
1

Internet of Drones Simulator: Design,
Implementation, and Performance Evaluation

Giovanni Grieco , Graduate Student Member, IEEE, Giovanni Iacovelli , Graduate Student Member, IEEE,
Pietro Boccadoro , Member, IEEE, Luigi Alfredo Grieco , Senior Member, IEEE

Abstract—The Internet of Drones (IoD) is a networking ar-
chitecture that stems from the interplay between Unmanned
Aerial Vehicles (UAVs) and wireless communication technologies.
Networked drones can unleash disruptive scenarios in many
application domains. At the same time, to really capitalize on
their potential, accurate modeling techniques are required to
seize the fine details that characterize the features and limitations
of UAVs, wireless communications, and networking protocols. To
this end, the present contribution proposes the Internet of Drones
Simulator (IoD-Sim), a comprehensive and versatile open source
tool that addresses the many facets of the IoD. IoD-Sim is a
Network Simulator 3 (ns-3)-based simulator organized into a 3-
layer stack, composed of (i) the Underlying Platform, which pro-
vides the telecommunication primitives for different standardized
protocol stacks, (ii) the Core, that implements all the fundamental
features of an IoD scenario, and (iii) the Simulation Development
Platform, mainly composed of a set of tools that speeds up the
graphical design for every possible use case. In order to prove
the huge potential of this proposal, three different scenarios are
presented and analyzed from both a software perspective and
a telecommunications standpoint. The peculiarities of this open-
source tool are of interest for researchers in academia, as they will
be able to extend it to model upcoming specifications, including,
but not limited to, mobile and satellite communications. Still, it
will certainly be of relevance in industry to accelerate the design
phase, thus reducing the time to market of IoD-based services.

Index Terms—Internet of Drones, ns-3, network, simulator.

I. INTRODUCTION

The Internet of Drones (IoD) [1] is one of the hottest
research topics in telecommunications today [2]. At first, it
might appear as an extension of the Internet of Things (IoT),
with Unmanned Aerial Vehicles (UAVs) playing the role of
smart objects able to fly. Nevertheless, in the IoD, drones are
tasked with completing mission plans with multiple objectives.
Since they can also fly in organized groups, namely swarms,
it is worth remarking that they are made able to continuously
optimize their trajectory, and coordinate among themselves.
Drones are currently involved in the delivery of value-added

Copyright (c) 2022 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

This work was partially supported by the Italian MIUR PON
projects Pico&Pro (ARS01 01061), AGREED (ARS01 00254), FUR-
THER (ARS01 01283), RAFAEL (ARS01 00305) and by Warsaw
University of Technology within IDUB programme (Contract No.
1820/29/Z01/POB2/2021).

G. Grieco, G. Iacovelli, P. Boccadoro and L.A. Grieco are with the
Department of Electrical and Information Engineering, Politecnico di Bari,
Bari, Italy (email: name.surname@poliba.it) and with the Consorzio Nazionale
Interuniversitario per le Telecomunicazioni, Parma, Italy.

services in many applications, especially in Smart Cities [3]–
[6], including goods delivery, environmental surveying, first-
aid units in disruptive events [2], [7], and Flying Base Station
in Fifth Generation (5G) & Beyond scenarios, with multiple
users requesting connectivity at the same time and in the
same area [2], [7]–[9]. Smart cities are among the most
challenging application scenarios, with everchanging players
and behavioral patterns, which makes it hard to address public
safety requirements, especially at scale [10]. All this turned
the IoD from a niche subject to a mainstream research topic
in networking. It must be noted that the adoption of drones
in industry is also a huge commercial opportunity, as testified
by the several billions forecasts already available for multiple
business sectors [2].

Even though several applications are now including drones,
and they may look like off-the-shelf utilities, the design of
complex IoD systems still requires advanced methodologies
to effectively unleash the potential of services based on
networked drones. In 5G & Beyond scenarios, ubiquitous
connectivity and relaying capabilities are required to interact
with both terrestrial entities, i.e., ground Base Stations (BSs)
and users, as well as aerospace ones, such as satellites [11].
In this regard, channel capacity, available/required data rates,
dedicated bandwidth and frequencies must be characterized,
bearing in mind that every link may be realized with different
telecommunication protocols. Moreover, given the variety of
available drones on the market, an accurate suitability assess-
ment based on their characteristics is required.

Current state of the art IoD simulators [12]–[18] do not
cover all the aforementioned aspects. In light of the foregoing,
the key contributions of this work are hereby introduced.

• A comprehensive open-source simulation platform,
namely IoD-Sim*, is proposed in this work. IoD-Sim
is able to create realistic simulations by extending the
available features of ns-3 to address the relevant aspects
of the IoD. Since its first release [19], it has been care-
fully re-designed and thoroughly refactored. The overall
architecture of the proposal is designed as a 3-layer
stack: (i) the Underlying Platform, which includes a
set of technologies and libraries able to perform high-
precision numerical computation, (ii) the Core, which
embeds a set of unique IoD-related features, and (iii) the
Simulation Development Platform that allows high-level
mission design and analysis of simulation results.

*https://github.com/telematics-lab/IoD Sim

https://orcid.org/0000-0002-6326-4244
https://orcid.org/0000-0002-3551-4584
https://orcid.org/0000-0002-7981-9312
https://orcid.org/0000-0002-3443-6924
https://github.com/telematics-lab/IoD_Sim

2

TABLE I: Summary of the comparison of the available solutions

[12] [13] [14] [15] [16] [17] [18] IoD-Sim
Open-source code ✓ ✓ ✓
Modularity ✓ ✓ ✓ ✓
Scalability ✓ ✓ ✓
Visual scenario configuration ✓ ✓ ✓ ✓
Network simulations ✓ ✓ ✓ ✓ ✓ ✓
Support multiple networking standards ✓ ✓ ✓
Multi-stack protocols support ✓ ✓
Graphically-assisted trajectory design ✓ ✓ ✓
Aerodynamics simulations ✓ ✓ ✓
Power consumption models ✓ ✓
Hardware in the Loop support ✓ ✓
High-level application development support ✓ ✓ ✓ ✓ ✓
Ready-to-use IoD applications ✓
Machine-readable results ✓ ✓ ✓ ✓
Human-readable results ✓ ✓ ✓ ✓ ✓ ✓

• Upon the presented architecture, radical improvements
have been made in key areas, such as mission design, tra-
jectory planning, and application configuration. Further-
more, new features are provided for hardware configura-
tion, energy consumption models, on-board peripherals,
and integration with other network entities. Moreover, a
high-level mission design tool grants a welcoming user
experience via a convenient interface.

