/minute

FIGURE 13 Cumulative distribution function of network load measurements.

0 5 10 15

Time [Min]

10
-2

10
0

10
1

R
es

p
o
n
se

 d
el

ay
 [

S
ec

] Testbed 1
Testbed 2
Testbed 3
Testbed 4

(a) Measured values during the time

10
-3

10
-2

10
-1

10
0

10
1

Response delay [Sec]

0

0.2

0.4

0.6

0.8

1

C
D

F

Testbed 1

Testbed 2

Testbed 3

Testbed 4

(b) Cumulative distribution function

FIGURE 14 Connection delays measured when � = 5 requests/minutes.

16 Awais Aziz Shah ET AL

0 5 10 15

Time [Min]

10
-2

10
0

10
1

R
es

p
o
n
se

 d
el

ay
 [

S
ec

] Testbed 1
Testbed 2
Testbed 3
Testbed 4

(a) Measured values during the time

10
-3

10
-2

10
-1

10
0

10
1

Response delay [Sec]

0

0.2

0.4

0.6

0.8

1

C
D

F

Testbed 1

Testbed 2

Testbed 3

Testbed 4

(b) Cumulative distribution function

FIGURE 15 Connection delays measured when � = 10 requests/minutes.

The request completion time measured when the average number of client requests is set to 5 and 10 requests per minute are
reported in Figures 16 and 17, respectively. In line with previous results, the request completion time tends to increase in the first
half of the experimental tests, because of the increment of the number of concurrent requests. The higher the number of active
requests, in fact, the higher the number of tasks executed by the components belonging to the virtualized service infrastructure.
That, in turn, provokes the introduction of additional latencies. Here, the impact of the traffic load is tremendous: on the average,
the request completion time registers an increment of about 10 minutes. In any case, however, the results demonstrate that
the deployment with Kubernetes and bare-metal achieves better results. On the contrary, Docker Swarm within the OpenStack
deployment platform registers the worst behavior.

Awais Aziz Shah ET AL 17

0 5 10 15

Time [Min]

0

5

10

15

20

R
eq

u
es

t
C

o
m

p
le

ti
o
n
 T

im
e

[M
in

]

Testbed 1
Testbed 2
Testbed 3
Testbed 4

(a) Measured values during the time

0 5 10 15 20

Completion time [Min]

0

0.2

0.4

0.6

0.8

1

C
D

F

Testbed 1
Testbed 2
Testbed 3
Testbed 4

(b) Cumulative distribution function

FIGURE 16 Request completion time measured when � = 5 requests/minutes.

0 5 10 15

Time [Min]

0

5

10

15

20

R
eq

u
es

t
C

o
m

p
le

ti
o
n
 T

im
e

[M
in

]

Testbed 1
Testbed 2
Testbed 3
Testbed 4

(a) Measured values during the time

0 5 10 15 20

Completion time [Min]

0

0.2

0.4

0.6

0.8

1

C
D

F

Testbed 1
Testbed 2
Testbed 3
Testbed 4

(b) Cumulative distribution function

FIGURE 17 Request completion time measured when � = 10 requests/minutes.

18 Awais Aziz Shah ET AL

4.1.5 Final considerations emerging from the analysis of the high-load environment
The results obtained from the first campaign of experimental tests firstly demonstrate that the integration of cutting-edge tech-
nologies for container networking is already feasible for hardware platformswhose computing capabilities aremuchmore limited
with respect to those available in the cloud. This would encourage SMEs to use these technologies in their business, services,
and applications.
At the same time, the integration of Docker engine and Kubernetes orchestrator within the bare-metal deployment platform

emerges as the most suitable solution because it ensures better performance in terms of CPU usage of containers, distribution
of the network load during the time and among the deployed containers, connection delays, and request completion time, while
registering a slight (but still acceptable) increment of the memory footprint. On the contrary, the integration of the Docker engine
and Docker Swarm orchestrator within the OpenStack deployment platform, instead, generally achieves lower performance
levels.
As a final consideration, it is important to note that computing tasks significantly influences the amount of energy consumed

by involved servers. In fact, the higher is the weight of computing tasks, the higher is the amount of consumed energy. Thus, the
evaluation of the CPU consumption gives an idea of the amount of energy consumed by containers integrated within the devel-
oped virtualized service infrastructure. In this sense, the conducted study demonstrates that all the reviewed service orchestrators
can uniformly distribute users’ requests among available containers, thus guaranteeing a very good balancing of the energy
consumption among the key component of the system involved in computing tasks.

