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Abstract—Multi-access Edge Computing represents a key
enabling technology for emerging mobile networks. It offers
intensive computational resources very close to the end-users,
useful for task offloading purposes. Many scientific contributions
already proposed approaches for optimally allocating these re-
sources over time. However, most of them fail to take advantage of
the prediction of both users’ mobility and service demands over
a look-ahead temporal horizon. To bridge this gap, this paper
formulates a novel methodology for anticipatorily allocating
communication and computational resources at the network edge,
based on the prediction of spatio-temporal dynamics of mobile
users. The conceived architecture exploits a Software-Defined
Networking approach to monitor users’ mobility, a Convolutional
Long Short-Term Memory to predict over different look-ahead
horizons the number of users within a given number of cells and
their related service demands, and Dynamic Programming to
optimally allocate users’ requests among available Multi-access
Edge Computing servers. Computer simulations investigate the
effectiveness of the proposed approach in a realistic autonomous
driving use case and compare its behavior against a baseline
solution. Obtained results demonstrate its unique ability to
dynamically and fairly distribute users’ requests among the
resources available at the network edge, while ensuring the
targeted quality of service level.

Index Terms—ETSI-MEC, Network Optimization, User Mo-
bility, Deep Learning, Dynamic Programming.

I. INTRODUCTION

In both fifth generation (5G) and Beyond 5G (B5G) net-
works, Multi-access Edge Computing (MEC) is emerging
as a fundamental enabling technology for the rapid diffu-
sion of advanced services, such as autonomous driving, vir-
tual/augmented reality, e-Health, robotics, and tactile Internet
[1]–[3]. According to European Telecommunication Standard
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Institute (ETSI)-MEC specifications [4], MEC servers are
deployed at the network edge to offer intensive computing
and memory capabilities in the proximity of end-users, while
guaranteeing low communication latencies to new heavy de-
manding and real-time services [1]. They are also able to
limit network congestions by processing data directly at the
edge, instead of forwarding a big amount of data to the
cloud. This particularly applies to MEC servers co-located
with gNBs (base station of 5G networks), that can provide
computational capabilities as close as possible to end-users
and capture information for further purposes (data analytics
and big data processing) [1].

As expected, communication and computational resources
available at the network edge should be properly managed
to fulfill the spatio-temporal dynamics and the even growing
amount of users’ requests [5], [6]. Most of the scientific
contributions in this context address network resource manage-
ment, computational resource allocation, and task offloading
through optimization algorithms [7]–[16] or iterative proce-
dures based on artificial intelligence [17]–[22]. Unfortunately,
these contributions generally consider the actual static picture
of the overall systems and ignore the impact that future
spatio-temporal dynamics of mobile users may have on the
system behavior. Differently, the knowledge (i.e., prediction)
of both users’ mobility and communication and computational
resources they request over time within a given geograph-
ical area could significantly improve network optimization
mechanisms [23]–[25]. The current state of the art proposes
various instruments to forecast the movements of users [26]–
[37], their requests [38]–[44], or both [45] (see Section II
for more details). Solutions based on machine and deep
learning also promise to better anticipate network behaviors
and dynamics in heterogeneous and large scale scenarios [46],
[47]. Nevertheless, resulting network optimization problems
(including those presented in [26]–[28], [30]–[33], [35], [40]–
[43], [45]) fail to take advantage of the joint prediction of
both users’ mobility and service demands over a look-ahead
temporal horizon and within a standard compliant ETSI-MEC
context.

To bridge this gap, this work formulates an innovative
methodology for the anticipatory allocation of communication
and computational resources at the network edge (i.e., task
offloading), based on the knowledge of spatio-temporal dy-
namics of mobile users. The conceived approach significantly
extends the very preliminary contributions presented, by the
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same authors of this work, in [48] and [49]. The considered
architecture adopts a Software-Defined Networking (SDN)
approach to monitor users’ mobility over time. Then, starting
from the outcomes of the preliminary contributions presented
by the same authors in [48] and [49], it exploits a deep
learning architecture based on Convolutional Long Short-Term
Memory (ConvLSTM) [50] for predicting the distribution of
users among cells and their related service demands over a
look-ahead temporal horizon. A centralized Multi-access Edge
Orchestrator uses this information to anticipatorily distribute
users’ demands among available MEC servers, while satisfying
communication and computational constraints at the network
edge and the upper bound for latency expected by mobile
users. Specifically, the optimal allocation problem is stated as
a sequential decision-making process, which considers future
steps in the optimization horizon and it is solved by Dynamic
Programming [51].

The behavior of the proposed approach is investigated in
an autonomous driving use case (with real mobility traces
[52] and conceivable network and service settings [13], [53]–
[59]) by using computer simulations. First of all, the presented
study remarks that the usage of both ConvLSTM and Dynamic
Programming ensures results comparable with those obtained
by the same optimization algorithm running on a perfect
knowledge (i.e., ground truth) of spatio-temporal dynamics of
mobile users. This demonstrates the high performance of the
prediction process. At the same time, the comparison against
a baseline approach, which leverages the distribution of users
at the current time instant and allocates users’ demands to
the closest MEC server, reveals that only the conceived antic-
ipatory approach can fairly distribute users’ requests among
the resources available at the network edge, while ensuring
the targeted quality of service level. Finally, a complexity
analysis confirms the effective and easy implementation of the
proposed methodology in real deployments.

The remainder of the paper is as follows. Section II reviews
the related work on this area and identifies the gaps bridged in
this paper. Section III introduces the considered architecture
and the targeted scenario. Section IV describes the proposed
optimization approach, including the system model, the prob-
lem formulation, and the mobility prediction model. Section V
presents numerical results coming from computer simulations
and formulates a complexity analysis. Finally, Section VI
concludes the paper and draws future research directions.

II. STATE OF THE ART

Network resource management, computational resource al-
location, task offloading, and Virtual Network Function (VNF)
placement represent typical technical problems of interest for
industry and academia working on mobile communication
systems [10], [23], [24]. Very frequently, they are addressed
with optimization algorithms willing to minimize energy
consumption [7]–[11], delay [12]–[14], or both [15], [16].
Sometimes, a constraint on the maximum allowed delay is
taken into account as well [7]–[10], [13].

