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Cascaded WLAN-FWA Networking and Computing
Architecture for Pervasive In-Home Healthcare

Sergio Martiradonna, Giulia Cisotto, Gennaro Boggia,
Giuseppe Piro, Lorenzo Vangelista, and Stefano Tomasin

Abstract—Pervasive healthcare is a promising assisted-
living solution for chronic patients. However, current
cutting-edge communication technologies are not able
to strictly meet the requirements of these applications,
especially in the case of life-threatening events. To bridge
this gap, this paper proposes a new architecture to support
indoor healthcare monitoring, with a focus on epileptic
patients. Several novel elements are introduced. The first
element is the cascading of a WLAN and a cellular
network, where IEEE 802.11ax is used for the wireless local
area network to collect physiological and environmental
data in-home and 5G-enabled Fixed Wireless Access links
transfer them to a remote hospital. The second element
is the extension of the network slicing concept to the
WLAN, and the introduction of two new slice types to
support both regular monitoring and emergency handling.
Moreover, the inclusion of local computing capabilities at
the WLAN router, together with a mobile edge computing
resource, represents a further architectural enhancement.
Local computation is required to trigger not only health-
related alarms but also the network slicing change in case
of emergency: in fact, proper radio resource scheduling is
necessary for the cascaded networks to handle healthcare
traffic together with other promiscuous everyday com-
munication services. Numerical results demonstrate the
effectiveness of the proposed approach while highlighting
the performance gain achieved with respect to baseline
solutions.

INTRODUCTION

Pervasive healthcare envisages continuous and ubiq-
uitous monitoring of physiological signals and vital
parameters while improving the living conditions of
patients at their homes. Especially for patients in the
most critical conditions, e.g., patients suffering from
severe epilepsy, continuous monitoring is crucial for
effective life-saving interventions in case of emergency,
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and to prolong life expectancy. For example, up to a third
of all premature deaths worldwide are either directly or
indirectly attributed to epilepsy [1]. Particularly, sudden
unexpected death in epilepsy (SUDEP) is a direct cause
of death occurring for 1− 2 every 1 000 severe epileptic
patients per year, and it is estimated to occur in one every
2 000− 5 000 generalized tonic-clonic (GTC) seizures, a
particular kind of severe convulsive seizure [1]. It has
already been shown that continuous daily and overnight
monitoring of patients can reduce the frequency of
seizures and provide immediate protective mechanisms,
thus reducing the risk of SUDEP. The state of the art
in clinical monitoring of epileptic patients is performed
by specialized caregivers, with the help of a 3D video
camera and an electroencephalograph (EEG) that mea-
sures brain activity. However, the cost of such continuous
supervised monitoring has been estimated in the order
of thousands of dollars per seizure [1]. Therefore, au-
tonomous decision-support systems for epilepsy manage-
ment in smart homes represent promising assisted-living
solutions for the near future. Thus, in this work, we target
a healthcare solution for both continuous monitoring
and emergency handling in severe epilepsy. However,
the proposed system could be applied also to patients
sharing a similar need for pervasive healthcare, e.g.,
affected by cardiovascular or chronic diseases, or doing
rehabilitation at home.

Current cutting-edge communication technologies, in-
cluding IEEE 802.11ax wireless local-area network
(WLAN), fifth-generation (5G) mobile networks, and its
fixed wireless access (FWA) solution offer a broadband
backhaul connectivity even in suburban areas and can
support pervasive healthcare at large scale, otherwise not
available with networks of the previous generations. Un-
fortunately, baseline implementations do not provide any
priority to healthcare messages over other applications
in case of life-threatening events. The emerging network
slicing paradigm, as applied to 5G [2], to WLAN [3],
and to heterogeneous architectures exploiting WLAN
technology at the radio interface, and to 5G components
in the core network [4], fulfills quality of service (QoS)
constraints through traffic isolation (e.g., by assigning
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virtual resources under a common communication in-
frastructure). This approach, however, has been scarcely
investigated in the healthcare context so far, especially
to tackle life-threatening events.

