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Abstract. Modern computing paradigms (i.e., cloud, edge, Internet of
Things) and ubiquitous connectivity have brought the notion of perva-
sive computing to an unforeseeable level, which boosts service-oriented
architectures and microservices patterns to create digital services with
data-centric models. However, the resulting agility in service creation
and management has not been followed by a similar evolution in cyber-
security patterns, which still largely rest on more conventional device-
and infrastructure-centric models.

In this Chapter, we describe the implementation of the GUARD Plat-
form, which represents the core element of a modern cybersecurity frame-
work for building detection and analytics services for complex digital
service chains. We briefly review the logical components and how they
address scientific and technological challenges behind the limitations of
existing cybersecurity tools. We also provide validation and performance
analysis that show the feasibility and efficiency of our implementation.

Keywords: Cybersecurity architecture · Digital service chain ·
Detection · Analytics pipeline

1 Introduction

Around thirty years after its original definition, pervasive computing has become
a reality and probably has gone far beyond what could have been expected at that
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Fig. 1. An example of service chain for Smart City services.

time [29]. As a matter of fact, the integration of (invisible) computing capabili-
ties into nearly all possible objects has only represented a part, yet relevant, of
the implementation of this concept, while virtualization and ubiquitous connec-
tivity have fully triggered the transition from device-centric to data-centric mod-
els. It therefore comes as no surprise that the more remunerative business in the
digital economy is the creation of value added services for data retrieval, transfor-
mation, and sharing, no matter where and how processing is actually performed.
This has been largely supported by a progressive (and still on-going) evolution
from monolithic applications to service-oriented architectures, web services, and,
more recently, service meshes [24].

Modern digital applications and services are increasingly designed and imple-
mented according to microservice patterns, by composing (also denoted as chain-
ing) digital resources (data, networks, cloud services, applications, and things)
from multiple vendors on a growing scale; this allows to create, process, share, and
consume data and content in a digital continuum, blurring the frontiers between
application domains and breaking the current closed silos of information. Exam-
ples of digital resources include industrial and financial data sets, cloud infrastruc-
tures, lambda functions, storage services, smart devices in the Internet of Things,
5G network slices, LoRaWAN networks, and so on. An illustrative example is
shown in Fig. 1. It depicts a possible chains of digital resources to create Smart
City services. It includes Internet of Things (IoT) devices around the city (public
transportation, traffic lights, public lightning, parking meters, etc.) connected to
LoRaWAN gateways. The backbone is a leased 5G network slice, which intercon-
nects the gateways to the LoRaWAN server deployed in the public cloud. In the
same or a different cloud infrastructure, one or more applications implement the
desired services (e.g., fleet and lightning management, free parking notification,
traffic routing), maybe by interfacing with external datasets and users.

The loosely-coupled nature of micro-services allows to replace, duplicate, or
remove part of them without affecting the operation of the overall application. As
main result, digital services can be quickly provisioned in a matter of minutes or
hours instead of days or weeks, can grow or shrink dynamically according to the
evolving workload, can be easily deployed, replicated and migrated in multiple
locations and even over heterogeneous infrastructures. This perfectly fits the
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dynamic and agile nature of modern business models, where digital services and
business chains are expected to emerge, evolve, and dissolve much faster than
traditional value-creating networks.

Unfortunately, cybersecurity mechanisms have largely been unable to keep
the pace of this evolution towards data-oriented models. Indeed, they are still
largely conceived to protect individual devices and specific infrastructures, either
physical or virtual, but are largely ineffective to cope with complex dynamics,
dispersion of data among the multitude of digital objects and infrastructures,
non-deterministic, opaque and partially inscrutable service topologies [24]. Most
issues come from privacy and integrity concerns. As a matter of fact, although
the location and confidentiality of private and sensitive data are rather straight-
forward to manage inside devices and infrastructures of a single provider, this is
more difficult when resources from multiple providers are involved (e.g., cloud,
storage, things, networks) [2]. Similarly, detection of cyberattacks in these con-
ditions is extremely challenging, due to the lack of proper visibility over third
party’s infrastructures and services.

The GUARD framework was conceived as an evolutionary step in the design
and operation of cybersecurity frameworks, towards data-centric models already
implemented by modern computing paradigms [23]. It advocates the augmen-
tation of service management interfaces with security capabilities, according to
on-going efforts in IETF [13,19] and OASIS [1]. Further, it provides a way to
leverage such extended interfaces for programmatically collecting data and feed-
ing detection algorithms and security analytics, while providing the necessary
agility to chase the dynamics of complex digital service chains. In this Chapter,
we follow up on our preliminary architectural design [24] with a more concrete
implementation of its core platform. We briefly describe the different components
and the main benefits of the GUARD approach; we also provide validation and
performance evaluation for the most critical parts of our platform.

The rest of the Chapter is organized as follows. We initially discuss related
work in Sect. 2. We briefly review the overall GUARD framework in Sect. 3,
while in Sect. 4 we describe the last version of the core platform architecture
and its main components, namely the Context Broker Manager, the Security
Controller, and the Dashboard. Then, we describe how the platform interacts
with digital services and its internal workflows in Sect. 5. We report numerical
results from our validation and performance analysis in Sect. 6. Finally, we give
our conclusion and plan for future work in Sect. 7.

2 Related Work

The interconnection of digital resources from multiple heterogeneous domains
(cloud, data sets, networks, IoT, etc.) creates complex systems of systems, which
introduce more functions, management aspects, and security issues than the
plain sum of the constituent components [25,26]. They represent a fertile ground
for new forms of attacks, often leveraging advanced persistent threats (APT).
Research efforts have largely focused on building complex analytics for spotting
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anomalies in large bulks of data, often leveraging big data techniques. Specific
topics in this context include the heterogeneity of log data and events (e.g.,
structured, semi-structured, and unstructured samples) [11,31], scalability and
multidimentional anomaly detection [17,21], the automatic generation of config-
urations from high-level policies [7,30], data handling architectures for Security
Operation Centers [3,9], data collection strategies [18]. Besides, the concept of
Security Monitoring-as-a-Service (SMaaS) was introduced, but it still remains
bound to rigid architectures [10]. Notably, while many frameworks allow to cre-
ate multiple analytics processes (e.g., Elastic Stack, Apache Metron), to the best
of our knowledge there is no way to automate this configuration on dynamic
systems-of-systems as digital service chains.