Emerging methodologies exploit artificial intelligence tech-
nologies, like machine learning, deep learning, and deep

reinforcement learning, for network optimization [17]. While
most of the contributions in this context focus on the optimal
management of computational resources only [18]–[20], some
other works consider at the same time the goal of managing
and allocating communication and computational resources
[21], [22]. Available approaches intend to maximize the overall
resource capacity [20], to minimize energy consumption [19]
and delay [18], [21], [22], as well as to fulfill the expected
upper bound for the overall delay [18], [22].

The contributions presented in [23]–[25] highlight that the
knowledge (i.e., prediction) of users’ mobility and/or the set
of requests that they may formulate in a given geographical
area over time introduce further key information for network
optimization tasks.

The prediction of users’ trajectory and location can be
achieved with mathematical models [26]–[28]. The mobility
forecasting obtained in [26] is used to offload computing
tasks (requested by mobile users) to a single remote MEC
server. To this end, an optimization problem that jointly mini-
mizes energy consumption and latency, satisfying the expected
maximum delay, is formulated in [26]. The knowledge of
trajectories during the next look-ahead window is considered
in [27] for planning the migration of virtual machines at
the network edge. This goal is reached by employing an
optimization problem that minimizes communication latencies,
ensuring at the same time expected upper bounds. Finally, the
work in [28] leverages a Markov Decision Processes to predict
user mobility and formulates an iterative approach for jointly
allocating communication resources among available users and
placing virtual machines at the network edge. Similarly to
[26], the presented solution minimizes energy consumption
and delay.

Differently from the above-discussed methodologies, solu-
tions based on machine learning promises to better anticipate
network behaviors and dynamics, also in heterogeneous and
large scale scenarios [46], [47]. For example, the prediction
of trajectory and location is performed through deep learning
architectures, as Long Short-Term Memorys (LSTMs) [29],
[30], [32], [33], LSTMs with attention mechanism [34], Con-
volutional Neural Networks (CNNs) [31], and a combination
of recurrent and CNNs with Markov Chains [35]. Furthermore,
the number of users in a given geographical area is predicted
through machine learning-based Regressors in [36] and a
combination of deep learning and Bayesian networks in [37].
Mobility forecasting in [30] supports an optimization problem
willing to distribute computing caching capabilities among
mobile users, maximizing the overall resource capacity and
satisfying the expected maximum delay. The knowledge of
locations, until one [31] or more steps ahead [32], [35], is
also adopted to drive the migration of virtual machines at the
network edge. In more detail, the contribution in [31] describes
an iterative procedure for minimizing the communication
latencies and satisfying the expected maximum delays. Opti-
mization problems willing to minimize delay [32] and energy
consumption [35] are formulated in [32], [35]. Finally, the
work discussed in [33] adopts deep reinforcement learning to
manage computation offloading tasks among different remote
MEC servers in order to minimize the delay.
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TABLE I
COMPARISON AMONG THIS WORK AND THE OTHER CONTRIBUTIONS PERFORMING MOBILITY/REQUESTS PREDICTION AND NETWORK OPTIMIZATION

Work Prediction Network optimization

Mobility Requests Characterization Look-

ahead

horizon

Communication Computation RRH-

BBU

map

Delay

constraint

Solution

Trajectory

and location

Number of

users per cell Spatial Temporal
Offloading/

Execution
Migration

Optimization

algorithm

Iterative

procedureMathematical

model

Deep

learning

Deep

learning

Deep

learning

Edge

servers
Users

[26] X X 1 X X X

[27] X X X X X X

[28] X X X X X

[30] X X X X X

[31] X X X X X

[32], [35] X X X X X

[33] X X >1 X

[40], [41] X X X 1 X

[42] X X X >1 X X

[43], [45] X X X X X

This X X X X X X >1 X X

Instead, traffic volume/load can be accurately predicted
through deep learning methods [38], [39], such as Multi-
Layer Perceptrons [42], CNNs [44], LSTMs [40], [41], and
Multivariate LSTMs [43]. Traffic forecasting during the next
look-ahead horizon assists network optimization in terms of
computation offloading and resource allocation with one MEC
server in [40], [41], minimizing energy consumption. Traffic
prediction also aids the joint communication and computa-
tional resource allocation for user association and Service
Function Chain placement among MEC servers in [42]. Here,
an optimization algorithm is adopted for minimizing delay,
while respecting service latency as upper bound. Moreover, the
knowledge of traffic requests in Cloud-Radio Access Network
context supports the Remote Radio Head (RRH)-Base Band
Unit (BBU) mapping in [43], where an optimization problem
minimizes deployment cost and energy consumption. The
traffic volume of RRHs with the number of users moving
between a pair of two RRHs is predicted in [45] through
Multivariate LSTM. This information is exploited to optimally
perform RRH-BBU mapping, minimizing energy consumption
and delay.

To conclude, Table I summarizes the goals and methodolo-
gies followed by the reviewed scientific contributions perform-
ing mobility/requests prediction and network optimization,
highlighting the main differences with respect to the approach
proposed in this paper. It emerges that to the best of authors’
knowledge no contributions in the current state of the art
jointly predict, through deep learning, the geographical distri-
bution of users over time (i.e., the number of users available
within each cell in a given moment) and the related requests
for a look-ahead horizon, as proposed in this work in order to
better manage task offloading in a 5G slicing paradigm. Thus,
they do not take advantage of mobility and requests prediction
to dynamically and anticipatorily optimize communication and
computational resource management among available MEC
servers, satisfying the upper bound of communication laten-
cies.

III. REFERENCE SCENARIO

This work mainly refers to the task offloading problem,
according to which it is necessary to deploy (and properly use)
available communication and intensive computational capabil-
ities at the network edge for offering new heavy demanding
and latency-critical services with challenging user expectations
[1], [4], [49], [54].

The conceived approach can be implemented within the
5G slicing paradigm. In fact, according to 3rd Generation
Partnership Project (3GPP) specifications [60], a slice instance
represents a set of network functions and related resources
which are arranged and configured in a logical network to
meet certain network characteristics. To this end, a service
provider declares communication service requirements (e.g.,
coverage area, number and distribution of users, traffic de-
mand, mobility, latency, etc.) to the infrastructure provider. In
turn, the infrastructure provider configures the corresponding
network slice instance, whose preparation phase includes the
on-boarding and verification of network function products and
the necessary network environment. From this moment on,
the service provider can dynamically allocate the resources
belonging to the aforementioned slice to the served mobile
users (i.e., the task offloading within a specific slice). Note
that in complex deployments, where heterogeneous services
are offered through different slices, the proposed approach can
be replicated for each slice.