In this paper, we propose a new network solution for
indoor healthcare monitoring, in particular for epileptic
patients. The architecture is composed of various new
elements. First, we cascade a WLAN and a cellular
network, where IEEE 802.11ax is used in-home and 5G-
enabled Fixed Wireless Access links transfer them to a
remote hospital: this solution is flexible and particularly
suitable to serve remote areas, where a fiber link is
not available. Second, in order to support both regular
monitoring and emergency handling, we introduce two
new slice types and extend the cellular network slicing
concept to WLAN. Third, we propose to use an enhanced
WLAN router with local computing capabilities, which
is still controlled by the cellular network. The latter,
integrated with mobile edge computing resources, makes
the resulting architecture more flexible and powerful.
Indeed, the local computation capabilities can be ex-
ploited to trigger health-related alarms and dynamic
network slicing in case of emergency and to provide
resource scheduling of both healthcare traffic and other
promiscuous everyday communication services. Lastly,
we demonstrate the performance of the resulting archi-
tecture and compare them to baseline solutions.

EPILEPSY MANAGEMENT

Recently, other architectures have been presented for
continuously managing patients in critical conditions,
e.g., severe epileptic patients, at their homes. Most of
them employ wearables and portable devices to collect
vitals and brain signals, as well as context information,
i.e., the patient’s location. The most common solution in-
cludes also a multi-access edge computing (MEC) server
for data analysis using artificial intelligence (AI) algo-
rithms: e.g., in [5], the authors propose an architecture
based on long-term evolution (LTE) and software-defined
networking (SDN), where an edge gateway is assisted by
AI in the localization of the epileptic foci in the brain
and delivers effective real-time brain stimulus regulating
the epileptic activity while mitigating symptoms. Deep
learning algorithms running on a MEC server have been
advocated to support the early prediction of epileptic
seizures. Although promising, these solutions still lack a
realistic in-field deployment (e.g., multiple users, longer
distances).

In [6] a two-hop monitoring architecture is proposed,
which collects 3D accelerometer traces and the heart

rate through a smart bracelet. The latter sends data via
Bluetooth low energy (BLE) to a smartphone, which
acts as a local gateway to the Internet via WLAN. The
minimum end-to-end latency is 175 ms when serving a
single user.

In [7], the authors propose a cloud-based seizure
prediction architecture including a wireless body area
network (WBAN), a GPS-based localization, and a lo-
calization software hosted in an Amazon elastic compute
cloud instance. Several AI-based algorithms have been
tested in this study to detect and predict seizures from a
low-cost wireless EEG headset. However, the architec-
ture covers a short-range area that can not be considered
as a realistic scenario. In [8], edge computing is also
proposed to deliver real-time alarms and improve user
interaction during emergencies in other Internet-of-things
(IoT)-healthcare scenarios, e.g., for preventing falls of
elderly people and in mobile healthcare units.

Interestingly, the HealthEdge project [9] suggests to
prioritize two different types of traffic, i.e., human be-
haviour and health emergency, and to decide whether
to pre-process data in a MEC server or to send them
directly to the cloud. Task scheduling in [9] has been
implemented at the edge workstation with benefits on
both the bandwidth utilization and the total task process-
ing time. In that case, the edge scheduler directs traffic to
either the MEC or the cloud, solely based on the patient’s
physiological data and no other context information, e.g.,
current network traffic, is taken into account. At the same
time, no strategy for dynamic switching between the two
types of traffic has been investigated.

To the authors’ knowledge, the literature has not yet
investigated the use of slice types specifically designed
for e-health applications, and solutions for epilepsy man-
agement (or similar scenarios as considered in this paper)
are not available. Still, as network slicing is emerging as
a new solution, resource management, admission control,
and traffic prioritization in the radio access network
(RAN) are relevant problems [10].