4.2 Performance assessment in a smart farm scenario
The goal of this Section is to investigate the performance of the selected combination of technologies in amore complex scenario,
referring to a smart farm use case. The resulting architecture is depicted in Figure 18. It embraces many drones flying in a
smart farm, able to take pictures with their on-board camera and deliver them to the remote virtualized service infrastructure
for monitoring purposes. The drones are emulated through two laptops, connected to the virtualized service infrastructure by
means of two different wireless access points. Note that the number of drones emulated in each laptop changes over the time and
the reference scripts are properly configured to emulate the movement of drones among the two available network attachment
points. This way, the proposed campaign of experimental tests is also able to evaluate the ability of the whole system to properly
work also in the presence of mobile users. During the tests, each drone randomly selects a livestock image from a local storage
according to the Poisson statistic. Indeed, the number of messages delivered by each drone to the remote virtualized service
infrastructure in a unit of time, �, is set to � = 10 requests/minute and � = 20 requests/minute. The service orchestrator forwards
the received pictures to available containers, which implements an object recognition application developed by using python
and TensorFlow trained models. Here, the application identifies the type and the number of animals recognized in the image
and share these outcomes with another server for monitoring purposes.
In line with the previous campaign of experimental tests, also in this case, the study evaluates the impact that the execution of

heavy computing tasks, generated in different network load conditions, to the usage of computing, memory, and communication
capabilities of the virtualized service infrastructure. This time, however, tests last 45 minutes.

4.2.1 CPU utilization
Figure 19 shows the CPU usage registered by the four containers deployed in the considered virtualized service infrastructure.
Independently from the average number of requests generated by every single drone, it is possible to observe that the usage of
the CPU follows a bursty behavior: computing tasks are highly used just during the elaboration of pictures. Contrarily from the
previous campaign of tests, this time higher CPU usage is due to the complex image processing task performed by the containers.
In any case, however, results fully confirm the ability of the orchestrator to uniformly distribute incoming requests among avail-
able containers. As expected, the cumulative distribution functions reported in Figure 20 highlight that the higher the number
of requests generated by each drone in a unit of time, the higher is the registered CPU usage. But, in all the considered configu-
rations, containers never glut their computing resources. This important result demonstrates, once again, how the development
of a virtualized service infrastructure is feasible also in local computing environments.

Awais Aziz Shah ET AL 19

FIGURE 18 The virtualized service infrastructure evaluated in the smart farm use case.

0 5 10 15 20 25 30 35 40 45

Time [Min]

0

20

40

60

80

100

C
P

U
 u

sa
g
e

[%
]

Container 1
Container 2
Container 3
Container 4

(a) �=10/min

0 5 10 15 20 25 30 35 40 45

Time [Min]

0

20

40

60

80

100

C
P

U
 u

sa
g
e

[%
]

Container 1
Container 2
Container 3
Container 4

(b) �=20/min

FIGURE 19 CPU usage measured during the emulation of the smart farm use case.

10
-3

10
-2

10
-1

10
0

10
1

10
2

CPU usage [%]

0

0.2

0.4

0.6

0.8

1

C
D

F

=10/min
=20/min

FIGURE 20 Cumulative distribution function of CPU usage measured during the emulation of the smart farm use case.

20 Awais Aziz Shah ET AL

4.2.2 Memory Footprint
The image processing tasks implemented by containers require a higher amount of memory, as reported in Figure 21. The single
container occupies 1.75 GB just for storing the machine learning-based application for image processing. This is the reason,
during the tests, about 2 GB of RAM is consumed by each operating container. Also for the memory footprint, the whole system
ensures a good balancing among the four available containers. Moreover, since the machine learning-based application always
remains loaded on the RAM, the curves reported in Figure 21 do not present a bursty behavior. Figure 22 shows the cumulative
distribution function of the memory footprint measured during the emulation of the smart farm use case. Here, it is possible to
observe that the higher average number of requests per unit of time introduces a slight increment of the amount of consumed
memory. Containers, in fact, are involved in a higher number of tasks, thus requiring more memory.

0 5 10 15 20 25 30 35 40 45

Time [Min]

0

1

2

3

4

5

M
em

o
ry

 u
sa

g
e

[G
B

] Container 1
Container 2
Container 3
Container 4

(a) �=10/min

0 5 10 15 20 25 30 35 40 45

Time [Min]

0

1

2

3

4

5

M
em

o
ry

 u
sa

g
e

[G
B

] Container 1
Container 2
Container 3
Container 4

(b) �=20/min

FIGURE 21 Memory footprint measured during the emulation of the smart farm use case.

0 1 2 3 4 5

Memory footprint [GB]

0

0.2

0.4

0.6

0.8

1

C
D

F

=10/min
=20/min

FIGURE 22 Cumulative distribution function of the memory footprint measured during the emulation of the smart farm use
case.