• An extensive and diversified simulation campaign is
carried out to validate its manifold functionalities. To
this end, three scenarios are conceived to evaluate differ-
ent configurations of network topologies, communication
technologies, drones’ equipment, and software applica-
tions. Thoughtful insights are derived by analyzing the
obtained results in terms of Signal-to-Interference-plus-
Noise Ratio (SINR), throughput, power consumption,
latency, and Packet Loss Ratio (PLR). Moreover, a perfor-
mance analysis is conducted to assess the computational
load and its scalability.

The proposal guarantees ease of use to reliably simulate
advanced IoD systems, with the goal of thoroughly testing
new proposals and applications, especially related to their
employment in densely populated urban environments.

The present contribution is structured as follows: Section
II summarizes the reference state of the art of simulators in
order to cover their peculiarities and motivate the proposal.
Section III presents a general overview of the simulator
architecture. Section IV describes the underlying platform
and its design rationale. Section V discusses the core of the
simulator in detail, with dedicated subsections focused on the
main building blocks of the project. A thorough explanation
of the involved mobility models is given together with all
the supported communication technologies, and the included
logical entities. Section VI focuses on the simulation design,
discussing the details of helpers, thus explaining the role and
importance of scenario configurations. Section VII is dedicated
to the simulation campaign; after an initial focus on scenarios
description, the outcomes are discussed to highlight the main
findings. Finally, Section VIII concludes the work and outlines
future work possibilities.

II. RELATED WORKS

To improve and speed up both the design and the prototyp-
ing phases of IoD systems, simulations are widely conceived
as a useful aid. Even though simulating drones is a challenging
task, it has been dealt with by many contributions so far [12]–
[18]. Overall, these works approach IoD simulations from two
different points of view. The first focuses on the dynamics of
the flight, thus including mechanical energy and kinetics; they
employ Robot Operating System (ROS) [20] and Gazebo [21]
as base platforms [15], [17]. The second, instead, focuses on
accurate drone networking simulations [12]–[14], [16], [18],
mainly based on ns-3 [22] and OMNeT++ [23], in which
UAVs are envisioned as nodes exchanging data at certain
frequencies using well-known protocols belonging to wireless
networks, which can either be cellular or Wi-Fi.

The contribution presented in [12] models UAVs and dis-
cusses their functionalities and possible applications. In partic-
ular, the proposal introduces FlyNetSim, a software that aims
at simulating not only flight operations but also networking
communication primitives and principles. The simulator can
work with a group of drones operating together in a reference
ecosystem. The most interesting functionalities are: (i) UAV
control over Wi-Fi, (ii) multi-network communications, (iii)
Device-to-Device communications for swarms, and (iv) IoT
scenarios and data streaming.

In [13], instead, it is proposed CUSCUS, a simulation
architecture for control systems in the context of drones’
networks. The proposal is able to simulate the mechanisms
for the control of drones operations and it is claimed to be
highly flexible and scalable. The proposed simulator leverages
the ns-3 capabilities to work with virtual interfaces simulating
real time systems, eventually composed by swarms.

The contribution presented in [14] describes AVENS, which
is a hybrid network simulation framework specifically de-
signed to evaluate the performance of intelligent aerial ve-
hicles. Here, drones are communicating using some of the
most well-known communication protocols for Flying Ad-hoc
NETworks (FANETs). Differently from other contributions,
AVENS is focused on modeling realistic flight conditions.
On top of that, it uses a layered architecture that acts as an
interpreter and code generator, namely LARISSA, thanks to
specified simulation parameters and settings. All the results

3

are obtained by the integration and interoperability with the
OMNeT++ simulator.

The proposal in [15] is a simulation framework for un-
manned aircraft systems traffic management. It leverages both
ROS and Gazebo to implement high-level flight services.
The simulator can be used for prototyping missions and
controlling both rotary and fixed-wing drones flying in the
same environment.

The work presented in [16] discusses a Java-based simula-
tion framework for FANET networks and their applications.
In particular, it models the coverage area of each device
in the scenario. At the same time, it considers a mobility
model for ground entities, i.e., humans in the operating area.
Drones’ characterization is herein discussed in terms of limited
autonomy and battery recharging needs. To achieve this aim,
an energy consumption model has been included to evaluate
the footprint associated with the flight of a drone. For the sake
of completeness, it must be said that this work neglects the
contributions due to collision issues and consequent behaviors.

CORNET 2.0 [17] is a middleware to simulate robots in
general, both in physical and networking contexts. It reaches
the aim of designing a path planning solution that is simulated
by Gazebo and Mininet-WiFi.

The work presented in [18] proposes a discrete-time, event-
based, co-simulation scheme for networks composed by mul-
tiple drones, also configured in swarms. The simulator can
carry out both flight and network simulations. This solution is
of interest because there is an intrinsic codependency between
the flight status and the networking operations carried out by
each drone in the scenario. This contribution is of relevance
because it is claimed to guarantee reliability and real-time
availability thanks to the possible integration of existing sim-
ulators. This work also claims that other available simulators
do not implement realistic and reliable mobility models for
drones.

A comparison among the main characteristics and features
of the aforementioned contributions is provided in Table I.
Specifically, only the latter [18] shows some similarities with
IoD-Sim. For example, both of them operate as discrete-time
and event-driven simulators. Nevertheless, it is worth noting
that the discrete-time operating mode of this work is motivated
by the adoption of ns-3 [22] as a core network simulator.
Another aspect is related to the synthetic trajectories that
are implemented in IoD-Sim, that are described by closed-
form mathematical expressions. Hence, in case the network
simulator is substituted, the mobility models provided by
IoD-Sim could be used even with continuous-time simulators.

III. ARCHITECTURAL OVERVIEW

The overall architecture of the proposed IoD-Sim simulator
is depicted in Figure 1. This diagram frames the complexity
and clarifies the organization of the main building layers, each
providing peculiar functionalities that are depicted as blocks.
The joint adoption of these components enables different
simulation scenarios, which are configurable by higher-level
entities.

From the bottom-up, the first layer, i.e., Underlying Plat-
form, has been created to group all the necessary components

Fig. 1: Overview of IoD-Sim Architecture.

to carry out simulations. In particular, it includes (i) the GNU
Scientific Library for advanced mathematical operations, (ii)
the RapidJSON library which is specifically designed for high-
performance parsing operations, and (iii) the ns-3 simulator
engine for a robust foundation of networking facilities. A de-
tailed description of these components is given in Section IV.

The second layer, namely Core, implements IoD-related
simulation facilities and it is organized into three main sub-
groups. The World Definition is motivated by the fact that
a realistic network simulation must be modeled, taking into
account cyber-physical aspects. Hence, IoD-Sim allows to
simulate the physical space in which the simulation takes
place, such as Buildings and Regions of Interest. Furthermore,
Entities details all the aspects related to drones, Zone Service
Providers (ZSPs), and remote hosts, spanning from their pecu-
liar characteristics, i.e., peripherals and mechanics for UAVs,
to general ones, such as applications. Finally, the Scenario
Configuration Interface allows the entire layer to be highly
configurable thanks to the definition of a high-level language.
In light of the above, the entire layer can be fine-tuned to dig
as deep as possible for the use case of interest, as explained
in Section V.