Requirements Definition

The case targeted in this paper encompasses, at the
same time, two healthcare services: regular monitor-
ing with mild communication requirements in terms
of latency, packet drop, and data rate, and emergency
handling with strict requirements, activated during life-
threatening events. Fig. 1 shows the data collection setup
of this particular use case.

In regular monitoring, we consider the state-of-art
EEG-video acquisition setup [1], with recording from a
3D camera and 30 EEG channels. During an emergency,
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TABLE I
COMMUNICATION REQUIREMENTS OF MONITORING DEVICES

Data type Sub-type (no.
channels)

End-to-end
latency Jitter Survival

Time
Data rate

(aggregated)
ms ms ms

Regular Monitoring (standard video EEG)
Multimedia 3D camera 1 150 30 180 10 Mbps

Electrophysiology EEG (30) 250 25 175 1 Mbps
Emergency Monitoring (additional data)

Multimedia 3D camera 2 150 30 180 10 Mbps
Speaker 150 25 175 220 kbps

Electrophysiology ECG (3) 250 25 275 0.5 Mbps
EMG (4) 250 25 275 0.5 Mbps

Optics SpO2 250 25 275 0.5 Mbps
Vitals Temperature 250 25 275 100 kbps

Blood pressure 250 25 275 100 kbps
Heart rate 250 25 275 100 kbps

Respiration rate 250 25 275 100 kbps

EmergencyRegular 
Monitoring

Microphone

ECG

EMG

3D camera
1

3D camera

2

Vital Param.

(additional devices)

Video EEG

Fig. 1. Data collection setup in case of severe epilepsy management,
both during regular monitoring and emergency handling.

we assume that an alarm has been triggered based on
abnormal EEG-video data, and we extend the interaction
with the patient by adding a 3D camera, a speaker, 3-
leads ECG, 2 bipolar electromyography (EMG) chan-
nels, a pulse oximeter to measure peripheral oxygen
saturation (SpO2), and a system to acquire the most
important vital parameters. This provides the remote
specialized clinicians with a better understanding of the
situation which, in turn, highly improves the accuracy
in detecting SUDEP for a more effective and early
intervention.

Table I summarizes the service requirements, taking
into account QoS metrics typically used in the design of

5G systems [2], [11]. It is important to highlight that the
values reported in Table I refer to the communication
delays expected during the run-time phase of a network
slice instance. Moreover, the additional latency related
to the activation and configuration of a new slice is
experienced only once. Also, the latter is not correlated
to the survival time in the run-time phase (see Table I)
and it is expected to be much smaller than it.

Note that these requirements are not met by fourth-
generation or earlier networks, while they fit the targets
of 5G systems. Beyond a high data rate, healthcare mon-
itoring also needs robustness (indicated by the survival
time), which is specifically targeted by 5G networks.

REFERENCE ARCHITECTURE AND

PROPOSED SLICE MANAGEMENT

In our scenario, patients’ smart homes are covered
by an IEEE 802.11ax WLAN connected to the Internet
by an FWA over a 5G cellular network. As a matter
of fact, 5G FWA is the most promising alternative,
from the techno-economic point of view, to close the
digital divide, for urban and suburban areas as well.
For healthcare purposes, IEEE 802.11ax devices collect
physiological and environmental data in the patient’s
home while 5G-enabled FWA links transfer them to the
remote hospital’s cloud servers.

Fig. 2 depicts the proposed connectivity architecture.
As both WLAN and FWA networks are also used for

other communication purposes in the smart home, no
dedicated network deployment is necessary. Still, in or-
der to protect the new services, they are mapped into two
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Fig. 2. High-level overview of the proposed architecture.

new slice types: a regular monitoring slice-type when
the patient’s conditions are stable and an emergency
slice type for communications during the emergency. The
two slices are defined for the cascaded WLAN-FWA

networks: therefore, the WLAN router must support the
in-home network slicing and should be equipped with a
gateway computing server (GCS).