In line with 5G specifications, emerging guidelines for
the upcoming B5G systems, and the ETSI-MEC standard
[61], the mobile network considered in this work embraces
mobile users, gNBs, MEC servers, SDN controllers, and a
Multi-access Edge Orchestrator (see Fig. 1). Here, gNBs are
part of the 3GPP network integrated within the ETSI-MEC
architecture. They provide wireless connectivity to mobile
users through heterogeneous technical components at the radio
interface [48], [61]. It is important to remark that gNBs can be
connected to each other in different ways. Ring, tree, or mesh
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Fig. 1. Reference mobile network with different contributions of latency lijm
in the system model.

topologies can be implemented by the infrastructure provider
[62]. Without loss of generality, a mesh topology is depicted
in Fig. 1 as an example of the backhaul network topology,
even if the system model described in Section IV-A will be
general enough for capturing the behavior of any topology.

A number of MEC servers (or MEC hosts) expose resources
to mobile users, depending on one or more services they use
[61]. In this sense, the example reported in Fig. 1 shows
that the black and gray blocks of MEC servers are dedicated
to autonomous driving and e-Health services, respectively.
According to ETSI-MEC specifications, MEC servers can be
deployed at the gNBs, at aggregation points, or at the edge
of the core network [4]. Independently from their position,
however, MEC resources (i.e., memory and computing) can
be used by users attached to different cells. This important
flexibility, however, requires a careful distribution of users’
demands, that should take care of the stringent communication
requirements, instead of just considering the computational
capabilities of MEC servers.

Network resources are monitored, configured, and orches-
trated [61]. To this end, SDN controllers continuously interact
with gNBs and MEC servers for monitoring the number of
users served by each cell, the computational resources they re-
quest, and the amount of resources exposed and/or available in
each MEC server. Note that SDN controllers can retrieve use-
ful information from network elements through standardized
protocols (i.e., OpenFlow, RESTCONF, etc.) [63]. Specifically,
since gNBs know how many users are attached to them, they
can retrieve information about the number of users served by
each gBN by simply asking for such information to the gNBs.

This information is delivered to the Multi-access Edge
Orchestrator for network optimization purposes. It represents
a fundamental entity of the ETSI-MEC reference architec-
ture, included in the MEC system level management [61].
The envisaged solution uses Multi-access Edge Orchestrator
capabilities for managing a certain number of gNBs and
MEC servers in a given geographical area (i.e., the radio
access network is divided into clusters, controlled by one
orchestrator) in order to optimally allocate computing and
communication resources for task offloading, based on the
prediction of spatio-temporal users’ dynamics. This is done
by satisfying heterogeneous traffic demands. The proposed
optimization algorithm, which can be aided by exploiting
mobility and service requests prediction, is executed by each
orchestrator instance in order to minimize the latency (which
is one of the most leading performance measures of 5G
and B5G [5], [6]) of each service, while jointly considering
network communication and computational requirements and
satisfying the upper bound of service latency and related
network constraints.

Moreover, an intrinsic characteristic of many 5G services
(e.g., autonomous driving, virtual/augmented reality assisting
museum tours) is mobility. Therefore, the communication and
computational resources must be managed by using a mobility-
aware approach, which is considered one of the most critical
and challenging issues for network orchestration [6], [33].

IV. PROBLEM STATEMENT

In this section, the system model is described and the opti-
mization problem for the reference scenario and the adopted
mobility prediction model are formulated. To facilitate the
understanding of the notations adopted in what follows, a
summary of symbols is reported in Table II.

A. System model

Let I and |I| be the set and the number of users moving in
the considered geographical area, respectively. According to
the target application, the request formulated by the i− th
user is characterized by the following communication and
computational requirements: the communication bandwidth set
to bi, the upper bound of latency equal to τi, the input data
size si, the memory requirement set to mi, and the demanded
computational capability (expressed in terms of number of
CPU cycles) equal to ci. Let J be the set of available gNBs.
The number of gNBs is given by |J |, that is the cardinality
of J , and Bj represents the amount of bandwidth available
within the cell served by the j − th gNB. Let M and |M|
be the set and the number of the available MEC servers,
respectively. Mm and Fm indicate the memory capability
and computing ability (expressed in terms of CPU cycles per
second) of the m−th MEC server. IgNBj is the set of users
in the j−th cell, attached to the j−th gNB, and IMEC

m is the
set of users served by the m−th MEC server.

The system evolves in discrete-time intervals based on the
user mobility: every tk, a different number of users IgNBj and
IMEC
m is served by the j− th gNB and the m− th MEC
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TABLE II
LIST OF ADOPTED MATHEMATICAL NOTATION

Symbol Description

i Index of the i−th user

j Index of the j−th gNB

m Index of the m−th MEC server

tk Discrete-time interval

I(k) Set of users

J Set of available gNBs and related attached cells

M Set of available MEC servers

IgNB
j (tk) Set of users attached to the j−th gNB

IMEC
m (tk) Set of users served by the m−th MEC server

|set| Set cardinality

|Îj
gNB

(tk)| Predicted number of users attached to the j−th gNB

bi Communication bandwidth of the i−th user

τi Upper bound of latency for the service requested by the i−th
user

si Input data size of the i−th user

mi Memory requirement of the i−th user

ci Computational capability requirement (in CPU cycles) of the
i−th user

Bj Available bandwidth within the cell attached to the j−th gNB

eij(tk) Spectral efficiency between the i−th user and the j−th gNB

Mm(tk) Memory capability of the m−th MEC server

Mopt
m (tk) Memory capability of the m−th MEC server in the optimization

problem

Mcons
m (tk) Consumed memory by the m−th MEC server

Fm(tk) Computing ability (in CPU cycles/second) of the m−th MEC
server

F opt
m (k) Computing ability (in CPU cycles/second) of the m−th MEC

server in the optimization problem

lijm(tk) Total latency experienced by the i−th user attached to the j−th
gNB and served by the m−th MEC server

l̄ijm(tk) Average latency per user

lradioij (tk) Communication latency experienced between the i−th user and
the j−th gNB over the radio interface

lbackhaulijm (tk) Backhaul latency between the j−th gNB and the m−th MEC
server for the i−th user

lexeim (tk) Execution latency experienced at the m− th MEC server for
serving the i−th user