A meaningful step in this direction is the creation of standard interfaces to secu-
rity functions. The I2NSF framework [13,19] defines YANG [5] data models for
describing security capabilities and changing the configuration of network security
functions with the RESTCONF/NETCONF protocols [4,6]; the framework also
defines monitoring and reaction interfaces. Unfortunately, there is only a detailed
data model for stateless packet filters, whereas other kinds of supported appliances
(antivirus, IDS, web and Voice-over-IP firewall) have a much barer interface. The
OpenC2 initiative [1] takes a different approach, focusing more on a standard set
of commands rather than data models. Indeed, currently there is only an operation
profile for the stateless packet filter [22], but the usage of this interface for other
cybersecurity appliances requires far less extensions than I2NSF.

Identity management and access control always represent a big challenge in
decentralized environments. Most of the emerging solutions exploit a decoupled
mechanism, which aims at separating authentication and authorization function-
alities in a harmonized fashion [16]. Many interesting solutions have been recently
formulated in the scientific literature for identity management in multi-domain
environments, like OpenID Connect and OAuth 2.0 [20,27,28]. They introduce
the possibility to authenticate users within a federated ecosystem by means of a
trusted Identity Provider. This is necessary to delegate security management to
external providers, without sharing full access to the management interface.

3 The GUARD Framework

Recent advances in cybersecurity have largely focused on improved detection and
correlation capability, in order to recognize advanced persistent threats and com-
plex multi-vector attacks. In this respect, machine learning and other forms of arti-
ficial intelligence are often used for spotting anomalies in large bulks of data, which
may be generated by zero-day attacks. Despite of the large effort in improving the
detection and automating response and mitigation actions, the installation and
configuration of protection systems is still largely a manual process, which takes
time and needs continuous tuning every time the system changes (e.g., devices are
added/removed/replaced, software is installed/updated/purged, new configura-
tions are applied). Even if this approach has always been accepted for long-lived
installations that are seldom modified or upgraded, it does not fit the agile nature
of digital services that are quickly provisioned and changed.
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Fig. 2. Overview of the GUARD framework.

The GUARD framework is conceived as a new paradigm to implement detec-
tion and analytics processes for digital service chains. Its objective is to facilitate
the creation and adaptation of such processes in fast-changing environments, by
automating as much as possible the setup of security analytics pipelines. We
define as security analytics pipeline the processing chain from security agents
to detection algorithms, which includes the necessary tasks for data collec-
tion, transformation, filtering, indexing, analysis, correlation, and storage. This
is implemented by the GUARD Platform, which acts as a sort of middleware
between security agents and detection/analytics services, as depicted in Fig. 2.

The most innovative aspect of the GUARD framework is the multi-domain
scope. Indeed, even if a digital service chain is created and managed by a single
entity (denoted as Service Provider), it is usually composed by resources owned
and operated by different Resource Providers [24]. Additionally, security aspects
are often delegated to external parties, i.e., Security Operators, which have the
skills, expertise, and technological assets to face a large number of diverse threats
and attacks. The GUARD Platform is the tool that allows these operators to
easily connect their analytics engines with their customers’ services scattered
across the Internet.

Monitoring a digital service chain is therefore extremely challenging, because
security agents cannot freely be installed by Security Operators. A shift in mind-
set is necessary with respect to legacy paradigms, because security processes
must build on embedded security capabilities rather than more conventional
discrete security agents (even if a concrete agent will run anyway in most cases
behind the abstraction provided by a security capability). Indeed, this trans-
formation has already started, because many cloud providers already integrate
security services in their offers, like firewalls, intrusion detection and prevention
systems, antivirus software; these appliances work at the infrastructure layer,
hence this approach ensures better visibility and safety than running them inside
virtual resources (which is anyway unfeasible in case of containers and serverless
computing).

An additional issue is represented by the delegation of security processes
to external entities. Indeed, these operators should be granted access to the
management interface of the resources involved in the chain, but this app-
roach might not be recommended for confidentiality, safety, and privacy reasons.
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Fig. 3. Access control model for the GUARD Framework.

Fine-grained access control should instead be implemented in each digital
resource to restrict their access to security-related capabilities only, prevent-
ing any other management action that could affect the continuity of the service.
This requires scalable authentication and authorization schemes that give Secu-
rity Operators limited access to digital resources (i.e., security capabilities) on
behalf of the resource owner (see Fig. 3). Token-based mechanisms like OAuth2
[12] provide an effective solution to this problem, by avoiding the need to share
secrets and to grant full control over the resources.

Although standard firewalling, antivirus, and intrusion prevention systems
implemented by Resource Providers may be enough for some users, they are not
probably enough for detecting and mitigating complex attacks. In this respect,
we argue that security capabilities should include a “programmability” dimen-
sion, as shown in Fig. 2, that allows more flexibility in retrieving relevant security
context (events, measures, data). Programmability may consist, for instance, in
the possibility to select and chain multiple Logstash modules for data transfor-
mation; more interestingly, it may also entail the execution of custom code in
a safe way (which means no vulnerability is introduced for the service and the
whole infrastructure) [8].

4 GUARD Platform

The GUARD Platform is designed to implement a typical closed control loop
for security enforcement, as shown in Fig. 4. In the upper part of the loop, a
data handling pipeline is implemented, from data collection to detection, up
to visualization; in the bottom part, control response strategies are applied for
enforcement and mitigation actions. Detection and analytics can be performed
both on real-time data, according to a streaming pattern, or on historical data,
by offline analysis. As we already pointed out in the previous Section, the scope of
the GUARD Platform does not include monitoring and inspection tasks, which
are performed by local security agents embedded in digital services.
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Fig. 4. The typical structure of a data handling pipeline for security analytics.

Figure 5 shows the software architecture of the GUARD Platform. The dark
components are taken from typical Elastic Stack setup (though not all compo-
nents are part of it), and represent a common solution for building a data han-
dling pipeline that delivers data to one or more processing algorithms. The light
boxes are GUARD components that implement the necessary feature to make
this system flexible and adaptable to highly-dynamic computing environments.
The Context Broker Manager provides an abstraction of security capabilities
provided by Resource Providers. It uses data models to abstract the concrete
implementation of security agents and the communication protocols; therefore,
it offers to the rest of the system technology-agnostic access to monitoring and
enforcement capability in local environments. The Security Controller is the
smart component that takes decision based on control policies. Its main pur-
pose is to trigger response and mitigation actions based on the evolving context
(events, conditions) generated by the detection algorithms or directly by remote
agents. It is expected to provide the necessary logic to resolve conflicts and to
generate additional outputs by combining the set of provided rules. Additionally,
the Security Controller is responsible for the setup of multiple security analytics
pipelines within the Platform. Finally, the Dashboard is the user interface to
visualize the service topology, security features, and data generated by agents
and detection algorithms. The Dashboard also features an editor for creating
analytics pipelines, starting from the list of available detection and analytics
algorithms, as well as security capabilities of each digital resource.