4.2.3 Network load
In the smart farm use case, the amount of data delivered by the network is just due to the transmission of pictures and provisioning
of the resulting process. For this reason, the traffic load reported in Figure 23 presents a bursty behavior and does not achieve very
high values. According to the cumulative distribution functions of the network load reported in Figure 24, it is possible to observe
that the higher the number of messages generated by the drones, the higher the measured amount of traffic managed within the
virtualized service infrastructure. From one hand, this result confirms what has already been presented before. From another
hand, it shows how the smart farm use case requires less communication capabilities with respect to the scenario investigated
in the initial campaign of experimental tests.

Awais Aziz Shah ET AL 21

0 5 10 15 20 25 30 35 40 45

Time [Min]

0

2

4

6

8

10

N
et

w
o

rk
 l

o
ad

 [
M

b
p

s]

Container 1
Container 2
Container 3
Container 4

(a) �=10/min

0 5 10 15 20 25 30 35 40 45

Time [Min]

0

2

4

6

8

10

N
et

w
o

rk
 l

o
ad

 [
M

b
p

s]

Container 1
Container 2
Container 3
Container 4

(b) �=20/min

FIGURE 23 Network load measured during the emulation of the smart farm use case.

0 2 4 6 8 10

Network load [Mbps]

0

0.2

0.4

0.6

0.8

1

C
D

F

=10/min

=20/min

FIGURE 24 Cumulative distribution function of the network load measured during the emulation of the smart farm use case.

4.2.4 Connection delay and request completion time
To further investigate the performance of the investigated virtualized service infrastructure in the smart farm use case, the
connection delay experienced by all the drones during the service provisioning is reported in Figure 25. Once again, results
demonstrate that the virtualized service infrastructure promises a proactive response to clients. The cumulative distribution
function of the connection delays measured in different traffic load conditions is reported in Figure 26. As expected, when
the number of requests generated by drones increases, the average connection delay increases accordingly. But, in any case, it
remains below 0.1 s with a probability higher than 97%.
On the other hand, the request completion time, that in this campaign of experimental tests represents the amount of time

required to complete the complex image processing task, ranges from a few second to tens of seconds, depending on the amount
of task load addressed by the virtualized service infrastructure (see Figure 27). Inevitably, and in line with all the afore discussed
comments, the higher the task load, the higher the task completion time. The cumulative distribution functions reported in Figure
28, however, highlight that the identification of the type and the number of animals from the picture provided by flying drones
is less than 20 s with a very high probability, even in a very complex scenario. This supports a final consideration: the limited
computing resources adopted in the experimental tests are enough to implement complex services with acceptable levels of
quality of service.

4.2.5 Final considerations emerging from the analysis of the smart farm scenario
The results obtained from the second campaign of experimental tests can be finally used to formulated these additional com-
ments. First, the behavior of the virtualized service infrastructure is not drastically influenced by the users’ mobility: the service
orchestrator is able to properly forward the requests to the available containers, independently from the origin of the requests.
Based on the previous considerations, it is possible to confirm that the combination of Docker (i.e., the container engine) and
Kubernetes (i.e., the service orchestrator with load-balancing functionalities) ensures better performance on the bare-metal

22 Awais Aziz Shah ET AL

0 5 10 15 20 25 30 35 40 45

Time [Min]

10
-2

10
-1

10
0

10
1

R
es

p
o
n
se

 d
el

ay
 [

S
ec

]

=10/min

=20/min

FIGURE 25 Connection delay measured during the emulation of the smart farm use case.

10
-3

10
-2

10
-1

10
0

10
1

Response delay [Sec]

0

0.2

0.4

0.6

0.8

1

C
D

F

=10/min

=20/min

FIGURE 26 Cumulative distribution function of the conneciton delay measured during the emulation of the smart farm use
case.

0 5 10 15 20 25 30 35 40 45

Time [Min]

0

10

20

30

40

R
eq

u
es

t
C

o
m

p
le

ti
o
n
 T

im
e

[S
ec

]

=10/min

=20/min

FIGURE 27 Request completion time measured during the emulation of the smart farm use case.

0 5 10 15 20 25 30 35 40

Completion time [Sec]

0

0.2

0.4

0.6

0.8

1

C
D

F

=10/min

=20/min

FIGURE 28 Cumulative distribution function of the request completion measured during the emulation of the smart farm use
case.