Ijm(tk) Portion of users attached to the j−th gNB and served by the
m−th MEC server

rjm(tk) Capacity of the backhaul link between the j − th gNB and the
m− th MEC server

fim(tk) Number of CPU cycles/second allocated by the m− th MEC
server to the i−th user

αim(tk) Binary decision variable denoting if the i−th user is served by
the m−th MEC server

T Observation window

N Look-ahead temporal horizon

tk,n Decision cycle

k Index of the decision epoch tk
γ Discount factor

n Index of the considered time steps in each decision epoch tk

server, respectively. For every time interval tk, it holds that
|I(tk)| =

∑
j∈J |I

gNB
j (tk)| =

∑
m∈M |IMEC

m (tk)|.

The total latency experienced by the i− th user attached to
the j − th gNB and served by the m− th MEC server in the

k − th time interval is given by:

lijm(tk) = lradioij (tk) + lbackhaulijm (tk) + lexeim (tk), (1)

where lradioij (tk) is the communication latency experienced
between the i − th user and the j − th gNB over the radio
interface, lbackhauljm (tk) is the backhaul latency experienced
between the j − th gNB and the m − th MEC server, and
lexeim (tk) is the execution latency experienced at the m − th
MEC server [6], [9], [54]. These different latency contributions
are shown in Fig. 1.

In compliance with ITU specifications, the communication
latency over the radio interface, lradioij (tk), is expected to be
less than 5 ms [53], [54].

The backhaul latency lbackhaulijm (tk) is obtained by dividing
the aggregate traffic load generated by the users attached to
the j− th gNB and served by the m− th MEC server, that is∑
i∈Ijm(tk)

si, and the capacity of the backhaul link between
the j − th gNB and the m− th MEC server, rjm(tk) [42]:

lbackhaulijm (tk) =

∑
i∈Ijm(tk)

si

rjm(tk)
, (2)

where Ijm(tk) is the portion of users attached to the j − th
gNB and served by the m−th MEC server, that share the same
backhaul link. The system model described herein is general
enough for capturing the behavior of any backhaul topology.
Without loss of generality, a mesh topology, with the same
capacity for each backhaul link, is considered (see Fig. 1).
MEC servers can be deployed at the gNBs, at aggregation
points, or at the edge of the core network. Therefore, the
backhaul latency varies depending on the scenario. Specifi-
cally, assuming that MEC servers are co-located with gNBs
without loss of generality, there are two possibilities when
calculating the backhaul latency. No additional delay (i.e.,
lbackhauljm (tk) = 0) is introduced in the backhaul if the m− th
MEC server co-located with the j − th gNB (i.e, m = j),
to which it is attached the user, is the one serving the user.
Conversely, the backhaul latency is considered and calculated
for the backhaul path connecting the gNB, to which it is
attached the user, with a neighboring MEC host, which is
serving the user.

During the time interval tk, the computing capabilities
exposed by each MEC host are assumed to be uniformly
allocated among served users. Therefore, the execution latency
lexeim (tk) is equal to [9], [14]:

lexeim (tk) =
ci

fim(tk)
=

ci
Fm(tk)/|IMEC

m (tk)|
, (3)

where fim(tk) is the number of CPU cycles per second
allocated by the m−th MEC server to the i−th user. Such an
equation is generic enough to be used in any realistic scenario
with homogenous and heterogeneous service requirements:
the execution latency refers to the computational capability
requirements of users, that can execute a single application
task, as well as more heterogeneous application tasks.

B. Optimization problem

The goal of this paper is to distribute users’ requests
among the available MEC servers, so that the latency of each
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P1 : min
{αim(tk)}

{
N∑
n=0

γn

[∑
j∈J

∑
i∈IgNB

j (tk,n)

(
lradioij (tk,n)+

∑
m∈M

αim(tk,n) ·
[
lbackhaulijm (tk,n) + lexeim (tk,n)

])]}
,∀tk (4)

subject to:
∑

i∈I(tk,n)

αim(tk,n) ·mi≤Mopt
m (tk,n),∀m∈M,∀n,

∑
i∈I(tk,n)

mi≤
∑
m∈M

Mopt
m (tk,n),∀n (4a)

∑
i∈I(tk,n)

αim(tk,n) · fim(tk,n)≤F optm (tk,n),∀m∈M,∀n (4b)

lradioij (tk,n) +
∑
m∈M

αim(tk,n) ·
[
lbackhaulijm (tk,n) + lexeim (tk,n)

]
≤ τi,∀i ∈ I(tk,n),∀n (4c)

Bj · eij(tk,n) ≥ bi,∀i∈IgNBj (tk,n),∀n (4d)

αim(tk,n)∈{0, 1},
∑
m∈M

αim(tk,n)=1,∀i∈I(tk,n),
∑

i∈I(tk,n)

αim(tk,n)= |IMEC
m (tk,n)|,∀m∈M,∀n (4e)

|IgNBj (tk,n)| =
∑
m∈M

|Ijm(tk,n)|,∀j∈J , |IMEC
m (tk,n)| =

∑
j∈J
|Ijm(tk,n)|,∀m∈M,∀n (4f)

considered service is minimized and network outage in terms
of memory, computing, and bandwidth resources is avoided.
Such a problem is stated as a sequential decision-making
process: at every decision epoch tk, control actions aiming at
assigning users’ demands to the best suitable MEC servers are
executed, according to their available memory capabilities and
computing abilities, in order to minimize latencies experienced
by users and to satisfy service latency constraint. At every
decision epoch tk, the requests and, hence, the resources
needed to run the user services for the N steps ahead are
leveraged and the control is executed based on the optimization
problem P1 stated in (4). The solution of the problem is found
by executing the dynamic programming approach [51] at every
decision epoch tk (i.e., each point of the sequential decision-
making process where decisions are made), transforming a
complex problem into a sequence of simpler problems. In line
with the dynamic programming approach [51], the discount
factor γ, (0 < γ ≤ 1), is introduced to incorporate the
concept of discounting for the look-ahead temporal horizon N .
Specifically, the decision cycle tk,n, with n ∈ {0, 1, ..., N},
represents the sequence of the considered time steps (with
tk,n = tk+n) to reach and implement decisions in each epoch
tk, whose impact is exponentially weighted through γn. Thus,
it is possible to understand that, when n = 0, tk,0 is weighted
through γ0 = 1, while the future time steps in the sequence
have a gradually decreasing weight (i.e., from γ1 for tk,1 to
γN for tk,N ) in the decision cycle tk,n.