One major contribution from GUARD is the definition of an API for expos-
ing security capabilities. This goes in the direction of providing a uniform and
common interface towards security agents, beyond the current set of heteroge-
neous services offered by different providers. Since the definition of such kind of
interface is still an open issue and no implementations are available for on-going
standardization initiatives [1,13], we built on existing management interfaces
in the FIWARE domain and extended them to include security capabilities, as
discussed in Sect. 5.1.
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Fig. 5. Software architecture of the GUARD Platform.

4.1 Security Analytics Pipelines

One common issue in setting up detection services is the time needed to configure
all the necessary elements. Although graphical user interfaces are often available
for this purpose, manual operation for deployment and initial configuration are
still required. We leverage the components of our architecture, as well as the
interface to security capabilities, to bring more automation in this process, in
order to better follow the dynamics of digital services. We introduce therefore
the notion of security analytics pipeline (SAP), which includes the logical stages
shown in Fig. 6:

– monitoring and inspection functions that are available in digital resources
(Local Agent);

– aggregation, transformation, and enrichment tasks that are necessary to adapt
the format of data generated by sources (agents) to what expected by con-
sumers (algorithms);

– indexing and normalization operations before storing data;
– analytics and detection algorithms that are used to provide notifications and

alerts;
– storage of data end events;
– analysis of events and conditions to undertake response and mitigation actions

(Security Controller).

Figure 6 also shows typical configuration aspects for a SAP. They partially
require input from Security Operators and partially can be automatically derived
by the Security Controller. The definition of a SAP includes at least the following
steps:

– The selection of one or more logical agents exposed by digital resources and
their configuration. This provides raw data and measurements for further
processing, or refined events if at least part of the detection is already imple-
mented locally.
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Fig. 6. The logical stages of a Security Analytics Pipeline.

– The selection of one detection/analytics service. This is an optional step,
that correlates data and measurements for detecting known attack patterns
or anomalies. In any case, all data will be dumped to a database.

– The definition of control policies for the Security Controller. These policies
are kind of rules that define actions to be performed in response to given
events, and after considering a set of conditions (e.g., current status).

Other stages of the pipeline (e.g., for data adaptation, transformation and
indexing, delivery topics) should be automatically configured by the SC. How-
ever, this logic is only partially implemented and the intervention of the SC is
currently mostly limited to the configuration of a dedicated Kafka topic for each
SAP.

4.2 Context-Broker Manager

The Context-Broker Manager (CB-Manager) provides uniform access to hetero-
geneous security capabilities of different digital resources. There are two main
aspects behind this abstraction:

– hiding the technological details and the heterogeneity of security capabilities
in different domains;

– depicting a logical view of the whole service chain, including capabilities and
the relationships between the different resources.

Each digital resource that exposes a management interface is considered an
independent Execution Environment (ExecEnv). The main security aspects of
each ExecEnv concern what kind of monitoring, inspection and enforcement pro-
cesses are available to its user (collectively indicated as “security capabilities”),
and what kind of relationship exists with other resources (e.g., a cloud service
that keeps data in an external storage server; an application that uses an exter-
nal data store). This information is retrieved from the interface towards digital
services (we describe our implementation in Sect. 5.1, and then organized within
the CB-Manager is a tree-like fashion, which root is represented by the service
entry point (usually the service directly used by the user).

Service topology and security capabilities are abstracted in a data model that
captures both the relevant parameters and the current configuration. The model
is exposed through a REST interface, where POST/GET verbs on the endpoint
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Fig. 7. Data model of the CB-Manager abstraction.

are translated by the CB-Manager in the corresponding operations on concrete
elements.

Data Model. Figure 7 shows the Data Model diagram implemented by the
CB-Manager abstraction. It captures both the service topology, security capa-
bilities of each ExecEnv, and current configuration of local security agents. The
service topology is represented in terms of Nodes and Edges. Nodes correspond
to the ExecEnvs of each digital resource, while edges represent relationships
(communication links, management or data interfaces, etc.).

The exec-env object contains the name of the digital resource, whereas the
type id denotes the type of ExecEnv. Examples of ExecEnv types include bare
metal servers, virtual machines, containers, Platform-as-a-Service, IoT device.
The software object contains the installed software in each ExecEnv, also includ-
ing relevant fields (vendor, version, security patches, installation e.g., plain,
chrooted, containerized, virtual machine, configuration options, etc.). This could
be useful for risk assessment, to spot known vulnerabilities. Additionally, an end-
point for the security capability API is present, which is indicated as LCP. This
name is taken from the component that implements this interface in our frame-
work (see Sect. 5.1).

The definition of network-link includes an identifier and a type. All the pos-
sible network link types are defined in the network-link-type object. This can
correspond to a physical link (e.g., Point to Point (Point 2 Point, LAN), a virtual
link (IPSec, VxLAN, GRE, etc.), a network slice (as for a 5G network), a com-
munication interface (protocol). Network links are connected to their ExecEnv
by the connection; this approach is necessary to deal with multipoint communi-
cations, as in case of LANs. This object contains all the information regarding
the configuration of the network link in the ExecEnv as, for example, the IP
address (version 4 and/or 6), if the link is encrypted and how (which method,
etc.).
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The data object contains all the data exposed by the security capability of
each ExecEnvs, in terms of security agent models. The different types of security
agents and the corresponding configurable properties are registered in the agent-
catalog. The model includes the list of parameters that can be configured, as
agent-parameter. This nested object describes the parameter in terms of name
and relative type. The agent-catalog does not need to hold a separate model
for each different implementation; instead, the main purpose is to hide as many
implementations as possible behind the same abstraction. For example, a “file
log” monitoring agent is a quite general component, which parameters include
the name of the files to monitor, the frequency of updates, the retrieval paradigm
(differences or whole file); it may be implemented as Elastic FileBeat or by the
native Kubernetes log retrieval command, but this is totally hidden by the CB-
Manager abstraction. Clearly, the more specific the agent, the less parameters
will be available for configuration.

The agents available in each ExecEnv are listed as agent-instance objects.
Their properties can be read and changed, and this operation is reflected on their
concrete implementation; in addition, they can be started and stopped. While
the agent-catalog index is provided as part of the CB-Manager implementation
according to the list of supported interfaces/agents, the agent-instance catalog
is automatically populated by the discovery mechanism described in Sect. 5.1.