Awais Aziz Shah ET AL 23

deployment platform also in a more complex scenario with mobile users. Differently from the previous scenario, the smart farm
use case, characterized by the execution of heavy tasks, requires higher computing and memory capabilities, as well as less
communication bandwidth. Specifically, the higher CPU usage also translates into higher energy consumption (as already dis-
cussed in the previous section). But, despite what was explicitly declared from the performance assessment, the overall analysis
clearly demonstrates that deployed infrastructure represents a suitable solution for effectively exploiting container networking
capabilities in real deployments with local (i.e., limited) computing capabilities.
Of course, the study presented in this paper can be generalized for implementingmany other real-life scenarios, such as drones’

communication in a mission-critical scenario64, as well as for smart mobility applications in smart cities (i.e., where containers
can effectively perform on the server-side to ensure quick computations of data with high efficiency and very minimal delay)65.

5 CONCLUSION

This paper presented a quantitative cross-comparison of cutting-edge technologies for container networking, properly integrated
to realize a virtualized service infrastructure in local computing environments. In particular, the set of investigated technolo-
gies are Docker as container engine, Docker Swarm and Kubernetes as orchestrators with load balancing and service discovery
capabilities, bare-metal and OpenStack cloud as deployment platforms, and Docker-compose, Docker-Machine, Kubeadm, and
Flannel as supporting tools for scheduling and deployment functionalities. First, the behavior of the four developed testbeds has
been investigated through experimental tests in a high-load scenario, to evaluate the ability of the virtualized service infrastruc-
ture to provide answers to multiple requests received from the remote real-world network, as well as of reporting pros and cons
of the considered technologies.The conducted study revealed that the integration of Docker engine and Kubernetes orchestrator
within the bare-metal deployment platform ensures better performance. Then, the performance of the most suitable technolo-
gies was evaluated in a smart farm use case, integrating mobile drones and complex image processing tasks. The outcome of
the evaluation demonstrated that the behavior of the virtualized service infrastructure is not drastically influenced by the users’
mobility, the execution of heavy tasks generally requires higher computing and memory capabilities, while still guaranteeing
acceptable levels of quality of service in real deployments with local (i.e., limited) computing capabilities. Indeed, the results
of the cross comparison presented in this paper would facilitate the Small and Medium Enterprises in the selection of technolo-
gies for container networking and encourage their adoption for revising business, services, and applications. Future research
activities will significantly extend the proposed study by further investigating energy and security issues in more complex and
dynamic environments, also in the presence of heterogeneous and coexisting services.

6 ACKNOWLEDGMENTS

This work was mainly supported by the Apulia Region (Italy) Research project INTENTO (36A49H6) and partially supported
by the PRIN project no. 2017NS9FEY entitled “Realtime Control of 5G Wireless Networks: Taming the Complexity of Future
Transmission and Computation Challenges” funded by the Italian MIUR.

24 Awais Aziz Shah ET AL

References

1. Borangiu T, Trentesaux D, Thomas A, Leitão P, Barata J. Digital transformation of manufacturing through cloud services
and resource virtualization. Computers in Industry 2019; 108: 150-162.

2. Hughes A, Awad A. Quantifying Performance Determinism in Virtualized Mixed-Criticality Systems. In: 2019 IEEE 22nd
International Symposium on Real-Time Distributed Computing (ISORC). IEEE; 2019: 181–184.

3. Rodríguez-Haro F, Freitag F, Navarro L, et al. A summary of virtualization techniques. Procedia Technology 2012; 3:
267–272.

4. Joy AM. Performance comparison between linux containers and virtual machines. In: 2015 International Conference on
Advances in Computer Engineering and Applications. IEEE; 2015: 342–346.

5. Bhimani J, Yang Z, Leeser M, Mi N. Accelerating big data applications using lightweight virtualization framework on
enterprise cloud. In: 2017 IEEE High Performance Extreme Computing Conference (HPEC). IEEE; 2017: 1–7.

6. Tadesse SS, Chiasserini CF, Malandrino F. Characterizing the power cost of virtualization environments. Transactions on
Emerging Telecommunications Technologies 2018; 29(8): e3462.

7. Kominos CG, Seyvet N, Vandikas K. Bare-metal, virtual machines and containers in OpenStack. In: 2017 20th Conference
on Innovations in Clouds, Internet and Networks (ICIN). IEEE; 2017: 36–43.

8. Pahl C, Lee B. Containers and clusters for edge cloud architectures–a technology review. In: 2015 3rd international
conference on future internet of things and cloud. IEEE; 2015: 379–386.

9. Farris I, Taleb T, Flinck H, Iera A. Providing ultra-short latency to user-centric 5G applications at the mobile network edge.
Transactions on Emerging Telecommunications Technologies 2018; 29(4): e3169.

10. Silva Barbosa dFE,Mendonça Júnior dFF, Dias KL. A platform for cloudification of network and applications in the Internet
of Vehicles. Transactions on Emerging Telecommunications Technologies 2020; 31(5): e3961.