The implemented control is expressed by a binary decision
variable αim(tk), that is:

αim(tk)=


1 if the i−th user is served by the m−th

MEC server, i.e., ∀i∈IMEC
m (tk);

0 otherwise.
(5)

Note that αim(tk) only involves the backhaul and the
execution latency because they depend on the concerned MEC
server, while the radio component is independent thereof.

The constraints in (4a) consider the memory capabilities and
requirements: the memory capability of the m− th MEC
server Mopt

m (tk,n) cannot be exceeded by served users in
each decision cycle tk,n and the overall memory capabilities
need to be sufficient for satisfying memory requirements. The
constraint in (4b) regards the CPU ability of the m− th
MEC server F optm (tk,n) in each decision cycle tk,n. Because
of the definition of the execution latency component in (3),
computing capabilities are included in the service latency
constraint (4c), that is valid for each i − th user in the
network , where the maximum tolerable latency τi is the upper
bound of user latency experienced during each decision cycle
tk,n. If the computing abilities are not enough, (4c) is not
verified. Bandwidth requirements are considered in (4d), where
eij(tk,n) is the spectral efficiency between the i−th user and
the j−th gNB. Moreover, in every decision cycle tk,n each user
can be served by one and only one MEC server, as reported
in (4e) and (4f), that means the number of users attached to
different gNBs should be equal to the number of users served
by different MEC hosts.

The solution of the optimization problem P1 stated in
(4) may be anticipatorily found, forecasting the number of
users in the coverage area of each gNB. In what follows,
the anticipatory optimization approach presented in this work
is referred to as Prediction-based Control (P-C). Since the
solution of the network optimization problem P1 stated in
(4) may be also found supposing to know the mobility of
users in advance, in Section V also the anticipatory network
optimization approach based on ground truth, i.e., Ground
Truth-based Control (GT-C), is evaluated.

C. Mobility prediction model

The users moving in the considered geographical area may
pass from one cell to an adjacent cell. Accordingly, the number
of users attached to each gNB changes over time. The goal
of the mobility prediction model described in this subsection
is to anticipatorily discover the distribution of mobile users
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Fig. 2. The considered geographical area with example temporal movements
of three taxi cabs.
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Fig. 3. Distribution of the number of users over time for two cells.

Fig. 4. The conceived mobility prediction model.

among available cells, based on the knowledge of the number
of users attached to related gNBs in the past. Service demands
can be later estimated based on the services requested by the
users.

To this aim, this paper leverages real mobility data from
the dataset presented in [52], which reports the movements
of around 100 taxi cabs in Rome (Italy), from 1 February
2014 to 2 March 2014, with a granularity of about 15 s.
The traces of the published version of the dataset gives
information on when the taxi position has been collected, with
a precision of microseconds, and Global Positioning System
(GPS) coordinates, in the decimal format. The considered
geographical area of the center of Rome has been divided
using square cells, covering an area of 1 km × 1 km each (an
example is reported in Fig. 2). Note that square cells have been
considered, but the considerations are also valid for arbitrarily
shaped cells.

These real traces are used to generate a list of matrices
describing the geographical distribution of users over time.
For example, Fig. 3 shows the distribution of the number of
users for two cells (i.e., j = 1 and j = 3) with a low and high
number of users, respectively.

The conceived mobility prediction model exploits the Con-
vLSTM architecture to predict the distribution of mobile users

among the available cells and for the upcoming N consecutive
time intervals, based on the knowledge of the distribution
of users (i.e., retrieved by SDN controllers from gNBs, that
know how many users are attached to them) observed during
the latest T observation time intervals. As depicted in Fig.
4, the considered ConvLSTM architecture is based on LSTM
[64], with the convolution operator as input, forget, and output
gates instead of the element-wise or Hadamard product [50].
Therefore, it is able to extract temporal and spatial correlations
of data through LSTM memory cells and the convolutional
operation, respectively [38], [65]. More specifically, this work
conceives a learning architecture embracing two 2-dimensional
ConvLSTM layers, after each one a batch normalization layer
is used to accelerate deep network training [66]. The number
of epochs and the number of filters are set equal to 30 (see
the convergence analysis proposed in Section V-A) and 200,
respectively. At the end, there is a fully-connected layer with
the Rectified Linear Unit (ReLU) activation function [38] to
predict the expected distribution of users, after the observation
window T , for a specific look-ahead temporal horizon N . The
predictor is configured in order to minimize the Mean Square
Error (MSE) loss function, which minimizes the difference
between the ground truth and the predicted distribution of
users [48], [65]. The Adam optimization [67], with a learning
rate equal to 0.001, is used to iteratively update the network
weights.

V. PERFORMANCE EVALUATION

Herein, the performance of the conceived anticipatory net-
work optimization scheme is evaluated by using computer
simulations. Without loss of generality, the study considers an
autonomous driving use case (with real mobility traces [52]
described in Section IV-C and conceivable network and service
settings [13], [53]–[59]). Of course, the whole approach can
be applied to each use case and heterogeneous scenarios by
properly adapting the related parameter settings.