Control/Management API. Access to the Data Model is possible through a
RESTful interface. This interface can be used both for management (i.e., includ-
ing new agent models in the agent-catalog) and control (i.e., reading/setting
parameters in the agent-instances.

The semantics of the CB-Manager API reflects the structure of the Data
model. It is a REST server built with swagger that enables the standard CRUD
operations. The HTTP syntax for requests includes therefore the following
elements:

– HTTP method, which identifies the requested operation; supported values
are: GET, POST, PUT, DELETE.

– Path, which identified the logical element to act on.
– Body, which contains a JSON object for passing arguments and options.

Responses are given with standard HTTP messages and status codes; they con-
tain requested information in the body formatted as a JSON object.

The RESTful API is organized in three main path roots:

– config, which gives access to information about current instances and their
configuration (Topology data);

– catalog, which contains the types of security agents that can be used in each
ExecEnv (Catalog data);

– data, which gives access to the set of information collected by security agents
(measures, events, etc. for historical data).
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The first 2 elements support every HTTP method (subject to authorization and
access control), since they refer to the overall service topology and its configu-
ration; the last element only supports the GET method, as the injection of data
with other methods than Kafka is not supported.

The config path is used to store the service topology and available agents.
It is also used both to set and to retrieve the current configuration of available
agents. When invoked with a PUT or POST method, the CB-Manager stores the
required value and invokes the necessary interface to apply the new configuration
to the remote agent. When invoked with the GET method, the CB-Manager only
supplies the stored value, but does not query the remote agent, to improve per-
formance. The CB-Manager does not solve configuration conflicts; this must be
accomplished by the Security Controller, which implementation is more suitable
for this function.

The catalog is a sort of driver repository for known agent types, since it
defines the necessary commands to translate the capabilities into concrete con-
figurations. Objects in the catalog are inserted by the system administrator, and
then they are retrieved by the CB-Manager every time a configuration change
is requested. The definition of the commands for each agent depends on the
security capabilities exposed by digital service. The current implementation can
i) load configuration files; ii) execute shell commands; and iii) forward HTTP
requests to local agents.

The data path is used to retrieve data stored internally to the CB-Manager. It
is conceived for offline analysis, since real-time data are collected more efficiently
through Kafka. It is worth pointing out that the content of the data path is
deliberately unspecified at this stage, because security operators are responsible
to select the agents they need and the content and format of produced data, as
well as any conversion and transformation that may be required to adapt such
format to the input of relevant processing algorithms.

There are two ways to access elements from this REST API. If a single
element is required and its identifier is known, it can be specified at the end
of the path. This is the only allowed semantics to update elements (i.e., when
using the PUT method). Otherwise, a query can be specified in the body of the
request. Queries are performed by a JSON request that follows the SQL syntax1.

4.3 Security Controller

The Security Controller (SC) automates management and control actions for
SAPs. This is achieved by implementing behavioral guidelines that define the
actions to be undertaken in response to specific events. In practice, this means
that the SC configures and launches detection algorithms when it is necessary,
listen for relevant data and events, and dispatches notifications to users.

Regarding its implementation, the SC is based on a rule engine that is able
to express the logic behind the decision making due to the security policies as

1 Elasticsearch guide – SQL language. URL: https://www.elastic.co/guide/en/
elasticsearch/reference/current/sql-spec.html.

https://www.elastic.co/guide/en/elasticsearch/reference/current/sql-spec.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/sql-spec.html
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production rules. Drools [18] is the chosen rule engine applying and extending
the Phreak algorithm. Drools is a Business Rules Management System (BRMS)
solution. It provides a core Business Rules Engine (BRE) among others. It is
open-source software, released under the Apache License 2.0. It is written in
pure JavaTM, runs on any JVM and is available in the Maven Central repository
too. Finally, SC integrates different sub-components required by the rule engine
such as the knowledge base, the core engine, and the compiler.

Drools Engine in the SC is running continuously. Whenever a request reaches
one of the SC’s endpoints, an instance of the corresponding Java class is created
and then inserted into the Drools working memory as a Fact. Facts are triggering
Drools Rules that perform actions. For example, when a PUT request, with a
JSON representation of a SAP in its body, arrives at the /startSecurityPipeline
endpoint of SC (see Sect. 5.3), the following actions take place:

– An instance of the Pipeline Java class is created and some attributes that are
meant for internal use are filled in, such as the uniqueID attribute of the said
instance.

– The created instance is checked against a pipeline array list located locally in
the file system. If there is no other instance with the same information, the
newly created one is added in the array list. Otherwise, the pre-existed one
is updated.

– The newly created/updated pipeline instance is then added into the Drools
working memory.

– Based on the information carried by the pipeline instance, a number of
instances of the AgentInstance Java class are created along with their config-
uration and are also inserted into the Drools working memory.

– A subset of the Drools rules is triggered due to the insertion of the new Drools
Facts, invoking Java methods that send a request for each AgentInstance Fact
to the appropriate Context Broker Manager endpoint.

– The endpoints’ responses are then inserted as Drools Facts into the working
memory triggering, this time, a different subset of Rules.

– The Java instances in the pipeline array list and the Smart Controller’s log
file are updated based on the Context Broker’s responses.

– Drools Facts that are not necessary are retracted from the working memory.

The reason for storing Facts (pipeline array list) outside of the Drools Engine
is two-fold: debugging purposes and pipeline status reporting.

Drools Rule Example. We have already mentioned that Drools rules perform
actions. What follows is an example of such rule, which updates the status of
incoming SAP based on the CB-Manager responses to the update-agent requests.
Listing 1 depicts the when and then parts of the rule. The conditional elements
in this case are all the agent instances of a pipeline and their corresponding
responses received from the CB-Manager’s update agent instance endpoint. The
response of every one agent instance of the pipeline should report code 200 for
the rule to be triggered. This is checked using the forall statement. One again
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we make sure that we check only the agent instances of a specific pipeline using
the from $agents part of the forall statement.

1 rule "StartPipeline"

2 when

3 $pipeline: Pipeline(status =="start", $agents := agents)

4 forall( $agent:Agent($agentId := agent_catalog_id ) from

$agents

5 ContextBrokerUpdateAgentResponse ($agentId := subiectUuid ,

code ==200)

6 )

7 then

8 KafkaProducerController .logger.info ("All agent instances

of pipeline " + $pipeline.getId () + " - " + $pipeline.

getUuid () + " have been successfully updated.");

9 $pipeline.storePipelineToContextBroker ();

10 retract($pipeline);

11 KafkaProducerController .logger.info("Pipeline " +

$pipeline.getId () + " - " + $pipeline.getUuid () + " is

retracted");

12 springBootkafkaAppApplication .pipelineArray.

updatePipelineStatus($pipeline.getId (), "started");

13 end

Listing 1. StartPipeline Drools rule - The SAP status is updated and the pipeline is
retracted from the working memory.