The third and last layer, i.e., the Simulation Development
Platform, provides high-level configuration and data analytics
facilities to the end-user. It includes Airflow, a high-level visual
configuration environment that drastically eases the interaction
between the user and the simulator, i.e., scenario set-up
and management. Moreover, a Report Module guarantees the
readability of simulation results in a clear eXtensible Markup
Language (XML) schema. This module, together with the
Results Aggregator, eases data processing with third-party
tools. A detailed description of these components is given in
Section VI.

It is of upmost importance to clarify that the above archi-
tecture is a multifaceted solution which applies the concept of
modularity-by-design across the entire software implementa-
tion, thus proposing the peculiar functionalities described in
what follows.

4

IV. UNDERLYING PLATFORM

The Underlying Platform is a foundation composed of the
GNU Scientific Library (GSL), RapidJSON, and ns-3.

GSL is a numerical computing framework that implements
numerous routines and low-level data structures, such as com-
plex numbers, linear algebra, data analysis, and interpolation.
Furthermore, it is offered in Linux-derived distributions with
first-class support [24].

RapidJSON is a parser and generator of JavaScript Object
Notation (JSON) code. It is one of the most adopted JSON
libraries available for C++ projects. It eases the creation,
traversal, validity check, and analysis of JSON codes [25].
RapidJSON has been chosen for its high performance and
its extensive and flexible high-level Application Programming
Interfaces (APIs).

Finally, ns-3 emerges as the most relevant component:
it is a solid and mature discrete-time event-based network
simulator. ns-3 is an open-source project that provides a solid
simulation engine and various models for network design
and testing. Started in 2006, it is a collection of different
C++ and Python objects that implements several aspects
of networking elements. The fundamental building block of
ns-3 is ns3::Node, an abstract object which represents a
generic host in a network. It can be aggregated with other
objects and models, e.g., the common TCP/IP stack over
Ethernet, to simulate networking behaviour. Other interesting
features in ns-3 are (i) ns3::Channel, which simulates
the communication channel between ns3::Node objects, (ii)
ns3::NetDevice, which represents the node networking
interface, and (iii) ns3::Application, which sits on top
of the protocol stack to produce or consume high-level infor-
mation.

Furthermore, a ns3::Node can be aggregated with Mo-
bility Models, Energy Consumption Models. This possibility is
not limited to those models, since the support can be extended
to any other model that adds new features beyond basic net-
working. To this end, nodes have the potential to move in space
and, hence, drain current from a ns3::EnergySource.

Besides, traces and probes allow to track and record simu-
lation data in log files that are typically encoded in textual
ASCII, or PCAP. In a nutshell, IoD-Sim treats ns-3 as a
foundation, extending it with new features that are focused on
accurate drone simulations, mobile wireless communications,
energy consumption, and their integration with on-board pe-
ripherals and ground communication infrastructures.

V. CORE OF IOD-SIM

This Section presents the building blocks of the IoD-Sim
Core, which is the main part of the simulator.

A simulation scenario requires the definition of a simulated
world, described by Regions of Interest (RoIs) and buildings.
In this world, entities, i.e., drones, ZSPs, and remotes, are
simulated in a network topology defined by a set of com-
munication models. Each drone is characterized by a mission
plan defined by a set of points of interest, which in turn
describes a curvilinear trajectory. Furthermore, a drone can
be equipped with an energy consumption model, which relies

on a set of mechanical properties and a set of peripherals.
Entities in general can host one or more communication
stacks and applications. While drones and ZSPs are connected
together according to the configuration of the IoD infrastruc-
ture, remotes are reachable through a backbone that simulates
Internet behavior. All these blocks are configurable through
an abstraction interface focused on interpreting a high-level
description of the scenario encoded in JSON format.

A. World Definition

IoD-Sim offers the possibility to define parameters related
to the simulated world, i.e., the environment in which the
simulation takes place. The two main features are the buildings
and the Regions of Interest.

The virtual world in IoD-Sim is a theoretically infinite
space. The space can be filled with entities, which could be
Drones, ZSPs and Remotes, but also with RoIs and Buildings.

1) Buildings: The virtual world can be enriched with obsta-
cles, i.e., Buildings. They are used to represent urban scenar-
ios, thus making simulations that are particularly suitable for
research in Smart Cities. IoD-Sim provides an abstraction layer
to configure and place buildings in the virtual world, relying on
ns3::BuildingsHelper and ns3::Building objects.
A ns3::Building is a collisionless 3D object with the
following properties:

• boundaries, which defines the box dimension in the
space. Boundaries can be defined by an array of two
points organized as [P (1)

x , P
(2)
x , P

(1)
y , P

(2)
y , P

(1)
z , P

(2)
z].

A representation of these two points is given in Figure 2.
• type of building, which can be either commercial,
residential, or office.

• type of walls material, which can
be wood, concreteWithWindows,
concreteWithoutWindows, and stoneBlocks.

• number of floors.
• number of rooms along the x and y axis, per floor. The

rooms are placed in a grid position.
Such a feature is important for Long-Term Evolution (LTE)
communication fading, which varies according to the charac-
teristics of each building.

2) Regions of Interest: A ns3::InterestRegion is
a 3D box placed on the simulated world defined, as for
buildings, by a vector of two points. Throughout the sim-
ulation, it is possible to retrieve and to update the cur-
rent set of coordinates with GetCoordinates() and
SetCoordinates() methods, respectively.

The whole set of these areas is managed by
ns3::InterestRegionContainer, which helps to
create RoIs and group them. This utility object provides
a (i) Create() method to generate and index RoIs, (ii)
GetN() to report the number of created regions, (iii)
GetRoi() to retrieve the ith, and (iv) Begin() and
End() iterators to traverse the entire container. Moreover,
the InterestRegionContainer::IsInRegions()
method acknowledges the presence of a drone in multiple
areas, thus granting the possibility to trigger specific events
during the simulation. For instance, Drone operations can be

5

Fig. 2: Example of box placement with two points, P1 and P2,
in order to create a Building or a RoI in the simulated world.

TABLE II: ns3::Drone properties in IoD-Sim.

Name Unit of Measurement

Mass kg
Rotor Disk Area m2

Drag Coefficient (dimensionless)
Peripherals

Weight Force N
Air Density kg/m3

restricted to a limited space, leading to an optimization of
Drone power consumption.