Since network slice types are different in their nature
(in terms of targeted QoS levels, traffic, network func-
tions, number of nodes involved, etc.) and in their use of
a subset of resources available at the radio interface, it is
possible to tailor, for each of them, a customized radio
resource management scheme that meets their specific
requirements. The architecture proposed in our work
fully exploits this key capability and natively assumes
to implement customized radio resource management
schemes for each network slice type.

Cellular Network

We consider a 3GPP 5G system including 5G NR,
the 5G Core network (5GC), and an orchestrator entity.
5G NR is the radio access network, which provides con-
nectivity to each user equipment (UE) by base stations,
i.e., gNBs, while 5GC creates Packet Data Unit sessions
between UEs and the Internet. The orchestrator handles
the configuration of the 5G network, e.g., it controls the
slice life cycle, instantiates slice resources, and assigns
traffic routing policy and flow priorities. The MEC server
at the edge of the network provides the required com-
putational and storage resources to implement functions
for real-time performance, as well as to virtualize spe-
cific applications. Specifically, it implements advanced
applications for monitoring, classifying, and predicting
patients’ behaviors, and it supports the orchestrator in
the real-time management and configuration of slices and
resources.

Among UEs, there are some residential gateways
(RGs) providing broadband connectivity to smart homes
through FWA links. In particular, an RG acts as a
gateway between each wireless connected device in the
house and the external 5G network. In other words, the
RG includes a 3GPP 5G UE and an IEEE 802.11 access
point (AP). Besides, our architecture includes a novel
GCS in the RG, in order to both offload computing task
for the stations (STAs) and manage the interaction at the
5G-802.11 interface. The GCS plays the role of MEC
at an even more local level, providing computational
capabilities even closer to the end-user applications, still
remaining under the full control of the operator and the
service provider. Being at the border between the WLAN
and the cellular network, it both responds quicker to in-
home events and has privileged access to both WLAN
and cellular network resources, including MEC, e.g., for
computations on larger databases. MEC and GCS can
also share the workload needed to detect anomalies in
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the EEG monitoring, and to trigger the activation of the
emergency slice.

Wireless Local Area Network

We choose IEEE 802.11ax as the WLAN standard
since, among other interesting features, it provides cen-
tralized scheduling [12]. Furthermore, we aim at ex-
tending the concept of network slicing also in the
IEEE 802.11ax network. Indeed, the proposed archi-
tecture enables the creation and the dynamic control
of network slices spanning from the 5G network to
WLANs. A slice-oriented approach provides isolated
and independent resources (e.g., radio resources in both
WLAN and 5G radio networks, computing resources at
the edge, dedicated network functions in 5GC) to each
network slice. This significantly extends the possibili-
ties of legacy cellular technologies for realizing QoS
differentiation. On one hand, as previously mentioned,
each network slice type can benefit from a tailored
management scheme of its resources, which may effi-
ciently increase the performance with respect to a one-
size-fits-all mechanism. On the other hand, applications
requiring AI-based heavy computations with stringent
time constraints, e.g., advanced healthcare services, can
be offloaded to GCS and MEC.

In addition to the slice management in the cascaded
networks, we adopt an elastic radio resource scheduling
which operates on both radio technologies, in a dis-
tributed and coordinated manner.

NETWORK SLICING SOLUTION

Under stable patient’s conditions, data collected by the
biometric sensors inside the smart home reach the nearest
MEC server through the regular monitoring slice. The
patient’s health-related data are analyzed and processed
in the MEC server. When an emergency occurs, the RG
should be enabled to transmit and receive data on the
emergency slice. In this case, not only emergency data
is massively collected to better formulate a diagnosis,
but also control data could be sent from the MEC to the
patient’s home, e.g., to alert local caregivers.