If the conditional elements are present in the working memory, the actions in
the when part of the rule take place. The first action of this rule is to report in the
log file that all agent instances of the specific pipeline have received a response
with code 200. After that, a method of the pipeline Java class is called to store
the pipeline with the new status in the Context Broker. The pipeline instance is
then retracted from the working memory of the Drools Engine with the retract
statement. This action is also reported in the log file. Finally, another Java
method is called, part of the PipelineArray Java class that changes the status
of the pipeline to “started”. This attribute is retrieved when the SC is asked for
the status of a pipeline.

4.4 Dashboard

The Dashboard is the Graphical User Interface (GUI) that simplifies the inter-
action between the end users (e.g., Security Operators) and the GUARD frame-
work, by giving the user an easy way to apply configurations and interpret data
and results. The Dashboard includes general features such as a secure authenti-
cation system with roles and permissions, profiles and account settings, as com-
monly required for this kind of tools. More interestingly, the Dashboard provides
a schematic representation of the service topology, which helps the user to dis-
cover what difference resources are involved in the service, their relationships,
and their security capabilities (see Fig. 8).
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Fig. 8. Service topology visualization in the Dashboard.

The graphical visualization of service topology effectively supports the pre-
liminary security analysis and risk assessment processes, which culminate in
the design and instantiation of SAPs. These represent the main goal for the
GUARD framework, therefore the Dashboard provides all functions to view, cre-
ate, update, manage and remove them. The creation of a new pipeline requires
to choose a name, select one or more agent instances among those reported by
the CB-Manager, and (optionally) an analysis/detection algorithm that will be
fed with monitoring data. The process includes the configuration of each agent
(also including the possibility to upload configuration files) and the detection
algorithm, as shown in Fig. 9; moreover, a set of rules can be inserted in the pol-
icy editor that automate response actions for events generated by the pipeline.
Management operations include start, stop, and reload of the pipeline, which are
concretely translated into management actions by the Security Controller (see
the activation workflow in Sect. 5.3).

The Dashboard also provides situational awareness, by visualizing in the
notification and anomaly view all relevant messages. They can be representative
of relevant monitoring events from security agents or threat alerts from detection
algorithms. Each event reports source, severity, description, data and date/time.
Filtering allows to restrict the scope and not being overwhelmed by verbose
agents. This notification feature allows to supervise the operation of the Security
Controller and to undertake corrective actions that are not implemented by
automation policies.

5 GUARD Operation

The functional components described in Sect. 4 interacts with additional ele-
ments to implement the functionality described for the whole framework. In
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Fig. 9. Configuration of a pipeline.

the following, we describe the interaction with digital services and the identity
management and access control subsytem.

5.1 Discovery and Management of Security Capabilities

One of the most challenging part of our framework is dynamic management
of local monitoring and enforcement capabilities available in digital resources.
To this aim, we implemented the Local Control Plane (LCP), which exposes
a REST API that describes the main characteristics of an ExecEnv and its
embedded security capabilities. This includes the relevant security context that
is already part of the CB-Manager’s data model, namely the type of ExecEnv,
the installed software, links to external resources, etc. The LCP also represents
the local control hook to configure and run security agents.

Table 1 shows the REST API exposed by the LCP, which is mainly consumed
by the CB-Manager. The most relevant part is the information about child LCPs,
namely LCPs of other digital resources that are chained. This is the case, for
instance of a virtual machine that uses storage provided by a different provider,
or an IoT agent that pushes data through a dedicated 5G network slice. By start-
ing at the service entry point and recursively querying each LCP and its children,
the CB-Manager can therefore discover the whole service topology. The concept
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Table 1. The LCP API to expose security capabilities for a digital resource.

Path Action

/self Returns a simple identification of the resource, including the
URL of the LCP, its identifier and name, the type of ExecEnv,
and a human-readable description

/self/deployment Returns the description of the ExecEnv, including the type of
hardware (baremetal server, virtual machine, LXC or Docker
Container), operating system, number of (virtual) CPUs,
amount of RAM, disk devices and partition size, network
interfaces and IP addresses

/lcp parent Returns the parent LCP(s) of this resource

/lcp son/id Returns the list of LCPs of subsidiary resources used by this
ExecEnv. If an id is specified, only the corresponding LCP
information is returned

/self/software Returns the software run in this ExecEnv. The description
includes the software name, vendor, connections to other
software, and open network ports

/self/container Returns the container name and the description of the hosted
software (same information as previous object)

/agent/instance Returns the list of security agents available in the ExecEnv.
The description includes name, version, vendor, status (running,
stopped, etc.), endpoint URL, identifier and description

/interactions Returns the list of external resources used by this ExecEnv but
without an LCP. This includes any kind of digital resource
(cloud installations, applications, storage servers, network
slices). It may also include a specific endpoint to retrieve
additional details

/poll Returns all the objects listed before, but formatted in a way
that better fits the CB-Manager’s data model

is schematically shown in Fig. 10, with reference to the example introduced in
Sect. 1. Here, we see that VM1 hosts the “Smart City App”, which is taken as
the “entry point” of the service because it is the final service offered to citizens.
VM2 hosts the “LORA Server”, which collects data from IoT devices through a
dedicated 5G slice. VM1 and VM2 run on resources provisioned by Cloud1 and
Cloud2, respectively, which are not necessarily operated by the same provider
not use the same technology. Additionally, the SmartCity App stores data on
an external storage service. The different relationships between digital resources
(e.g., application hosted in VM, VM provisioned on cloud, data pushed to server,
etc.) are reflected in the parent-child relation between LCP instances, which can
be discovered by recursive queries (not only at the root). This configuration must
be provide by each Resource Provider. We argue that some providers might not
expose security capabilities; this creates “blind spots” in the service which can-
not be monitored (see, for example, the storage service in Fig. 10). Based on the
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Fig. 10. Schematic representation of a service chain topology and logical tree built by
the LCPs.

result of security and risk assessment, the Security Operator may suggest the
Service Provider to look for alternative resources, which implement the required
interface or provide stronger security guarantees.