B. Drones

IoD-Sim provides ns3::Node derivatives to consider the
characteristics of key actors commonly found in an IoD sim-
ulation. The ns3::Drone class characterizes a rotary-wing
UAV and it is registered as a new TypeId in ns-3, along with
its mechanical properties, shown in Table II. While the first
four properties can be defined by the user, the last two are a di-
rect consequence of the given characterization. ns3::Drone
properties can be set by means of ns-3 attributes or by its
public object interface. Its mass can be updated at any time by
means of SetMass(). Upon update, the drone weight force is
also updated in cascade by multiplying the new mass with the
constant gravity acceleration. The rotor disk area and its drag
coefficient can be updated in the same manner by means of
SetArea() and SetDragCoefficient() methods, re-
spectively. Furthermore, ns3::Drone properties can always
be read any time during the simulation through ns-3 attributes
and object getters, such as GetMass(), GetWeight(),
GetArea(), and GetDragCoefficient().

Drones can be grouped together in
ns3::DroneContainer and can be statically referenced
by their unique identifier in the simulation through
ns3::DroneList.

According to the peculiar workflow of ns-3,
to properly instantiate a ns3::Drone object,
a ns3::DroneContainer is needed. The
creation process consists of a call to the
ns3::Object::CreateObject<T> function, where
T is replaced with Drone. In order to ensure full
compatibility with all ns-3 methods involving ns3::Node
or ns3::NodeContainer classes, a dedicated mechanism
has been developed. Every ns3::Drone goes through a
static cast procedure, i.e. ns3::StaticCast, which
generates a ns3::Node object that is pushed into
a ns3::NodeContainer. In this way, for each
drone, two smart pointers refer to the same memory
location but cast to the two required types. Besides,
the ns3::DroneContainer class provides a specific
iterator, together with two further methods which return
the number of instantiated drones and a smart pointer to
each. It is worth mentioning that only drones must use a
ns3::DroneContainer, while ZSPs, together with other
entities, must still be modeled as ns3::Node objects.

1) Peripherals: A UAV is usually equipped with a
set of peripherals able to extend its capabilities. Such
peripherals include a wide range of devices, imple-
mented in IoD-Sim through new specific classes. The
ns3::DronePeripheral object represents a general-
purpose on-board peripheral with the following properties:

• Peripheral state – which can either be set to ON, OFF, or
IDLE. This simple Finite State Machine (FSM) allows
the development of intelligent algorithms to find optimal
energy management.

• Power consumption – how much instantaneous power is
required by the peripheral, expressed in Watts, for each
state.

• Reference RoIs – where the peripheral should be op-
erating. This is extremely useful for modeling certain
peripherals and missions that depend on particular regions
in space. For instance, a photo camera can be used and
activated only when the drone is in the RoI, thus leading
to an optimized use of power, storage, and data. If this
parameter is not defined, the reference peripheral will be
active over time.

ns3::DronePeripheral has been specialized in two sub-
classes.
ns3::StoragePeripheral represents a generic stor-

age device characterized by an attribute describing the initial
amount of memory, which can be traced at runtime to record
the empty space left. Device total capacity can be queried
through GetCapacity() method. If a drone peripheral, e.g.,
a camera or any other sensor, wants to interact with the storage,
it is possible to request space by specifying the amount of data
through Alloc(). The inverse can be done with Free().
These operations can fail if there is no memory left or there
are no data to be freed, respectively. For this reason, a boolean
value is returned by these methods to indicate if the requested

6

operation was successfully completed or not. In this work, it
is assumed that at most one ns3::StoragePeripheral
is installed on each drone.
ns3::InputPeripheral describes a generic input de-

vice, characterized by an acquisition DataRate, constant
over a DataAcquisitionTimeInterval. Once it is cre-
ated, installed on a drone, and attached to a particular storage
peripheral with Install() method, the storage peripheral
of reference can be changed with SetStorage(). If the
peripheral is ON, AcquireData() simulates data acquisition
at the given DataRate.

These two peripheral types are strongly connected since
a ns3::InputPeripheral can offload acquired data
to a ns3::StoragePeripheral through a boolean at-
tribute. Nonetheless, the association between input and stor-
age is not mandatory. In fact, in a real-world scenario, an
ns3::InputPeripheral can deliver data directly to a
processing unit or to a remote host, thus neglecting the need
to permanently store the information.

A complete list of the attributes of these classes is given
in Table III. It is worth specifying that all peripherals hold a
reference to the drone they are equipped with.

Moreover, for each ns3::Drone, a
ns3::DronePeripheralContainer object is
created to manage all its peripherals. This container is
responsible for the creation of peripherals and, through the
ns3::DronePeripheralContainer::InstallAll()
method, sets the correct references to the host drone, and,
eventually, to the target ns3::StoragePeripheral.

2) Mechanics and Energy Consumption: ns-3 already mod-
els and manages all the energy-related aspects, such as con-
sumption, harvesting, and monitoring, through the abstract
class ns3::EnergySource. Although there is no specific
energy source model available that is suitable for drones, the
ns3::LiIonEnergySource is sufficiently general to be
employed for simulation purposes [26], [27].

The ns3::DeviceEnergyModel class describes the
ns3::NetDevice energy consumption by means of the
drawn current. The installation procedure is eased by
the helper class ns3::DeviceEnergyModelHelper,
which employs the Install() method that links a
ns3::EnergySource to a ns3::NetDevice.

When the battery object is initialized,
it schedules an ns3::Event, which calls
ns3::EnergySource::CalculateTotalCurrent().
This function retrieves the current drawn of every device
associated with the ns3::EnergySource, by calling
ns3::DeviceEnergyModel::GetCurrentA().
Subsequently, the energy consumption value is calculated and
subtracted from the remaining one. Finally, the ns3::Event
reschedules itself.

In this work a specialization of
ns3::DeviceEnergyModel, i.e.
ns3::DroneEnergyModel, is developed along with the
helper class ns3::DroneEnergyModelHelper. Given a
simulation duration T , the model splits it into n = 1, . . . , N
equal discrete intervals. The power consumption model of the

drone flying at speed v[n] = (vx[n], vy[n], vz[n]), in the n-th
time slot, is the following [28]:

PUAV [n] = Plevel[n] + Pvertical[n] + Pdrag[n], (1)

where

Plevel[n] =
W 2

√
2ρA

1√
Ω+

√
Ω2 + 4V 4

h

, (2)

being

Ω = ∥(vx[n], vy[n])∥2 (3)
Pvertical[n] = Wvz[n], (4)

Pdrag[n] =
1

8
CD0ρA∥(vx[n], vy[n])∥3, (5)

W = mg, with m defining the mass of the drone and g as the
gravitational acceleration. Moreover, ρ is the air density, A is
the total rotor disk area, CD0 is the profile drag coefficient
depending on the geometry of the rotor blades, and Vh =√

W
2ρA uses parameters to calculate the power required for

hovering operations.
The energy model can be aggregated to a drone by means of

the ns3::Drone EnergyModelHelper, which provides
an Install() method that aggregates it to ns3::Drone.
In this way, it is possible to simulate the energy characteristics
of a drone, both for its mechanics and its peripherals, in
addition to its networking operations.