A real geographical area of 10 km2 in Rome (Italy) is
considered, divided into 10 square cells (i.e., |J | = 10).
According to the autonomous driving use case, for the i− th
user the communication bandwidth and the upper bound of
service latency are set to bi = 700 Mbps and τi = 100
ms, respectively [54], the input data size is set to si = 5
Mbit [13], [56], and the memory and computational capability
requirements are set to mi = 16 GB [57] and ci = 300
Megacycles [56], respectively. The available bandwidth within
the cell attached to the j − th gNB and the capacity of the
backhaul link between the j − th gNB and the m− th MEC
server are set to Bj = 40 MHz [58] and rjm = 10 Gbps,
respectively. Since it is assumed that MEC servers are co-
located with gNBs without loss of generality, |J | = |M| = 10
in the tests. The parameters of MEC servers, whose sizing
is a key issue in such systems, are adequately sized with
respect to overall requests in each tk,n [59]: the memory
capability and the computing ability of the m − th MEC
server are set to Mopt

m = 176 GB and F optm = 36 Gigacycles/s,
respectively. In simulations, it is considered the upper bound
of the communication latency experienced over the radio
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TABLE III
MAIN SIMULATION PARAMETERS

Parameter Value Parameter Value

Area 10 km2 |J | = |M| 10

T 40 s N 5 s, 10 s, 20 s, 40 s

Learning rate 0.001 γ 0.9

bi 700 Mbps [54] τi 100 ms [54]

si 5 Mbit [13], [56] mi 16 GB [57]

ci 300 Megacycles [56] Bj 40 MHz [58]

rjm 10 Gbps M opt
m 176 GB

F opt
m 36 Gigacycles/s lradioij 5 ms [53], [54]

eij 30 bit/s/Hz [55] Period of time 3600 s

interface lradioij (tk,n), that means to use constant values for
lradioij (i.e., 5 ms [53], [54]) and the spectral efficiency eij
(i.e., 30 bit/s/Hz [55]) in each tk,n. Table III summarizes the
main adopted parameters.

In line with the dynamic programming approach [51], the
optimal solution has been found at each decision epoch tk
through the value iteration algorithm implemented by using
Matlab. As anticipated in Section IV-B, the optimization prob-
lem P1 is solved by considering the predicted number of users
per cell over a specific temporal horizon, i.e., |Îj

gNB
(tk,n)|

by using the actual distribution of users for n = 0 and
the prediction of the number of users for the future time
steps in the decision cycle tk,n, and the perfect knowledge
(ground truth) of users’ distributions, i.e., |IgNBj (tk,n)|. These
anticipatory mechanisms based on prediction and ground truth
are denoted with P-C and GT-C, respectively. Note that the
comparison between P-C and GT-C intends to highlight the
effectiveness of the prediction procedure and its impact on
the overall system performance. The behavior of both P-C
and GT-C is studied for different temporal horizons, that are
N = 5 s, 10 s, 20 s, 40 s, to evaluate their effect on key
performance indicators. Moreover, to provide further insight,
the anticipatory methods P-C and GT-C are compared with a
Baseline approach. It just leverages the distribution of users
at the current time instant tk and allocates their requests to
the closest MEC server (i.e., co-located with the gNB in the
related cell), without envisaging optimization problems and
constraints. Therefore, since the related literature is missing
works that perform network resource optimization based on
the prediction of the number of users problem (please see
Section II for further details), the proposed anticipatory opti-
mization approach based on mobility prediction is compared
with the anticipatory network optimization approach based on
ground truth and with the Baseline approach defined above.

Since the system configuration decision and the user latency
are updated with a time granularity of 1 s, the latency
constraint (4c) is continuously taken into account by P-C and
GT-C for considering the impact of users’ mobility, handovers,
and possible service migrations among MEC servers. As a
consequence, the proposed system model and the conceived
optimization problem allow to successfully meet the whole
service latency constraint. Note that the developed approach

has been conceived for 5G and B5G networks. Indeed, it
is possible to assume a 0 ms handover latency (namely
mobility interruption time in 3GPP specifications) [68]. At the
same time, this assumption does not influence the behavior
of the proposed approach because resources are optimally
allocated on a much higher time granularity than the mobility
interruption time allowed in 5G (and beyond) deployments.
For the same reason, the presented approach does not explicitly
consider the virtual machine/container migration process. With
a time granularity of 1 s, the Multi-access Edge Orchestrator,
that optimally orchestrates requested services and available
communication and computational resources, communicates
with all the network entities. Therefore, any configuration
changes (i.e., on the number of users and related resources
to be allocated) are known by MEC servers through the
interaction with the orchestrator. Moreover, the delay of task
migration between MEC servers can be considered negligible
in vehicular context [69], as the analyzed case, or, through
prediction information for the look-ahead temporal horizon N ,
the migration process can eventually occur before it actually
happens so that the users do not experience any additional
delay due to migration [70].

The measured key performance indicators entail a complete
analysis on mobility prediction performance and latency per
user, as well as the number of changes among MEC servers,
the distribution of users among MEC servers, consumed
memory, and CPU usage. The number of changes among MEC
servers is included as key performance metric because, in mo-
bile scenarios, it is important to guarantee service continuity.
The changes among MEC servers (and so also the number of
potential migrations) imply the establishment of new backhaul
connections, having negative effects on experienced latency.
Also the backhaul connection quality affects the computation
execution [3]. Therefore, it is better to avoid changes among
MEC servers and keep connectivity between the user and
the serving MEC host [3], [71]. Finally, also the complexity
of the proposed anticipatory network optimization scheme is
evaluated.

All the results reported below have been evaluated in a
period of time (i.e., decision epochs) equal to 3600 s, with a
time granularity of 1 s, and have been obtained by averaging
the outcomes on the 3600 realizations. Together with average
values, the 95%−confidence intervals, computed through the
Gaussian statistical distribution, are reported as well for the
spatial characterization. For the characterization during 3600s,
the Cumulative Distribution Functions (CDFs) illustrate only
P-C and Baseline, because GT-C trends overlap with P-C and
they are omitted for the sake of clarity.

A. Mobility prediction performance
Regarding the prediction procedure (integrated within the P-

C scheme), the conceived mobility prediction model exploits
the ConvLSTM architecture, as described in Section IV-C. To
provide further insight, the comparison with a state-of-the-art
mobility prediction approach, that uses the LSTM architecture
aided by the attention mechanism for capturing long-range
dependency [34], is presented as well. In particular, the refer-
ence learning architectures selected for the cross-comparison
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Fig. 5. Prediction loss (i.e., MSE) vs number of epochs for a) ConvLSTM architecture and b) LSTM architecture with attention.

TABLE IV
COMPLEXITY ANALYSIS OF LEARNING ARCHITECTURES

Architecture
# Parameters

N=5s N=10s N=20s N=40s

ConvLSTM 801205 802210 804220 808240

LSTM with attention 799940 801850 804030 808140

1 2 3 4 5 6 7 8 9 10
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Fig. 6. MSE for each j − th cell, registered with different N .

embrace four LSTM layers (i.e., two with 200 and 2 with 100
hidden units, respectively, after each one a batch normalization
layer is used) in order to have a comparable complexity
of the corresponding ConvLSTM architecture. Note that the
mobility prediction architecture needs a different number of
training parameters for each considered temporal horizon N ,
as summarized in Table IV.