Beside discovery, the LCP provides the list of available security capabilities,
in terms of security agents that can be configured. Additionally, the description of
the ExecEnv provides useful context information to point out vulnerabilities and
potential threats, by performing queries to Common Vulnerabilities databases
about the hosted software.

5.2 Identity Management and Access Control

The Identity Management and Access Control functionalities are provided by
means of the Authentication & Authorization (AA) module. It defines secure
authorization procedures for protecting the access to distributed resources in
digital service chains. In particular, the module provides authentication services
for system components and external agents. Furthermore, authorization services
are configured to provide access control through the use of JSON Web Tokens
(JWTs) and Access Control Lists (ACLs). JWT is an open standard that defines
a methodology to transmit information between parties as a JSON object [15].
This information can be verified and trusted because it is digitally signed. JWT
enables a security mechanism to rely on security policies based on Attribute-
Based Access Control (ABAC) paradigm, which is based on granting or denying
user requests based on both attributes of users and attributes of the object to
be accessed to [14].

On the bases of the main architectural components, the AA module distin-
guishes two security zones: an internal GUARD domain, and an external zone
in which there are local agents that offer security services.

The entities inside the GUARD Platform are protected through a central-
ized authentication mechanism, which ensures that components are recognized
through a trusted internal Identity and Access Manager, so that operations
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Fig. 11. AA Security Mechanism internal to the GUARD Platform to protect commu-
nications between GUARD internal components and security services.

can be confined according to an ABAC-based strategy. The authentication and
authorization module of the GUARD Platform can be summarized in Fig. 11.

Protection of GUARD Internal Components. Regarding the protection
of GUARD internal components and security services, the main components of
the modules are presented hereby.

– Identity & Rules Database. It stores information relative to the users
managed by GUARD and their attributes. This database is accessible by the
Identity and Access Manager exclusively.

– Identity and Access Manager. It employs security routines and services
to manage identities and the release of information in the form of a security
token.

– Admin API. It is a REST and SOAP-based interface used for maintenance
purposes. A web-based interface is also available that facilitates the adminis-
tration of security policies by system administrators.

– Authentication Endpoint. It allows user identification through the
exchange of security questions and challenges to prove the identity of the inter-
acting service. If the service is correctly identified, the Identity and Access
Manager releases an ABAC-based security token encoded in JWT.

– Authentication Verification Endpoint. It enables the verification of the
security token signature if a resource protected by GUARD is serving an
authenticated service. If the signature verification is correct, the protected
resource can proceed to service authorization according to attributes present
in the security token.

The entire service workflow of the AA Security Mechanism for the protection
of internal services is presented in Fig. 12.

Protection for Entities External to the GUARD Platform. The entities
external to the GUARD Platform need a decentralized protection, so a different



20 A. Carrega et al.

Fig. 12. Workflow of the AA Security Mechanism internal to the GUARD Platform.

approach is taken to ensure that mutual authentication is established and strong
security policies can be applied between digital resources and the GUARD Plat-
form. The security architecture and mechanism for users, LCP and Local Agents
are illustrated in Fig. 13, and the main components of the AA module for the
protection of the zone external to the GUARD Platform are described in what
follows.

– Identity Provider. The Identity Provider (IdP) handles authentication pro-
cedures between services and GUARD users. It also defines the authoriza-
tions each actor has in the entire architecture by encoding the information
in JWT. Before client authentication can be performed, an Identity Server
must be configured in order to register the users that belong to the GUARD
domain. This operation is permitted only by the system administrator and
is performed through a Management Console with the administrator creden-
tials. The configuration of the Identity Server includes also the assignment
of the user roles, to allow or deny access to some applications or privileged
operations, according to the ABAC mechanism.
Once the user is created and registered by the Identity Server, the client can
perform the authentication process. It consists of two phases: in the first, the
user authenticates to the IdP with username and password; in the second,
the IdP returns to the user a JWT, that is appended to the future requests
made by the user, to demonstrate that it possesses certain attributes and is
correctly authenticated to the system.
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ACL 7

0

Fig. 13. AA Security Mechanism to protect communications between GUARD and
LCP/Local Agents. Key actors are highlighted with bold characters.

– Certification Authority. In order to guarantee the authentication of
LCP/Local Agents and their communications between CB-Manager and
Kafka, a GUARD Public Key Infrastructure (PKI) with a Certification
Authority (CA) is used to issue certificates for the mentioned actors. In this
way it is possible to perform TLS mutual authentication procedures between
these services.

– Kafka Broker. Kafka Broker has been configured to handle authentica-
tion with Kafka-enabled clients through TLS mutual authentication. X.509
certificates are used during the TLS handshake process to perform mutual
authentication. So, the broker and clients certificates need to be enrolled and
trusted. Kafka clients are represented by Local Agents that produce data to
be sent to GUARD. Each entity involved in the secure communication must
have keystore and truststore files to ensure that the mutual authentication is
correctly performed. The keystore contains each machine’s own identity. It is
an archive which stores the private key and the public certificate signed by
a CA. This certificate is also saved in the truststore and distributed among
communicating parties, which contains the list of trusted certificates used
to determine which entity or CA to trust. In this way, any certificate that
was signed by the CA whose public key is in the truststore will in turn be
trusted. This property is called the chain of trust, and it is particularly useful
when deploying TLS on a large Kafka cluster. It is noteworthy that both the
keystore and the truststore are protected by a password. Kafka listens on a
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dedicated port with TLS enabled and mutual authentication between broker
and clients is performed through specific commands. During this phase, the
SSL truststore and keystore are defined, together with the respective pass-
words.
Finally, once the broker is configured, Kafka clients have to be configured in
order to communicate in a secure way with the broker.

– Kafka Access Control List. The Kafka Broker is configured to check client
authorizations by means of an ACL. Kafka provides an ACL for each topic,
allowing or denying Agents to perform operations on it. ACLs are handled
by an “Authorizer”, which is a server plugin used by Kafka to authorize
operations. More specifically, the Authorizer controls whether to authorize
an operation based on the identity and the resource being accessed. This
ACL can be controlled by the Security Controller in order to express security
policies at Kafka, thus confining the allowed operations for each Agent.
The designed ACL works as a table of rules. Each rule is composed by the
client identity written in its TLS certificate. Furthermore, the rule has a valid-
ity in time, for which, once it expires, the ACL denies any further communi-
cation with the Kafka client. Each client is authorized to perform a certain
operation, i.e., read or write, on a determined topic of interest.