Dynamic Slicing

As the emergency slice type, i.e., a high-priority slice
type, is rarely instantiated, it may be inefficient to leave
it active, thus penalizing the lower-priority traffic and
wasting computing resources on the MEC server. Indeed,
while 5G promises to further increase data rates and use
new parts of the spectrum, a tremendously higher number
of devices is expected to join the network, with a total
high band requirement, although with different timing

constraints. As a consequence, resources will be actually
constrained and cautious use of resources is needed. We
consider instead a dynamic slicing approach, wherein a
slice can change its type in correspondence of certain
events. In this context, a regular monitoring slice type
is instantiated to carry physiological patient’s data and
environmental measurements. However, upon a relevant
event, e.g., a significant change of any vital parameter or
any other life-critical event, the existing slice is promoted
to the emergency type. This change can be triggered
either by the device or by the network. In this latter
case, for instance, a certain slice’s application, which is
virtualized on MEC, may detect an anomaly in regularly
monitored vital parameters exploiting AI algorithms.
Then, when critical events occur, the MEC server should
reach the orchestrator to force the change of slice type
to emergency. Indeed, for resource management, we still
rely on the orchestrator of the 5G network (shown also
in Fig. 2), as from the standard. Note that letting the
network change the slice type allows for the use of
legacy equipment not directly capable of requesting the
setup of new slices, as the slice type is set by the
network. Interestingly, dynamic slicing provides efficient
management not only for slice activation, but also for its
deactivation, when an emergency is solved. Finally, we
highlight that the existing literature on dynamic network
slicing considers the dynamic creation of new slices as
limited to the current 3GPP paradigm, i.e., for slowly
reactive systems (see for example [13]).

Elastic Resource Scheduling

In order to meet the QoS requirements on an end-
to-end basis, we envision that the RG controls the
scheduling of the WLAN, thus enforcing the slice re-
quirements inside the smart home, too. As a matter
of fact, the WLAN component is typically unaware of
the 5G network slicing. Indeed, both AP and STAs’
knowledge of the network is limited to the WLAN, hence
ignoring how different slices are configured in the 5G
segment. It is thus necessary that the GCS implements
a mapping function that translates the requirements of a
specific slice/service type into a WLAN service class and
efficiently schedules and manages the traffic flows within
the smart home. For instance, packets of the emergency
slice are assigned a higher priority, in order to ensure
reliable and low-latency services in critical situations. In
this way, the network slicing should be enforced for the
cascaded IEEE 802.11ax and 5G networks.

The slice QoS requirements are satisfied by a novel
elastic radio resource scheduling policy. Thanks to the
GCS, the radio resource management policy handles
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different queues within the RG, one for each slice.
Moreover, the radio resource allocation must satisfy the
requirements on both the maximum end-to-end latency
and the survival time (see Table I). For this reason, within
both the IEEE 802.11ax and 5G networks, the scheduling
algorithm distributes the radio resources taking also into
account the queuing delay across the cascaded network.
Therefore, our solution requires the devices to commu-
nicate the experienced queuing delay, along with their
buffer status report.

In the uplink, as soon as a packet is correctly received
by the AP and the GCS pushes it in the related queue of
the RG, its accumulated delay is tracked. Each queue
is sorted according to the packet delay and expired
queued packets are dropped. As a result, the accumulated
delay in the two-tier segment is taken into account in
scheduling resources.

Furthermore, the envisioned scheduler determines the
number of radio resources requested by each flow, hence
by each slice, in a given time window ) . This eval-
uation is based on the agreed QoS parameters (e.g.,
average transmission rate), as well as on the channel
conditions experienced by the users, and it is conducted
in both networks, i.e., in the radio access network and
in the WLAN. When the number of requested radio
resources can be satisfied in ) , the scheduling follows
the modified-largest weighted delay first (M-LWDF)
approach. Since the delay of each packet is tracked by
the RGs, the M-LWDF scheduler aims at satisfying the
QoS requirements on an end-to-end basis. Conversely,
when the number of available radio resources in ) does
not match the requests, an elastic resource scaling is
first applied. The elastic scaling proportionally reduces
the number of available radio resources for each active
slice instance in ) , according to the resources surplus
requested by each slice. After scaling, slices are grouped
into two sets, i.e., with priority and without priority.
Then, in each scheduling interval, radio resources are
assigned first to packets of slices with priority, and then
to those with no priority.