Fig. 5 shows the prediction loss (i.e., MSE) of the ConvL-
STM architecture and the LSTM architecture with attention as
a function of the number of epochs for the training set and
the validation set, representing 80% and 20% of the adopted
dataset, respectively. The reported curves confirm that the
developed ConvLSTM architecture reaches lower values of
MSE with respect to the LSTM architecture with attention.
Moreover, differently from the LSTM architecture with atten-
tion, the ConvLSTM architecture fastly converges to stable
values and does not need a long training period. Accordingly,
the ConvLSTM architecture trained during 30 learning epochs,
which achieves better results in terms of prediction loss and

convergence time /complexity, is considered hereafter.
To deeply evaluate the mobility prediction performance in

the investigated scenario, Fig. 6 reports the MSE values for
each j−th cell, registered with the different temporal horizons
N . Cells j = 3 and j = 8, with the highest number of users
(see the trend of |IgNB3 | in Fig. 3), reach the greatest values
of prediction loss. Moreover, the MSE value tends to increase
with N , as expected. In fact, the highest values of MSE are
registered for N = 40 s, even if in this case MSE is generally
lower than 4.

B. Latency per user

Fig. 7 depicts the average latency per user served by each
MEC server. The average latency per user registered by both
P-C and GT-C schemes is always lower than the maximum
tolerable latency τi. Furthermore, the proposed optimization
approaches, involving a load balancing among MEC servers,
keep a nearly stable and uniform latency throughout the
network. Thus, they can improve the computation efficiency
of MEC servers, avoiding overloaded MEC servers, as well
as user experience, balancing MEC servers loads and always
satisfying service latency requirements [6], [59].

On the contrary, without the previous implications, the
Baseline scheme registers an average latency per user that
exceeds the maximum tolerable latency τi in high-loaded cells.

The CDFs of all the latencies per user reported in Fig. 8
thoroughly confirm that only P-C always ensures service la-
tency requirements for all the users in the network, differently
from the Baseline approach. To deeply analyze the impact
of the horizon N , the values of the average latency per user
among MEC servers for P-C with each analyzed horizon are
reported. They are equal to 83.2 ms for N = 5s, 81.1 ms for
N = 10 s, 82.7 ms for N = 20 s, and 83.6 ms for N = 40 s.
Obtained results clearly reveal that from N = 5 s to N = 10
s the average latency per user among different MEC servers
decreases, while it tends to increase with values higher than
N = 10 s, registering the highest value of latency for N =
40 s.

To conclude, N = 10s is a suitable optimization horizon
because of slightly lower values of latency.
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Fig. 7. Average latency per user (with the 95%−confidence intervals) served by each MEC server for P-C, GT-C, and Baseline.
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Fig. 8. CDF of the latency per user for P-C and Baseline.
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Fig. 9. CDF of the number of changes among MEC servers for P-C and
Baseline.

C. Changes among MEC servers

Fig. 9 shows the CDFs of the number of changes among
MEC servers. Reported curves demonstrate that the presented
proposal generally has the highest performance levels: a num-
ber of changes equal to 0 is registered by only 28.31% of
realizations for the Baseline scheme, whereas the proposed
approach presents around 90% of samples with 0 changes.
Focusing on the horizon N , from N = 5 s to N = 10 s the
performance improves, while it tends to decrease with values
higher than N = 10 s. In fact, when N = 10 s, the number of
changes is always lower and the value of the 95−th percentile
is 4 changes with respect to 7, 5, and 9 changes registered for
N = 5 s, N = 20 s, and N = 40 s, respectively. Thus,
increasing the considered future steps (i.e., from N = 5 s

to N = 10 s) in the optimization problem P1 reduces the
number of changes among MEC servers. However, because
of higher variability, for longer temporal horizons (i.e, N =
20 s and N = 40 s) the anticipatory network optimization
approach starts to imply a higher number of changes among
MEC servers and the highest number is reached with N = 40
s. The 95− th percentile of the presented approach with N =
10 s outperforms also Baseline (i.e., 5 changes).

In summary, this analysis further confirms that N = 10 s is
a suitable optimization horizon since it minimizes the average
user latency and the number of changes among MEC servers.

D. Distribution of users among MEC servers

Fig. 10 shows the average number of users served by each
MEC server. Both anticipatory network optimization methods
(P-C and GT-C) are able to fairly distributed users’ demands
among the different MEC servers, regardless of the gNB to
which they are co-located. Moreover, since the ConvLSTM ar-
chitecture has very high prediction performance, P-C behaves
very similarly to GT-C. They have exactly the same behaviors
for MEC servers co-located with gNBs having a high number
of users (e.g., j = 3), that are fully used under memory and
computing constraints. Also by varying the temporal horizon
N , P-C and GT-C achieve a very similar average number of
users served by each MEC host.

Instead, the Baseline approach is deeply biased by the
distribution of the users among cells and, in particular, its
policy is to maintain the users at the MEC server co-located
with the gNB in which they are attached.

Fig. 11 illustrates the CDFs of the number of users served by
different MEC servers. It further confirms the extremely high
similarity between the trends of P-C with different N , that
behaves differently from the Baseline scheme having higher
variability.

E. Amount of memory consumed by MEC servers

Fig. 12 represents the average values of the memory con-
sumed by each MEC server. Also in this case it is possible
to observe that both P-C and GT-C methods, with different
horizons N , well balance the load among the MEC servers.
This result confirms the fairness property investigated in the
previous subsection. In high-loaded cells, the MEC servers
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Fig. 10. Average number of users (with the 95%−confidence intervals) served by each MEC server for P-C, GT-C, and Baseline.
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Fig. 11. CDF of the number of users served by MEC servers for P-C and
Baseline.

co-located with the gNBs saturate their available memory.
As a consequence, the proposed approaches redirect some of
the requests generated within these cells towards other MEC
servers, thus always satisfying the constraint reported in (4a).

Instead, the consumed memory M cons
m for Baseline, without

memory constraints, reaches an average value of around 400
GB for MEC servers corresponding to cells with a high
number of users (e.g., m = j = 3), as demonstrated by the
reported results.