11. Kozhirbayev Z, Sinnott RO. A performance comparison of container-based technologies for the cloud. Future Generation
Computer Systems 2017; 68: 175–182.

12. Andriyanto A, Doss R, Yustianto P. Adopting SOA and Microservices for Inter-enterprise Architecture in SME Communi-
ties. In: 2019 International Conference on Electrical, Electronics and Information Engineering (ICEEIE). 6. . IEEE; 2019:
282–287.

13. Attaran M, Woods J. Cloud computing technology: improving small business performance using the Internet. Journal of
Small Business & Entrepreneurship 2019; 31(6): 495–519.

14. Xavier MG, Neves MV, Rossi FD, Ferreto TC, Lange T, De Rose CA. Performance evaluation of container-based virtu-
alization for high performance computing environments. In: 2013 21st Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing. IEEE; 2013: 233–240.

15. Bonafiglia R, Cerrato I, Ciaccia F, Nemirovsky M, Risso F. Assessing the performance of virtualization technologies for
NFV: A preliminary benchmarking. In: 2015 Fourth European Workshop on Software Defined Networks. IEEE; 2015:
67–72.

16. Adufu T, Choi J, Kim Y. Is container-based technology a winner for high performance scientific applications?. In: 2015
17th Asia-Pacific Network Operations and Management Symposium (APNOMS). IEEE; 2015: 507–510.

17. Anderson J, Hu H, Agarwal U, Lowery C, Li H, Apon A. Performance considerations of network functions virtualization
using containers. In: 2016 International Conference on Computing, Networking and Communications (ICNC). IEEE; 2016:
1–7.

18. Chung MT, Quang-Hung N, Nguyen MT, Thoai N. Using docker in high performance computing applications. In: 2016
IEEE Sixth International Conference on Communications and Electronics (ICCE). IEEE; 2016: 52–57.

Awais Aziz Shah ET AL 25

19. Shirinbab S, Lundberg L, Casalicchio E. Performance Comparision between Scaling of Virtual Machines and Containers
using Cassandra NoSQL Database. Cloud Computing 2019: 103.

20. Felter W, Ferreira A, Rajamony R, Rubio J. An updated performance comparison of virtual machines and linux containers.
In: 2015 IEEE international symposium on performance analysis of systems and software (ISPASS). IEEE; 2015: 171–172.

21. Spoiala CC, Calinciuc A, Turcu CO, Filote C. Performance comparison of a webrtc server on docker versus virtual machine.
In: 2016 International Conference on Development and Application Systems (DAS). IEEE; 2016: 295–298.

22. Higgins J, Holmes V, Venters C. Orchestrating docker containers in the HPC environment. In: International Conference on
High Performance Computing. Springer; 2015: 506–513.

23. Casalicchio E, Perciballi V. Measuring docker performance: What a mess!!!. In: Proceedings of the 8th ACM/SPEC on
International Conference on Performance Engineering Companion. ACM; 2017: 11–16.

24. Preeth E, Mulerickal FJP, Paul B, Sastri Y. Evaluation of Docker containers based on hardware utilization. In: 2015
International Conference on Control Communication & Computing India (ICCC). IEEE; 2015: 697–700.

25. Ruan B, Huang H, Wu S, Jin H. A performance study of containers in cloud environment. In: Asia-Pacific Services
Computing Conference. Springer; 2016: 343–356.

26. Li Z, Kihl M, Lu Q, Andersson JA. Performance overhead comparison between hypervisor and container based virtualiza-
tion. In: 2017 IEEE 31st International Conference on Advanced Information Networking and Applications (AINA). IEEE;
2017: 955–962.

27. Afolabi I, Taleb T, Samdanis K, Ksentini A, Flinck H. Network slicing and softwarization: A survey on principles, enabling
technologies, and solutions. IEEE Communications Surveys & Tutorials 2018; 20(3): 2429–2453.

28. Morabito R, Kjällman J, Komu M. Hypervisors vs. lightweight virtualization: a performance comparison. In: 2015 IEEE
International Conference on Cloud Engineering. IEEE; 2015: 386–393.

29. Manco F, Lupu C, Schmidt F, et al. My VM is Lighter (and Safer) than your Container. In: Proceedings of the 26th
Symposium on Operating Systems Principles. ACM; 2017: 218–233.

30. Sharma P, Chaufournier L, Shenoy P, Tay Y. Containers and virtual machines at scale: A comparative study. In: Proceedings
of the 17th International Middleware Conference. ACM; 2016: 1.

31. Acharya A, Fanguède J, PaolinoM, Raho D. A Performance Benchmarking Analysis of Hypervisors Containers and Uniker-
nels on ARMv8 and x86 CPUs. In: 2018 European Conference on Networks and Communications (EuCNC). IEEE; 2018:
282–9.