The Security Mechanism for the Protection of the External Compo-
nents

Figure 13 is of great help to have a precise idea of the sequence of steps needed
to describe the proposed security mechanism. More specifically, the procedure
consists of the following phases:

1. Enrollment Procedure. The Enrollment Procedure is illustrated as Step 0
in Fig. 13. The GUARD’s trusted CA enrolls both the CB-Manager and LCPs
by providing them a unique public identity encoded in X.509 format. This
grants the possibility to mutually authenticate the exchange of the infor-
mation between the CB-Manager and each LCP at Step 4 and secure the
communications between Agents and Kafka at Step 6 of Fig. 13.

2. Client Authentication. Client Authentication is represented in Step 1 and
Step 2 of Fig. 13. The entities involved in this phase are the GUARD client
and the IdP. The GUARD clients can be of different kinds: they could be
GUARD components (like the Dashboard depicted in Fig. 13) or human oper-
ators of the GUARD Platform. The client initiates the authentication pro-
cedure by contacting the IdP through its Authentication Endpoint. Once
authenticated, the IdP returns a JWT with attributes characterizing that
user for ABAC-based service authorization.

3. Service Request and Response Mechanism. Once the client is authenti-
cated, each subsequent request to GUARD services and resources includes the
JWT. Steps 3–7 of Fig. 13 show the sequence of operations executed to request
and obtain a service. More specifically, in Step 3 the client generates the secu-
rity pipeline and appends the JWT obtained in the authentication process.
This request is sent to the Security Controller, which ensures that the cor-
rect ACL policies (Step 4 ) are setup for Kafka messaging, and then forwards
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Fig. 14. Workflow for activation of a new security analytics pipeline.

the request to the CB-Manager. In Step 5, the CB-Manager is connected to
the LCP through mutually-authenticated TLS connection. By leveraging the
TLS session and its security services, the CB-Manager forwards the request
to the LCP. The LCP has an authorization module that verifies the JWT
validity and signature with the public keys of the IdP. If the token signature
is correct, the authorization module then proceeds to decode user attributes
and use them to detect if the request is valid and authorized for such service
operations. These authorization procedures are performed by the LCP. If the
request is legit and the user has a valid JWT with the right permissions, the
LCP forwards the request to the appropriate Agent (Step 5 ). Finally, in Step
6 the Agent produces the response and sends it to the Kafka Broker using
mutual-authenticated TLS connection.

5.3 Workflows

There are two major workflows implemented by the GUARD Platform, one for
creating new SAPs and one for response and mitigation.

Figure 14 shows the workflow for creating a new security analytics pipeline,
with reference to the Smart City service illustrated in Sect. 1. The process is
initiated by the Dashboard and then carried out by the SC, and consists of the
following steps:

1. The user designs a security processing pipeline, by connecting data sources
(security agents) with producers (algorithms). The process includes the con-
figuration of both sources and algorithms, as well as the definition of control
and reaction policies, as described in Sect. 4.4. The SAP is assigned a unique
identifier and the Dashboard stores the SAP information centrally in the
CB-Manager.

2. The SAP is encoded in a JSON message and sent to the SC using the REST
interface available between the SC and the Dashboard.

3. The SC retrieves from the CB-Manager any necessary information that is
referenced in the SAP (e.g., location and parameters of the algorithms, cre-
dentials).
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Fig. 15. Workflow for mitigation and reaction.

4. The SC creates a Kafka topic which will be dedicated to deliver data from
sources to algorithms.

5. The SC configures and starts the requested algorithm, according to the mes-
sage from the dashboard. In our implementation, we use a simple REST
interface with a few commands to load one or more configuration files and
start/stop the algorithm. This should cover a broad range of existing algo-
rithms.

6. The SC downloads, installs, and configures any Logstash plugin which is
required to run in the centralized platform. Currently, this step is not imple-
mented yet.

7. The SC configures remote agents through the CB-Manager. The configuration
received by the Dashboard is extended to include any necessary transforma-
tion and delivery task (currently, this is limited to the automatic generation
and configuration of a dedicated Kafka topic). At this point, data are expected
to start flowing through the pipeline. The SC also install all control policies
included in the pipeline description, which describes what actions should be
undertaken under the occurrence of specific events in given conditions. Finally,
once the SAP has started correctly, the SC informs the success of the action
to the Dashboard using the REST interface. The Dashboard stores both the
descriptive template and the configuration of the actual instance of the secu-
rity pipeline in the Context Broker, with the unique identifier assigned by the
Dashboard.

8. Any error that may occur during the configuration process is reported to the
dashboard, to inform the security operator that the process did not start.

9. After the security processing pipeline is operational, the security operator
can retrieve its description from the CB-Manager, visualize it, and modify
some parameters (e.g., frequency of collection, Logstash plugins, etc.). In this
case, the dashboard retrieves the configuration of the active SAPs from the
Context Broker.

Following its activation, the SAP becomes operational. A closed-loop control
workflow is therefore implemented that takes decision based on the evolving
context, according to the following steps (see Fig. 15):
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1. Data starts flowing from configured agents to the intended algorithm.
2. When the algorithm detects something (attack, anomaly), it reports the infor-

mation on a specific notification topic on the Kafka bus.
3. All messages published on Kafka (both data from agents and events from

algorithms) are available to the SC and the Dashboard; in addition, they are
stored in Elasticsearch for offline analytics.

4. Messages published in Kafka topics subscribed by the SC during SAP ini-
tialization (step 7 of the activation workflow) triggers the execution of the
corresponding security policies. The Security Controller re-evaluate all the
rules and tries to satisfy them. The result is usually an action of this kind:
(a) re-configuration of one or more agents (to apply enforcement actions or

to change some detection tasks);
(b) re-configuration of the detection algorithm, in case for instance an early

alarm would trigger more specific investigation.
5. (Optional) Similar reaction operations can be undertaken by the Security

Operator through the dashboard, in case there are no suitable policy to handle
the event.

6 Validation and Performance Analysis

We conducted validation and performance analysis to investigate the efficiency
of both the data handling pipeline and control plane of the proposed framework.
We mostly focused on virtualized environments, which are largely used for the
implementation of digital services.

6.1 Data Handling Pipeline

When digital services are monitored remotely, the most critical part of the data
handling pipeline is represented by the segment upstream the Kafka bus, involv-
ing the security agents and transmission over the Internet. We set up an experi-
mental testbed with considered two pipelines: an Apache web server (monitored
by Filebeat) and a MySQL database server (monitored by Metricbeat). Addition-
ally, we consider a Logstash instance for data enrichment and transformation.
Both the main service and the corresponding agents are standalone containers
that run in the same pod. In case of Filebeat, the agent periodically scans the
logs generated by Apache and checks for new records to be sent to the CB-
Manager. In our testbed, Logstash adds a timestamp to each log records, and
this implies more processing in case of larger workload.