Such mechanical power consumption
model is implemented in the method
ns3::DroneEnergyModel::GetPower().
Similarly, the method ns3::DroneEnergyModel
::GetPeripheralsPowerConsumption() returns the
cumulative power consumption of all peripherals on board.

The ns3::DroneEnergyModel object, registered
as a new ns3::TypeId with no attributes,
implements ns3::DoGetCurrentA() inherited from
ns3::DeviceEnergyModel. Such method returns
the total drawn current related to both mechanics and
peripherals, in addition to networking operations. The
energy model can be aggregated to a drone by means
of DroneEnergyModelHelper, which provides an
Install() method that aggregates it to ns3::Drone.

It is worth specifying that
ns3::DroneEnergyModelHelper implements the
installation procedure in a different manner with respect to its
parent, i.e., ns3::DeviceEnergyModelHelper. In fact,
the ns3::DroneEnergyModelHelper::Install()
method links a ns3::EnergySource to a ns3::Drone
instead of a ns3::NetDevice. This aspect distinguishes
the aim of IoD-Sim from the ns-3 one: to simulate all
the relevant aspects of the drone, beyond the networking
perspective. This justifies the implementation divergence from
the ns-3 main goals.

During the simulation, it is possible that the drone runs out
of energy. To this end, the event is propagated through the
execution of HandleEnergyDepletion() of the energy
model, for which the time of depletion is logged for successive
data analysis.

7

TABLE III: Drone Peripherals Properties.

Class Attribute Description

DronePeripheral PowerConsumption Power consumption of the peripheral in J/s
StoragePeripheral Capacity The capacity of the disk in bit

DataRate The acquisition data rate of the peripheral in bit

InputPeripheral
InitialRemainingCapacity The starting remaining capacity in bit
DataAcquisitionTimeInterval The time interval occurring between any data acquisition
HasStorage Acquired data are offloaded to the StoragePeripheral

C. Other Simulation Entities: ZSPs and Remotes

Entities beyond ns3::Drone are ZSPs and Remotes.
ZSPs are smart entities, modeled as ns3::Node ob-
jects, equipped with multiple ns3::NetDevice which
provide multi-protocol radio access, thus enabling com-
munications between drones and the rest of the Inter-
net. Typically, they are configured as ground entities that
maintain a constant position in time [1], by means of
ns3::ConstantPositionMobilityModel. Nonethe-
less, in IoD-Sim, their mobility model can be customized to
fit simulation purposes, envisioning the adoption of dynamic
wireless infrastructure proposed in 5G & Beyond architectures.
Remotes, instead, are ns3::Node objects with no mobility
model and only rely on installed applications which provide
remote services to consumers. Remotes and ZSPs are inter-
connected through a backbone, simplified as a Carrier Sense
Multiple Access (CSMA)-based bus network, that represents
the Internet. This architecture allows service provisioning on
different classes of nodes, employing Remotes in the case of
applications with high computational costs, e.g., multimedia
data processing, and ZSPs in the case of low latency require-
ments, e.g., traffic management.

D. Mobility

ns-3 provides a basic foundation to represent the move-
ment of drones (e.g., ns3::WaypointMobilityModel,
ns3::ConstantAccelerationMobilityModel, and
ns3::ConstantVelocityMobilityModel). However,
an important gap arises when such models are analysed in
details: none of the available ones are able to construct a
curve trajectory that take into account how much a spot is
relevant for the mission plan. Another aspect to consider is that
models such as ns3::WaypointMobilityModel couples
the position of the drone with a given time instant, without
taking into account the limitations imposed by the maximum
speed of the UAV. Therefore, if the user does not properly
design the path, this could lead to a simulation which does not
reflect the reality. Moreover, in the setup phase it is necessary
to specify all the points that create the trajectory.

To overcome these limitations, dedicated mobility models
have been developed. In particular, the trajectory has been
modeled using Bézier curves by specifying a set of Points of
Interest (PpoI). These are decoupled from the time of arrival,
and the resulting trajectory is bounded to the mechanical
characteristics of the drone. A specific structure implemented
in IoD-Sim, namely ns3::CurvePoint, describes the 3D
position vector of the Bézier curve together with the distances
from the previous point and the starting one. Besides, a

Fig. 3: A set of trajectories, generated with (6), with different
Interest Levels (from 1 to 10, incrementally) for PpoI 1, 3, 5,
and 7. The other points have constant Interest Level set to 1.

container object, i.e., ns3::Curve, is in charge of manag-
ing the points of the curve, i.e., ns3::CurvePoint, that
are defined according to the interest points contained in a
ns3::FlightPlan. When a ns3::Curve is instantiated,
it populates the container according to the following.

Let P =
{

P0,P1, . . . ,PN−1

}
with Pi ∈ R3, ∀i =

0, . . . , N − 1 be an ordered sequence of N interest points,
l =

{
l0, l1, . . . , lN−1

}
, li ∈ N+, the interest level associated

to each point, Λ =
(∑N−1

i=0 li

)
− 1 and Li =

∑i−1
h=0 lh. The

Trajectory Generator can be expressed as

G(t) =

N−1∑
i=0

Pi

li−1∑
j=0

(
Λ

Li + j

)
(1−t)Λ−Li−jtLi+j , t ∈ [0, 1]

(6)
It is worth noting that (6) is a revised version of the original

Bézier equation, which does not practically allow to reach the
interest points, except for the first and last one. An increment
in the interest level l turns into a trajectory that passes closer
to that point, as illustrated in Figure 3. A special case takes
place when l = 0. A specific mechanism is provided to split
the trajectory into two contiguous curves so that the drone is
forced to fly over them. In this case, a restTime can be
defined to set the hovering duration in seconds.

Finally, the obtained trajectory is used
by the new implemented models, i.e.,
ns3::ConstantAccelerationDroneMobilityModel
and ns3::ParametricSpeedDroneMobilityModel.

1) Constant Acceleration Drone Mobility Model: This mo-
bility model employs (6) and the uniform acceleration motion

8

TABLE IV: ns3::ConstantAccelerationDrone
MobilityModel TypeId attributes.

Attribute Description

Acceleration Drone’s constant acceleration, expressed in
m/s2.

MaxSpeed Drone’s maximum speed, expressed in m/s.
FlightPlan Interest points for the trajectory.
SimulationDuration Simulation duration, expressed in seconds.
CurveStep Discretization step of the curve.

TABLE V: ns3::ParametricSpeedDrone
MobilityModel TypeId attributes.

Attribute Description

SpeedCoefficients The set of coefficients for the polynomial
v(t).

FlightPlan Interest points of the trajectory.
SimulationDuration Simulation duration, expressed in seconds.
CurveStep Discretization step of the curve.

law to retrieve the points of the desired trajectory. Since
the speed of the drone cannot increase indefinitely, after the
maximum speed is reached, the uniform linear motion law is
adopted. This object is implemented as an ns-3 model, and
hence, has its own TypeId with attributes described in Table
IV.