32. Struye J, Spinnewyn B, Spaey K, Bonjean K, Latré S. Assessing the value of containers for NFVs: A detailed network
performance study. In: 2017 13th International Conference on Network and Service Management (CNSM). IEEE; 2017:
1–7.

33. Ramalho F, Neto A. Virtualization at the network edge: A performance comparison. In: 2016 IEEE 17th International
Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM). IEEE; 2016: 1–6.

34. Weerasinghe J, Abel F, Hagleitner C, Herkersdorf A. Disaggregated fpgas: Network performance comparison against
bare-metal servers, virtual machines and linux containers. In: 2016 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom). IEEE; 2016: 9–17.

35. Barik RK, Lenka RK, Rao KR, Ghose D. Performance analysis of virtual machines and containers in cloud computing. In:
2016 International Conference on Computing, Communication and Automation (ICCCA). IEEE; 2016: 1204–1210.

36. Bhimani J, Yang J, Yang Z, et al. Understanding performance of I/O intensive containerized applications for NVMe SSDs.
In: 2016 IEEE 35th International Performance Computing and Communications Conference (IPCCC). IEEE; 2016: 1–8.

26 Awais Aziz Shah ET AL

37. Seo KT, Hwang HS, Moon IY, Kwon OY, Kim BJ. Performance comparison analysis of linux container and virtual machine
for building cloud. Advanced Science and Technology Letters 2014; 66(105-111): 2.

38. Yamato Y. OpenStack hypervisor, container and baremetal servers performance comparison. IEICE Communications
Express 2015; 4(7): 228–232.

39. Yamato Y. Performance-aware server architecture recommendation and automatic performance verification technology on
IaaS cloud. Service Oriented Computing and Applications 2017; 11(2): 121–135.

40. Pahl C, Brogi A, Soldani J, Jamshidi P. Cloud container technologies: a state-of-the-art review. IEEE Transactions on Cloud
Computing 2017.

41. Truyen E, Van Landuyt D, Lagaisse B, JoosenW. Performance overhead of container orchestration frameworks for manage-
ment of multi-tenant database deployments. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing.
ACM; 2019: 156–159.

42. Chan CM, Teoh SY, Yeow A, Pan G. Agility in responding to disruptive digital innovation: Case study of an SME.
Information Systems Journal 2019; 29(2): 436–455.

43. Shah AA, Piro G, Grieco LA, Boggia G. A Qualitative Cross-Comparison of Emerging Technologies for Software-Defined
Systems. In: 2019 Sixth International Conference on Software Defined Systems (SDS). IEEE; 2019: 138–145.

44. Sefraoui O, Aissaoui M, Eleuldj M. OpenStack: toward an open-source solution for cloud computing. International Journal
of Computer Applications 2012; 55(3): 38–42.

45. Kumar R, Gupta N, Charu S, Jain K, Jangir SK. Open source solution for cloud computing platform using OpenStack.
International Journal of Computer Science and Mobile Computing 2014; 3(5): 89–98.

46. Wen X, Gu G, Li Q, Gao Y, Zhang X. Comparison of open-source cloud management platforms: OpenStack and
OpenNebula. In: 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery. IEEE; 2012: 2457–2461.

47. Rosado T, Bernardino J. An overview of openstack architecture. In: Proceedings of the 18th International Database
Engineering & Applications Symposium. ACM; 2014: 366–367.

48. Yamato Y, Nishizawa Y, Muroi M, Tanaka K. Development of resource management server for production IaaS services
based on OpenStack. Journal of Information Processing 2015; 23(1): 58–66.

49. Cherrueau RA, Lebre A, Pertin D, Wuhib F, Soares JM. Edge computing resource management system: a critical building
block! initiating the debate via openstack. In: {USENIX}Workshop on Hot Topics in Edge Computing (HotEdge 18). ; 2018.

50. Yanagawa T. Openstack-based next-generation cloud resource management. Fujitsu Sci. Tech. J 2015; 51(2): 62–65.
51. Alfonso dC, Calatrava A, Moltó G. Container-based virtual elastic clusters. Journal of Systems and Software 2017; 127:

1–11.
52. Yeoman S. How secure are bare metal servers?. Network Security 2019; 2019(2): 16–17.
53. Cacciatore K, Czarkowski P, Dake S, et al. Exploring opportunities: Containers and openstack. OpenStack White Paper

2015; 19.
54. Merlino G, Dautov R, Distefano S, Bruneo D. EnablingWorkload Engineering in Edge, Fog, and Cloud Computing through

OpenStack-based Middleware. ACM Transactions on Internet Technology (TOIT) 2019; 19(2): 28.
55. Calinciuc A, Spoiala CC, Turcu CO, Filote C. Openstack and docker: building a high-performance iaas platform for inter-

active social media applications. In: 2016 International Conference on Development and Application Systems (DAS). IEEE;
2016: 287–290.