All pods are deployed in a local testbed, made of 3 Kubernetes nodes
equipped with 2x Intel Xeon CPU E5-2660 v4 @ 2.00 GHz with 14 cores and
hyperthreading enabled, 128 GB RAM, 64 GB SSD storage. The local connection
is a plain 1 Gbps Ethernet. We used the default configuration for all containers
(1 vCPU, 250 MB RAM).
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Fig. 16. Cumulative CPU usage by all containers in the same pod.

The evaluation was conducted by varying the following parameters:

– the period of collection, which affects the latency to access the context and in
some cases the volume of traffic generated over the network (for Metricbeat,
because it reports the current status at each request), from 1 to 20 seconds;

– the rate of requests to the Apache and MySQL servers, which in some cases
increase the volume of logs generated (Apache function, which records every
access), from 1 to 1000 requests/s. We used jmeter2 and mysqlslap3 to gen-
erate a variable amount of requests for Apache and MySQL, respectively.

We initially consider the impact of security agents on the main business
logic (namely Apache/MySQL). Figure 16 shows that the overhead of the agents
is rather limited (below 10% of the available CPU) in all conditions but for
the largest number of requests. Indeed, the relative impact on MySQL is much
lower, especially at high-load because this application uses more CPU cycles. We
conclude that the impact of agents remains quite limited (below 10%), which is
acceptable in most practical cases. By comparing Filebeat and Logstash, we
conclude that the latter has a higher overhead, even in case of simple operations
(i.e. timestamping).

Memory allocation of the security components has a large impact on the main
business logic, especially due to Logstash, as shown in Fig. 17. Our understanding
is that the current implementation of Logstash is not suitable for lightweight
operation in cloud-native applications, because its memory footprint is often
bigger than the main application. In general, it would be preferable to directly
write to the Kafka bus with Filebeat, if additional transformation operations are
not strictly necessary.

Finally, we consider the delay introduced along the pipeline, up to the
Logstash instance deployed in the GUARD Platform.

Figure 18(a) shows the latency to gather data from the Apache log file by
Filebeat, to move data from the Filebeat to the local Logstash instance, and to
2 https://jmeter.apache.org/.
3 https://mariadb.com/kb/en/mysqlslap/.

https://jmeter.apache.org/
https://mariadb.com/kb/en/mysqlslap/


A Reference Architecture for Security Operations 27

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1 10 100
1000

1 10 100
1000

1 10 100
1000

1 10 100
1000

M
em

or
y 

al
lo

ca
tio

n 
[M

B
]

Load [reqs/sec]

Logstash Filebeat Apache

Poll: 20secPoll: 10secPoll: 5secPoll: 1sec

(a) Apache/Filebeat

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 10 100
1000

1 10 100
1000

1 10 100
1000

1 10 100
1000

M
em

or
y 

al
lo

ca
tio

n 
[M

B
]

Load [reqs/sec]

Logstash Metricbeat MySQL

Poll: 20secPoll: 10secPoll: 5secPoll: 1sec

(b) MySQL/Metricbeat

Fig. 17. Cumulative memory allocation for the pod.
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Fig. 18. Cumulative latency for the pipeline up to Logstash instance in the GUARD
Platform.

transfer data to the GUARD Platform. The latency is generally shorter than a
few seconds, and it is mostly affected by longer polling intervals. Indeed, there
are two main consequences when varying the parameters under investigation.
On the one hand, higher workloads result in more lines in the log file, hence
bigger messages to be sent. On the other hand, longer sample times also result
in more data lines and, most of all, in larger delay in the delivery of older lines.
The second effect is predominant, since the transmission of larger packets does
not affect significantly the latency with high-speed links.

Similarly, Fig. 18(b) shows the latency to move data from Metricbeat to
Logstash and to transfer data to the GUARD Platform. The latency is generally
around one second, and this time does not increase with the workload or the
polling interval. The reason is that the same amount of information is collected
in this situation (metrics), independently of the workload and polling interval.
In any case, we note that a greater latency in data collection is not a specific
performance limitation of the agents, but it may have side effects on the timely
of the detection. The polling interval must therefore be selected case-by-case
depending on the specific needs of the detection process.
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Fig. 19. Latency of common operations on the CB-Manager. The picture shows mean
value and standard deviation.

6.2 Control Abstraction

The CB-Manager is queried by other components to retrieve the current topol-
ogy and change the configuration of agents. Therefore, it represents a bottleneck
for the operation of both the Dashboard and SC. We therefore investigated the
delay in using the CB-Manager REST API, also involving operation of the LCP.
Several scenarios were analyzed, but for the sake of brevity we only show the
results for two of them. We therefore consider i) the latency to get the service
topology (this operation does not involve the LCP, because the discovery work-
flow is performed with lower frequency); ii) the latency to configure and start an
agent (which is the common part to the activation and reaction workflows). Both
operations are made of multiple HTTP requests (12 for getting the topology and
10 for configuring the agent) and corresponding responses from the CB-Manager.

The evaluation was done using Apache JMeter, to generate a variable load of
operations per seconds, from 1 to 20. Figure 19 shows that it takes on average a
few seconds to complete an operation with the CB-Manager. In case of topology
retrieval, there is slight increment of the latency with more concurrent operations
per second; the trend is less clear for the other scenario. Overall, the latency is
quite good for control and management purposes.

7 Conclusion

In this Chapter we have described the GUARD architecture to create detection
and analytics pipelines for multi-domain distributed digital service chains. Our
implementation demonstrate the feasibility of the overall concept, by providing
the necessary interfaces and authentication and authorization mechanisms to
perform monitoring and inspection tasks in Third Party’s digital resources. We
have also demonstrated that common agents entail a low overhead in the execu-
tion of the main business logic, so their implementation does not lead to major
costs for resource providers.
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Future work will be addressed to investigate monitoring and inspection mech-
anisms that fit modern computing paradigms. Indeed, we argue that the imple-
mentation and proper isolation of local security agents remains a responsibility
of Resource Provider, which must guarantee this does not turn into a security
vulnerability. Additionally, PaaS and serverless environments are challenging to
be monitored by legacy agents and tools. Our work will focus on the possibility
to create monitoring and inspection tasks at run-time, by leverage the concept
of code augmentation in a safe way.
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