A CASE STUDY

We model a European suburb according to the ref-
erence FWA scenario of [14], including 1 000 house-
holds per km2 and a grid of three-sector macro sites
with an average inter-site distance of about 1 km. The
network is designed to connect simultaneously up to
30% of the covered households, thus each sector serves
approximately 88 households. Each sector is equipped
with 64 transmit/receive antennas, working in the sub-
6 GHz band and each RG has 2 transmit and 4 receive

antennas. Therefore, up to 16 different spatial layers
may be multiplexed on a single resource block. All
households also generate uplink traffic for a generic
enhanced mobile broadband (eMBB) slice according to
the models in [15].

As about 1.8 million people in Europe with epilepsy
are at risk of SUDEP, there are 2 patients per sector,
on average, to manage. In the worst-case scenario, we
assume one epileptic patient at high risk of SUDEP
and another epileptic patient with no risk of SUDEP to
be monitored at the very same time in a single sector.
Healthcare traffic flows are generated according to the
specifics of Table I.

In each household, we consider single-user MIMO
(SU-MIMO) for IEEE 802.11ax, with a single spatial
stream per STA. We do not model legacy STAs in the
network, although we assume that the AP reserves 30%
of the time for legacy transmissions and extra signal
processing delay. Based on the channel conditions, the
APs and the RG select the appropriate modulation and
coding schemes, in order to guarantee a target maximum
block error rate (BLER) through link adaptation. More-
over, both the transport block size for 5G and the data
rate for 802.11ax networks are set accordingly, following
the standards. We consider a higher BLER value for the
IEEE 802.11ax link, in order to take into account the
interference and possibly busy channels, as each STA
performs carrier sensing and the transmission is canceled
whenever the medium is busy, resulting in transmission
delays.

The proposed scheduling solution (reported in the
following as Elastic) has been compared with:

• a solution performing no slicing at all (reported in
the following as Basic), without any proper resource
scheduling policy, i.e., proportional fair scheduling
is used at all nodes;

• a network slicing solution (reported in the following
as end-to-end (E2E)), including slicing within the
WLAN and the use of the M-LWDF scheduler for
each slice, although without the elastic resource
scheduling, i.e., neither traffic prioritization, expired
packets management, nor resource scaling.

By comparing these solutions, it is possible to appre-
ciate the advantages of using network slicing and the
introduced elastic resource scheduling.

The impact of scheduling strategies over the end-
to-end latency, the communication service availability,
and the number of emergency slice packets meeting
the required QoS, has been investigated by computer
simulations. In the following, U and V are weights to
further manage priorities associated with the eMBB
slice and the healthcare slices, respectively: a higher
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Fig. 3. Average end-to-end latency when 30% of the RGs (low traffic
load) and 50% of the RGs (high traffic load) are active.

value of these parameters means a higher priority of the
corresponding slice.

End-to-End Latency

First, we consider the average end-to-end latency
(from the in-home device to the gNB), taking into
account the delay introduced by the radio interfaces of
the two networks for the considered slice types.

Fig. 3 shows the average end-to-end latency for the
various slice types, the different scheduling techniques,
and two traffic loads (30% and 50% active RGs). We
observe that both the basic and the E2E scheduling yield
a higher latency when the emergency slices are active,
since these scheduling approaches do not distinguish
among the different traffic types and the penalty incurred
by having higher loads is shared equally among all
applications. Moreover, as eMBB traffic is higher than
healthcare traffic, the proportional fair scheduling penal-
izes the regular monitoring and emergency slices. This
effect is just slightly mitigated in the E2E approach that
uses M-LWDF scheduling, being more sensitive to the
packet latency. When elastic scheduling is considered,
instead, regular monitoring and emergency traffics are
served with much lower latency, as required by their
specifics. In fact, we guarantee a smaller delay than
with other strategies, by dropping expired packets. At
the same time, we also note that the elastic scheduling
slightly reduces the latency of the eMBB slice type.
Moreover, by adjusting the values of U and V, we can
further control the priority of the healthcare slices with
respect to the eMBB slice. When considering different
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Fig. 4. Probability that the communication service availability (�)
is larger than 0.99 when 30% and 50% of the RGs are active (low
and high traffic loads, respectively).