56. Lingayat A, Singh A, Naik V, Badre RR, Gupta AK. Horizon, a Web-Based User Interface for Managing Services in
OpenStack: An Introspection. In: 2018 9th International Conference on Computing, Communication and Networking
Technologies (ICCCNT). IEEE; 2018: 1–6.

Awais Aziz Shah ET AL 27

57. Xu P, Shi S, Chu X. Performance evaluation of deep learning tools in Docker containers. In: 2017 3rd International
Conference on Big Data Computing and Communications (BIGCOM). IEEE; 2017: 395–403.

58. Di Tommaso P, Palumbo E, Chatzou M, Prieto P, Heuer ML, Notredame C. The impact of Docker containers on the
performance of genomic pipelines. PeerJ 2015; 3: e1273.

59. Morabito R. A performance evaluation of container technologies on Internet of Things devices. In: 2016 IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS). IEEE; 2016: 999–1000.

60. Morabito R. Virtualization on internet of things edge devices with container technologies: a performance evaluation. IEEE
Access 2017; 5: 8835–8850.

61. Morabito R, Farris I, Iera A, Taleb T. Evaluating performance of containerized IoT services for clustered devices at the
network edge. IEEE Internet of Things Journal 2017; 4(4): 1019–1030.

62. Saha P, Beltre A, Uminski P, Govindaraju M. Evaluation of docker containers for scientific workloads in the cloud. In:
Proceedings of the Practice and Experience on Advanced Research Computing. ACM; 2018: 11.

63. Bachiega NG, Souza PS, Bruschi SM, Souza dSdR. Container-Based Performance Evaluation: A Survey and Challenges.
In: 2018 IEEE International Conference on Cloud Engineering (IC2E). IEEE; 2018: 398–403.

64. Al-Turjman F. A novel approach for drones positioning in mission critical applications. Transactions on Emerging
Telecommunications Technologies 2019.

65. Al-Turjman F. Smart-city medium access for smart mobility applications in Internet of Things. Transactions on Emerging
Telecommunications Technologies 2019: e3723.

AUTHOR BIOGRAPHY

Awais Aziz Shah received his bachelor’s and master’s degree in software engineering from IIUI and COM-
SATS University, Islamabad, Pakistan in 2009 and 2013, respectively. Currently, he is pursuing Ph.D. in
Electrical and Information Engineering at Politecnico di Bari, Italy on an international student scholarship.
He has served as a lecturer with the department of computer science at the University of Lahore and Superior
University Lahore from 2016 to 2018. He worked as a freelance and affiliate software engineer with True-
Meridian and 1ton technologies, Islamabad, Pakistan from 2008 to 2016. During his software engineering
tenure, he has worked on agile software development, specifically test-driven development as a software engi-

neer and researcher. He is a reviewer of several prestigious journals. His research interests include software-Defined Networks,
network function virtualization, Internet of things, and test-driven development.

Giuseppe Piro has been an Assistant Professor in Telecommunication at Politecnico di Bari since November
2018. In March 2018, he held the habilitation as "Associate Professor" in Telecommunications Engineer-
ing, according to the National Scientific Habilitation procedure (ASN 2016-2018). He received a first level
degree and a second level degree (both cum laude) in Telecommunications Engineering from "Politecnico
di Bari", Italy, in 2006 and 2008, respectively. He received the Ph.D. degree in Electronic Engineering from
"Politecnico di Bari", Italy, on March 2012. His main research interests include secure Internet of Things
and Industry 4.0, 5G and B5G systems, data-centric and programmable architectures for the Future Internet,

nano-networks, Internet models and network measurements. His research activity is documented in more than 100 peer-reviewed
international journals and conference papers, accounting for more than 4200 citations and a H-index of 25 (Scholar Google).
At the time of this writing, he is the local investigator of the PRIN project no. 2017NS9FEY entitled “Realtime Control of 5G
Wireless Networks: Taming the Complexity of Future Transmission and Computation Challenges”. Moreover, he is involved
in the European EU H2020 GUARD project and in the European Space Agency (ESA) project funded under the contract no.
4000129810/20/NL/CLP. He is also involved in Italian MIUR PON projects (Pico&Pro, FURTHER, AGREED, RAFAEL) and
in Apulia Region (Italy) Research project INTENTO. He founded 5G-aisimulator, LTE-Sim, and NANO-SIM projects and is a

28 Awais Aziz Shah ET AL

developer of Network Simulator 3. In the past, he was involved in EU H2020 projects, like FANTASTIC-5G, BONVOYAGE,
and symbIoTe, in the “Apulia Israel joint Accelerator (AIJA)” project, and in the Italian MISE project entitled “Pre-commercial
trials of 5G technology using spectrum in the 3.6 GHz-3.8 GHz range” - Area Milano (bando MISE), coordinated by Voda-
fone. He is also regularly involved as member of the TPC of many prestigious international conferences. Currently, he serves
as Associate Editor for Sensors journal (MDPI), Internet Technology Letter (Wiley) and Wireless Communications and Mobile
Computing journal (Hindawi).