In each instant of the simulation, IoD-Sim calls two meth-
ods, DoGetPosition () and DoGetVelocity ().
They return both the position and the speed at current time
of the drone, that is recomputed thanks to the Update ()
method.

2) Parametric Speed Drone Mobility Model: Similarly to
Constant Acceleration Drone Mobility Model, this mobility
model is implemented as a ns-3 model with its own TypeId.
However, this takes a v(t) speed profile in a polynomial
form and, thanks to the modified Bézier equation (6), it
retrieves the discretized trajectory. To ease the implementation,
a specific attribute, i.e., ns3::SpeedCoefficients, is
introduced to serve as a container of the v(t) coefficients.
These are elaborated (by employing the GSL) to constantly
update the parameters by calling UpdateSpeed () and
UpdatePosition () subroutines. A summary of the at-
tributes of this mobility model is reported in Table V.

E. Applications

IoD-Sim offers simple applications that can be used to
communicate telemetry from a drone to a ZSP or to a
Remote by adopting client-server paradigm, via User Datagram
Protocol (UDP). Moreover, relying on the same architecture,
two Transmission Control Protocol (TCP)-based applications
are available to enable reliable data transfer between hosts. Be-
sides, a Network Address Translation (NAT)-like application
is provided to design relaying network architectures.

1) Telemetry Applications: These applications are modeled
as classes named ns3::DroneClientApplication and
ns3::DroneServerApplication. The model asks for
the DestinationIpv4Address and a Port of the re-
mote entity that hosts the server application. Data are sent

Fig. 4: FSM of the Drone Client and Server Application.

every TransmissionInterval and, whereas the drone
has a storage peripheral, it is possible to free an equivalent
amount of memory space. The configuration parameters are
summarized in Table VI.

When the application is started, through the
ns3::Application::StartApplication() method,
a UDP-based communication, employing application-level
acknowledgements, takes place. It is worth specifying that
the application is stateful in order to support the Rendezvous
Process which discovers the application server in the network,
if no address is given. This process starts with the client
application in NEW state. Therefore, a HELLO packet is sent to
the destination address (or in broadcast), thus implying a state
transition in HELLO_SENT. If the application server receives
such packet, it replies with an HELLO_ACK packet to confirm
the reception. When the client receives the acknowledgement,
its state changes again, into CONNECTED, which allows it to
periodically send telemetry data. These packets are named
UPDATE and UPDATE_ACK. The entire procedure is depicted
in Figure 4.

The JSON-encoded telemetry is periodically transmitted,
through the SendPacket() method, and received by the
application server, through the ReceivePacket() method.
HELLO and UPDATE packets transport a payload which is
formatted in JSON with ASCII encoding. Its content is a JSON
object with the following properties:

• The unique id of the drone in the simulation. This
ensures that Drones communications can be tracked over
complex scenarios.

• An incremental Ssn that refers to the sequence number.
It is used to easily check if a packet has been lost.

• cmd that refers to the type of packet, whether if HELLO,
UPDATE, or an acknowledgment.

• gps coordinates with lat for latitude, lon for longi-
tude, alt for altitude, and vel for the velocity vector.
For simulated drones, the GPS location refers to the
virtual world coordinates.

The UDP packet payload is summarized in Table VIII.
When the application is stopped, the StopApplication()
method is called.

Clearly, these applications are developed so that multiple
instances can run concurrently on the same entity if different
ports are specified. Moreover, they are independent of the
particular communication technology adopted.

9

TABLE VI: Configuration parameters for Telemetry Applications.

Application Type Name Type Default Value Description

Client DestinationIIpv4Address String 255.255.255.255 IPv4 address of the remote application
server.

Client and Server Port Unsigned Integer
32-bit

80 Port of the remote application server or
listening port in the case of the server.

Client TransmissionInterval Double 1.0 Transmission interval of the telemetry up-
dates being sent, in seconds.

Client and Server StartTime Double Start of Simulation Time at which to start the application, in
seconds.

Client and Server StopTime Double End of Simulation Time at which to stop the application, in
seconds.

Client FreeData Boolean false Free data from the equipped storage periph-
eral when they are transmitted.

Server StoreData Boolean false Store data to the equipped storage peripheral
when they are received.

TABLE VII: Configuration parameters for Generic Traffic Applications.

Application Type Name Type Default Value Description

All Server and Clients Address String 127.0.0.1 Listening or remote address of the server.
All Server and Clients Port Unsigned Integer

16-bit
4242 Listening or remote port of the server.

All Clients PayloadSize Unsigned Integer
16-bit

65470 Size of the payload for each packet, in
bytes. in the case of Storage Client, it is
the maximum size to be used when freeing
storage memory.

Periodic Client only Frequency Double 1.0 Number of times in a second when a new
packet is sent to the server.

TABLE VIII: UDP payload.

Field Name Data Type Description

id Unsigned Integer 32-bit ns-3 Global Node Identifier
sn Unsigned Integer 32-bit Packet Sequence Number
cmd String Packet Type
gps Object Drone location in space

lat Double Drone latitude
lon Double Drone longitude
alt Double Drone altitude

vel Array of 32-bit Integers Drone velocity in m/s

2) Generic Traffic Applications: These applications model
a reliable data transfer between a client and a server, which are
implemented as TcpPeriodicClientApplication and
TcpEchoServerApplication objects, respectively. The
aim is to transfer a certain amount of information between
the two hosts according to the specified PayloadSize,
expressed in bytes, and TransmissionFrequency, mea-
sured in Hz, set on the client. The server is characterized
by a socket, composed by a listening Address and Port.
These configuration parameters are summarized in Table VII.
To facilitate traffic analysis, each packet has a Protocol Data
Unit, formed by a 12 bytes header, and the payload. The
former contains information-level sequence number and the
timestamp of creation; the latter is characterized by a recurring
sequence of 16 bits that is incremented over time. These appli-
cations provide dedicated TraceSource objects that notify
communication-related events such as new/closed connections
and sent/received packets.

An additional TCP-based client has been created
to support drones that are typically equipped
with a StoragePeripheral. To this end,

TcpStorageClientApplication monitors the storage
and, if memory is used, it transfers data to the remote
server. If the transfer is acknowledged, memory is freed. This
mechanism is relevant when drones are equipped with limited
on-board memory. Indeed, the client can be used to transfer
as much data as possible over the wireless medium to prevent
out-of-memory events.

3) Relaying Application: The Relaying Application is
implemented through the class ns3::NatApplication.
It is a specialized networking application that,
given an InternalNetDeviceId and an
ExternalNetDeviceId, provides a NAT-like mechanism
to a set of drones placed in an internal network. The
NetDeviceId is a numerical identifier that uniquely points to
a network device mounted on the drone.