As an additional confirmation, the CDFs reported in Fig.
13 describe how the Baseline approach registers peak usage
of memory equal to around 600 GB. On the contrary, the
anticipatory optimization scheme developed in this work guar-
antees quite balancing of the amount of memory consumed in
the available MEC servers, which is always below the target
upper bound.

F. CPU usage of MEC servers

According to the definition in (3) and the related constraint
(4b) of the formulated optimization problem P1, the CPU
capability of each MEC server is completely consumed in all
the implemented approaches. Note that the computing ability
of the m − th MEC server in the optimization problem P1,
i.e., F optm = 36 Gigacycles/s, is adequately set with respect to
overall requests and it is lower compared to typical values of
the MEC server ability. In fact, they can be greater than 1000
Gigagycles/s [72] and, with that assumption, the vast majority

of the available CPU resources could be dedicated to other
services and purposes.

Of course, the CPU ability of MEC server affects the
execution latency experienced by each user, which is the most
significant component. In fact, because of the computing sizing
of MEC servers (i.e., F optm ), the average total latency per
user performed through the optimization approach is generally
closer to the maximum tolerable latency τi (as detailed in
the next subsection) and it validates the current hypothesis
in considering the radio component as constant. Without load
balancing among MEC servers, the same computing abilities
(i.e., Fm = F optm ) are not sufficient to always satisfy the
upper bound of service latency τi in the Baseline case. In
particular, the average number of CPU cycles/second allocated
by the m − th MEC server to the i − th user, i.e., f̄im,
is generally lower for Baseline compared to P-C and GT-
C, as demonstrated in Fig. 14. Therefore, the Baseline case
has higher execution latency components because of lower
values of f̄im. Furthermore, since f̄im is inversely related to
the number of users served by the m−th MEC server |IMEC

m |,
the Baseline scheme registers the lowest and the highest values
of f̄im for MEC servers co-located with gNBs having a high
and a low number of users, respectively.

The related CDFs reported in Fig. 15 clearly illustrate
the similar behaviors of P-C with different horizons N , that
generally has higher values of f̄im with respect to Baseline.
Moreover, this figure confirms that the maximum possible
value for the number of CPU cycles per second allocated by
the m−th MEC server to the i−th user (i.e., fim) is the CPU
ability of MEC server F optm .

G. Complexity analysis

Despite the overall better performance reported in the above
subsections, introducing the anticipatory methods increases the
complexity in the network management system, basically due
to finding the solution to the optimization problem P1. In
Table V, P-C and Baseline are compared in terms of the av-
erage running time of each decision epoch tk and the average
total number of objective function evaluations needed for each
decision epoch tk, characterizing only P-C solved through
value iteration, which is

∑
j∈J |I

gNB
j (tk,n)| · |M| · N [73].

GT-C is omitted because the cost of the optimization process
is analogous to P-C. However, here it is highlighted that the
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Fig. 12. Average amount of memory (with the 95%−confidence intervals) consumed by each MEC server for P-C, GT-C, and Baseline.
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Fig. 13. CDF of the amount of memory consumed by MEC servers for P-C
and Baseline.

TABLE V
COMPLEXITY ANALYSIS PER DECISION EPOCH

Complexity parameter
Approach

P-C Baseline
N=5s N=10s N=20s N=40s

Running
time

4.37s 7.81s 34.78s 78.62s 0.04s

# Objective function
evaluations

5321 10125 21369 43791 -

mobility prediction model required by P-C needs an extra-
training phase, which early converges anyhow (Section V-A).
Without the optimization problem, Baseline has an extremely
lower running time because it does not implement any controls
and does not anticipatorily evaluate the user distributions. For
P-C, it is evident that the complexity increases with N . In fact,
the larger the look-ahead horizon N , the deeper in future in the
objective function of each k−th optimization problem (i.e.,
by considering N steps ahead in each decision cycle tk,n).
Thus, P-C with N = 5 s has the lowest average running time
and the lowest number of objective function evaluations per
decision epoch. Intermediate values are reached when N = 10
s and N = 20 s and P-C with N = 40 s registers the highest
complexity. Again, N = 10 s is the best trade-off between
performance and complexity.

Note that simulations have been executed on an Intel Core
i5 CPU quad-core with 8 GB of RAM and the running time

will be extremely reduced on a powerful machine with GPU,
by improving the efficiency of the proposed approach [74],
[75]. In particular, GPU server is at least 4-5 times faster
than CPU server (with 16/24 cores) [75]. The significant profit
of using a powerful machine makes the running time not
only comparable to but much lower than the optimization
epoch of the optimization algorithm. The effectiveness can be
further enhanced (i.e., much shorter running time) by using a
GPU server with more features [75], that are actually used by
network operators.

It is remarked here that the encouraging results achieved by
the proposed anticipatory network optimization approach open
future research directions aiming at decreasing the computa-
tional complexity of the proposed solution based on dynamic
programming, while maintaining the same performance. To
this aim, solutions based on deep reinforcement learning [76]
and distributed training [77] seem interesting areas to be
further explored.

VI. CONCLUSIONS

This work presented a novel methodology for anticipatorily
allocating communication and computational resources at the
network edge, and over different look-ahead temporal hori-
zons. Specifically, the Convolutional Long Short-Term Mem-
ory has been used to predict the number of users served within
a given number of cells and their related service demands, and
the Dynamic Programming has been exploited to optimally
allocate users’ requests among Multi-access Edge Computing
servers for better managing task offloading within a network
slice created into a 5G system. By focusing the attention
on the autonomous driving use case, computer simulations
demonstrated how the proposed solution is able to fairly
distribute users’ requests at the network edge, while satis-
fying communication and computational constraints, as well
as ensuring the upper bound of the communication latency
expected for the considered service. Future research activities
will further extend the presented study by considering more
complex network scenarios with heterogeneous services shar-
ing a variable amount of resources at the network edge, energy
consumptions, and realistic Beyond 5G deployments.
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Fig. 14. Average number of CPU cycles/second (with the 95%−confidence intervals), allocated by each MEC server to served users, for P-C, GT-C, and
Baseline.
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Fig. 15. CDF of the average number of CPU cycles/second per user for P-C
and Baseline.
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