L. Alfredo Grieco received the Dr. Eng. degree (with honors) in electronic engineering from “Politecnico di
Bari,” Bari, Italy, in Oct. 1999 and the Ph.D. degree in information engineering from “Università di Lecce,”
Lecce, Italy, on December 2003. From Jan. 2005 to Oct. 2014, he held an Assistant Prof. position at the “DEI
- Politecnico di Bari”. From March to June 2009, he has been a Visiting Researcher with INRIA (Sophia
Antipolis, France), working on the topic of Internet measurements. From Oct. to Nov. 2013, he has been
a Visiting Researcher with LAAS-CNRS (Toulouse, France) working on Information Centric Networking
design of M2M systems. From Nov. 2014 to Dec. 2018, he has been an Associate Professor in Telecommu-

nications at Politecnico di Bari (DEI). Since Dec. 2018, he is a Full Professor in Telecommunications at Politecnico di Bari
(DEI). He authored around 200 scientific papers published in venues of great renown that gained more than 10000 citations. His
current research interests include: Industrial Internet of Things, Information Centric Networking, and Nano-communications.
He is the Founder Editor in Chief of the Internet Technology Letters Journal (Wiley) and served as EiC of the Transactions
on Emerging Telecommunications Technologies (Wiley) from mid-2016 to 2019. He also serves as associate editor the IEEE
Transactions on Vehicular Technology journal (for which he has been awarded as top associate editor in 2012, 2017, and 2020).
He has been constantly involved as Technical Program Committee member of many prestigious conferences. Within the Inter-
net Engineering Task Force (Internet Research Task Force), he contributed (as author of RFC 7554) new standard protocols for
industrial IoT applications (new standard architectures for tomorrow ICN-IoT systems). From Jan. 2019, he is Founding Mem-
ber and Subarea-Chair of the IEEE SIG on Intelligent Internet Edge. In 2020 he has been nominated scientific coordinator of
the IoT4.0 Lab.

Gennaro Boggia Boggia received, with honors, the Dr. Eng. and Ph.D. degrees in electronics engineering,
both from the Politecnico di Bari, Bari, Italy, in July 1997 and March 2001, respectively. Since September
2002, he has been with the Department of Electrical and Information Engineering, Politecnico di Bari, where
he is currently a Full Professor. From May 1999 to December 1999, he was a Visiting Researcher with the
TILab, TelecomItalia Lab, Torino, Italy, where he was involved in the study of the core network for the
evolution of Third-Generation (3G) cellular systems. In 2007, he was a Visiting Researcher at FTW, Vienna,
Austria, where he was involved in activities on passive and active traffic monitoring in cellular networks. He

has authored or coauthored more than 170 papers in international journals or conference proceedings, gaining more than 6800
citations. He is active in IETF and IEEE working groups; within them, he contributed to RFC 7476 and RFC 7945 in the context
one Information Centric Networking. He is also regularly involved as a Member of the Technical Program Committee of many
prestigious international conferences. His research interests include the fields ofWireless Networking, Cellular Communication,
Internet of Things (IoT), Network Security, Security in IoT, Information Centric Networking (ICN), Protocol stacks for industrial
applications, Internet measurements, and Network Performance Evaluation. Dr. Boggia is currently an Associate Editor for the
ETT Wiley Journal, and the Springer Wireless Networks journal.

	A Quantitative Cross-Comparison of Container Networking Technologies for Virtualized Service Infrastructures in Local Computing Environments
	Abstract
	Introduction
	Background on container networking
	Integration of cutting-edge technologies enabling the container networking paradigm
	Cross comparison and performance assessment
	Cross-comparison in a high-load environment
	CPU utilization
	Memory footprint
	Network load
	Connection delay and request completion time
	Final considerations emerging from the analysis of the high-load environment

	Performance assessment in a smart farm scenario
	CPU utilization
	Memory Footprint
	Network load
	Connection delay and request completion time
	Final considerations emerging from the analysis of the smart farm scenario

	Conclusion
	Acknowledgments
	References
	Author Biography