During initialization, i.e., DoInitialize() method, the
application modifies the static routing table of the internal
network device to redirect all traffic to the loopback device. A
specific callback, namely RecvPktFromNetDev(), notifies
when a new frame arrives. It contains information such as the
Internet Assigned Numbers Authority standard L3 protocol
identifier and the sender/receiver MAC addresses.

The NAT forwarding behavior leverages a hash map, i.e.,
NAT Table, where an external port number is coupled with the
source IP address and port. Inbound frames are forwarded to
the external network by replacing this information with the
one of the relaying drone. The same rationale is applied for
frames received from the external network.

F. Scenario Configuration Interface
The Scenario Configuration Interface is an abstraction layer

that allows the configuration of the entire simulation by means

10

TABLE IX: Memory organization of protocol stacks in the
General Purpose Scenario.

Stack ID
Layer PHY MAC NET

0 WifiPhy WifiMac IPv4
1 WifiPhy WifiMac IPv6
2 LtePhy LteMac IPv4
...

...
...

...

std::array

s
t
d
:
:
v
e
c
t
o
r

of JSON files. Indeed, they can be decoded and validated
through RapidJSON in order to setup the simulation models.
The output data classes are then used by the General Purpose
Scenario to initialize objects that define the environment, the
entities, and the simulator engine. To this end, the set of all
objects that are used to characterize a scenario can be grouped
into three categories:

• Configuration Objects – Models that store parameters in
a structured way, easily accessible in the C++ language.

• Configuration Helpers – Checkers and decoders with the
goal to produce a Configuration object or throw an error
message.

• Simulation Helpers – Objects that help organise pointers
to structures commonly found in scenario development.
They are used in the protocol stack matrix, shown in
Table IX.

Additionally, Factory Helpers are defined as weakly-coupled
extensions to ns-3 internal data structures to ease their ini-
tialisation. They are made to minimise modifications made
to the ns-3 core framework, which is used by IoD-Sim. The
entire system has been made extensible by design, so that it
is possible to support further technologies and configurations
with the addition of new configuration objects and helpers as
needed. In this way, it is possible to further develop high-level
configuration interfaces able to setup scenarios and hence to
ease the design activity undertaken by the user.

1) Scenario Configuration Objects and Helpers:
The core of the abstraction layer is the
ns3::ScenarioConfigurationHelper, a low-
level object that directly deals with the JSON configuration
file. This helper returns a set of specific data classes that
contain exclusively the parameters required to configure
IoD-Sim models. Each of them is also loosely coupled with
a JSON validator and parser, also known as configuration
helpers. The information embedded in these classes is then
deserialized and employed by higher-level objects.

• ns3::ModelConfiguration describes
ns3::TypeId objects through key-value pairs
that reference the model attributes.

• ns3::EntityConfiguration describes an entity,
whether it is a Drone, a ZSP, or a Remote. The ob-
ject retrieves and stores all parameters related to the
ns3::NetDevice to be installed on the entity, the
Mobility Model to be applied, and the Applications.
Optionally, if the entity is a Drone there can be defined
the mechanics, the battery, and the peripherals. Its parser
is called ns3::EntityConfigurationHelper.

• ns3::RemoteConfiguration denotes key charac-
teristics of Remotes. Specifically, a remote needs to
know the global network layer ID of reference and the
configurations of applications to be installed. Its parser is
ns3::RemoteConfigurationHelper.

• ns3::PhyLayerConfiguration defines
the required parameters needed to configure
a PHY layer. It is the parent and interface
of ns3::LtePhyLayerConfiguration
and ns3::WifiPhyLayerConfiguration
data classes. Its parser is
ns3::PhyLayerConfigurationHelper.

• The ns3::LtePhyLayerConfiguration gets all
the information needed to set up a PHY layer for LTE,
such as its propagation loss model and its spectrum
model.

• ns3::WifiPhyLayerConfiguration sets up the
PHY layer of a Wi-Fi based protocol stack. The PHY
layer configuration requires the higher-level Wi-Fi stan-
dard to be used, the antenna Rx gain, the data rate, the
propagation delay and loss models.

• ns3::MacLayerConfiguration collects
the required parameters needed to configure a
MAC Layer. It is the parent and interface of
ns3::WifiMacLayerConfiguration. Its parser
is ns3::MacLayerConfigurationHelper.

• ns3::WifiMacLayerConfiguration configures a
Wi-Fi Basic Service Set (BSS). The Service Set IDentifier
(SSID) and access point parameters are defined to create
its basic infrastructure.

• ns3::NetworkLayerConfiguration defines
the required parameters needed to configure the
appropriate network layer. It is parent to the
ns3::Ipv4NetworkLayerConfiguration. Its
parser is named ns3::NetworkConfiguration-
Helper.

• ns3::Ipv4NetworkLayerConfiguration stores
the network address and mask of the configured IPv4
Layer in the configuration file.

• ns3::LteBearerConfiguration decodes all the
relevant parameters for an LTE bearer, such as its type
and the Quality of Service (QoS) defined as a tuple of
Guaranteed Bit Rate and Maximum Bit Rate.

• ns3::LteNetdeviceConfiguration collects the
information needed by an LTE network device, such as its
bearers. The role of the network device is then detected,
whether it is a User Equipment or an eNB.

• ns3::NetdeviceConfiguration defines for a
generic network device. The main parameter stored is
the global network layer ID, which is used to detect
the stack and network to be attached when the network
device is created and installed on a Node. A specific
configuration for Wi-Fi network devices is handled by
ns3::WifiNetdeviceConfiguration with rele-
vant MAC data to connect to the BSS.

2) Scenario Simulation Helpers: To enable complex sce-
narios that are related to the future IoD communication

11

paradigms, IoD-Sim enables the simulation of IoD networks
in which multiple telecommunication protocols are used at
the same time, both for the drones and the ZSPs. Currently,
IoD-Sim supports two communication technologies that can
be used concurrently: LTE and the IEEE 802.11 family. Each
protocol stack must be applied to a dedicated network device,
i.e., ns3::NetDevice. The architecture of the simulator has
been designed so that it eases the configuration phase.

In order to facilitate the implementation and the instal-
lation of protocol stacks on IoD entities, additional helpers
named Simulation Helpers have been developed to arrange the
necessary common infrastructure to simulate communications
among nodes. Thus, the developed Simulation Helpers are:

• ns3::WifiPhySimulationHelper, that initializes
the PHY layer of a Wi-Fi-based protocol stack.

• ns3::WifiMacSimulationHelper, that creates
the objects related to IEEE 802.11 MAC.

• ns3::LtePhySimulationHelper, that allocates
the necessary resources to enable LTE communications.

• ns3::Ipv4SimulationHelper, that manages IPv4
networks for each protocol stack.

All the aforementioned can cooperate with the
existing helpers in ns-3, such as ns3::LteHelper,
ns3::WifiHelper, ns3::YansWifiPhyHelper, and
ns3::WifiMacHelper.