loads (30% and 50% active RGs), we note that latency
grows with the load for all slice types, when the basic
and the E2E schemes are used. Instead, when the elastic
solution is adopted, the latency changes only slightly for
the emergency slice type, thus ensuring the required QoS
anyway. This confirms the robustness of our solution to
the traffic load (i.e., the percentage of active RGs).

Communication Service Availability

According to 3GPP, the communication service avail-
ability is the ratio between the time wherein the service
is delivered according to an agreed QoS and the time
expected to deliver it. In our scenario, the system is
considered unavailable whenever a message is not re-
ceived within the survival time (the sum of the end-to-
end latency and the jitter), which is considered as the
maximum acceptable delay.

Fig. 4 shows the probability that the service avail-
ability, namely �, is larger than 0.99, thus matching
the requirements of Table I. First, we note that the
availability dramatically decreases for both regular and
emergency slices when the basic solution is used, since
the proportional fair scheduling penalizes the healthcare
slices under a heavier load (50% of RGs). The E2E
solution clearly provides higher availability for both
healthcare slices, since the wireless networks are sliced
and the M-LWDF is adopted to schedule the traffic, but
it fails to provide decent performance for higher loads
(50% of RGs). Our elastic approach, instead, ensures
high availability for both healthcare slices in all load
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conditions (both 30% and 50% of active RGs), at the
cost of reduced availability of the eMBB slice under a
high load (50% of RGs), due to the limited resources
of the network. It is important to highlight that the
difference, in terms of performance, between the elastic
and the E2E strategies, is due to, on one hand, the
elastic scaling of resources, and, on the other, the expired
packets dropping.

Packets meeting the QoS

To provide further insight, we consider the percentage
of the emergency slice packets meeting the required QoS,
as shown in Fig. 5.

We note that, when the basic scheme is used, the
percentage of packets meeting the QoS requirements de-
creases linearly with the percentage of active RGs, being
thus inadequate to support the healthcare traffic. The E2E
solution yields a performance improvement, but it still
has a linear decay for a small percentage of active RGs,
with the percentage of packets meeting the QoS quickly
dropping below 80%. Hence, also E2E is not a scalable
solution. The elastic scheduling technique instead keeps
the percentage of emergency packets meeting the QoS
above 90% up to 75% of active RGs, with an overall
slow decay. Even when all RGs are active, the elastic
solution ensures that 80% of emergency packets meet the
QoS requirement, while E2E scheme supports less than
half of the emergency packets and the basic approach
properly serves only 11% of the packets.

We can then conclude that our solution, based on new
slice types and elastic scheduling, is robust to the traffic

load, ensuring the required QoS for healthcare services.

CONCLUSIONS

We have proposed a new communication and com-
puting architecture for pervasive healthcare, with s spe-
cial focus on the indoor monitoring of severe epilep-
tic patients, over a cascaded WLAN-5G network. The
architecture includes several novel elements, including
the extension of the slicing concept to WLAN, the use
of new in-network computing capabilities (GCS), and
the introduction of two new slice types, namely regular
monitoring and emergency. Moreover, both a new end-to-
end dynamic slicing and resource scheduling across the
two networks have been proposed to handle both regular
health monitoring and emergency traffic generated by
chronic severe epileptic patients living in their smart
homes.

Numerical results confirm that our proposed archi-
tecture satisfies the diversified QoS requirements for
different slice types, and paves the way for future, even
more demanding, pervasive healthcare applications.
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