3) General Purpose Scenario: A flexible and highly dy-
namic General Purpose Scenario has been developed in order
to setup scenario’s entities and, at the same time, to provide
abstractions which minimize the effort from a programming
perspective. It is fully dependent on a semantic analyzer
and allows the entire simulation platform to be compiled
beforehand, providing ways to dynamically reconfigure the
scenario at run-time. Its development started from the analysis
and the detection of a common structure typically followed by
the Open Systems Interconnection protocol stack. The entire
workflow, depicted in Figure 5, is described hereby.

General Purpose Scenario is composed of two main
parts: configuration and run. Scenario configuration, executed
through the constructor Scenario(), is interleaved with the
Scenario Configuration Interface. The run part is identified
by operator()() which is characterized by minimal C++
code that starts the ns-3 simulator engine. Moreover, it shows
the progress status on the console and, optionally, it saves
messages to a log file.

The General Purpose Scenario requires the initializa-
tion of the Scenario Configuration Interface through a
JSON configuration file. Once the file is decoded, the
number of entities are retrieved to create the initial
structures, such as a ns3::DroneContainer and four
ns3::NodeContainer objects. They keep track of ZSPs,
Remotes, and nodes that participate in the Backbone Network.

Once the entities are created, they are registered to
their respective global lists, such as ns3::DroneList,
ns3::ZspList, and ns3::RemoteList.

After entity creation, the ns-3 static configuration param-
eters are applied to the simulation. The method is called
ApplyStaticConfig(). These parameters are a set of
key-value pairs that represent certain features of ns-3 models.

Fig. 5: Logical flow to initialize and configure a scenario in
IoD Sim.

World definition is made through ConfigureWorld()
method. It is related to the configuration of Buildings and RoIs.
The virtual world set up is then followed by the configuration
of PHY, MAC, and Network global layers.

As for the PHY layer part, if it is made for a Wi-Fi commu-
nication stack, the ns3::WifiPhySimulationHelper
is employed with the specifications stored
in ns3::WifiPhyLayerConfiguration.
If the PHY layer is for LTE, instead, the
ns3::LtePhySimulationHelper is set up with
ns3::LtePhyLayerConfiguration parameters.
The same procedure is applied for the global MAC
layer configuration. The global Network layer is
managed by ns3::Ipv4SimulationHelper
for IPv4 networks with the specifications given by
ns3::NetworkLayerConfiguration, i.e., network
address, mask, and a default route.

Global stacks are then linked to the configured entities.
Moreover, for LTE devices, the bearer is created to ensure
that applications have a logical communication channel with
desired properties. When the entity network configuration is
done, the mobility model is configured and the applications are
installed. Furthermore, if the entity is a Drone, its peripherals
are installed, together with the associated energy model.

Once all entities are ready, the virtual internet backbone is
configured. A CSMA bus is made for the backbone network,
identified with address 200.0.0.0/8. Hosts that can be part
of this backbone network are Remotes, Packet Gateways in the
case of an LTE core network, or other routers in the case of
the presence of a Wi-Fi BSS.

Finally, in the case of LTE networks, their Radio Environ-
ment Maps are set up to generate images that represent the
radiation map of the Radio Access Network (RAN).

12

4) JSON Configuration Schema: The entire scenario has
been made parametric through the use of a JSON configuration
file. Requested at startup, it is decoded and employed to
configure and execute the simulation.

In this work, the following configuration schema has been
chosen for the General Purpose Scenario:

• name – A mandatory string representing the scenario
name.

• dryRun – An optional boolean to run only the semantic
analyser and check that the configuration file and model
setup is valid. By default, it is set to false.

• resultsPath– A mandatory string representing an
existing path to store simulation output files.

• logOnFile – A mandatory boolean to output scenario
logging information on a file or on standard output.

• duration – A mandatory integer that specifies the
simulation duration in seconds.

• staticNs3Config – A mandatory array of objects,
each with name and value strings, to address ns-3 static
configuration parameters. The array can be empty.

• world – An optional object containing the description
of the simulated space, in particular whether to place
buildings or regions of interest.

• phyLayer – A mandatory array of objects, each rep-
resenting a PHY layer configuration to be used in the
scenario. Each PHY object declares its type, which is
a mandatory string. The chosen type must be supported
by the semantic analyser. Additional parameters are spe-
cific to the kind of PHY layer being configured, most
notable are the chosen propagation delay model and the
propagation loss model.

• macLayer – Its description is similar to phyLayer.
• networkLayer – Its description is similar to
phyLayer.

• drones – A mandatory array of objects, each rep-
resenting a drone to be simulated. A drone requires
the following properties to be configured: at least
one netDevices in order to link it to a proto-
col stack and setup its network address assignment,
a mobilityModel according to the ones available
on IoD-Sim, at least one application that can be
installed on a drone, a mechanics to define me-
chanical properties, and a battery. Optionally, a
peripherals array can also be specified in order
to equip I/O devices to the drone with a specific
PowerConsumption indication. They may also be
activated by specifying the region of interest through
RoITrigger parameter.

• ZSPs – Its description is similar to drones.
• remotes – A mandatory array of objects, each rep-

resenting a remote that is described by its set of
applications.

• logComponents – A mandatory array of strings to
enable log components available in IoD-Sim.

An example of JSON configuration file that realizes a simple
scenario is shown in Figure 6.

Fig. 6: An excerpt of scenario configuration with an overlay
of the models associated to the analyzed parts.

13

VI. SIMULATION DEVELOPMENT PLATFORM

The Scenario Configuration Interface, discussed in the pre-
vious Section, eases the design and configuration of complex
scenarios from a high-level perspective. Indeed, JSON greatly
facilitates management and maintainability thanks to its dry
and human-readable syntax. However, the user experience is
still hindered by the following:

• As IoD-Sim grows in size and introduces more complex
and powerful models over time, the learning curve to
effectively use this simulator steepens.

• This project is continuously developed and upgraded
with new features, technologies, and standards. A high-
level abstraction helps reduce the barrier for scenario
developers in approaching new features and the required
effort to implement a scenario.

• A general purpose configuration interface, provided in the
form of JSON-encoded files, does not give any visual
clue on scenario design. Indeed, plain text files alone
require low-level knowledge of the simulator, thus im-
plying that the users have to rely on their experience and
imagination to effectively know all the aspects related to
a complex scenario configuration, such as the number of
drones, their trajectories, their purpose, their equipment,
the topology of the ground infrastructure, and the services
exposed by remote nodes.

• Error reporting messages cannot be easily understood
by end-users, forcing the use of a debugger to isolate
the problem. Therefore, a semantic analysis would be
beneficial to detect problems at scenario configuration.

To address all the points above, the IoD-Sim Simulation
Development Platform provides a set of extensions, i.e., the
Report Module, output files for data analysis, and standalone
applications for scenario design, such as Airflow. These tools
ease scenario design and analysis, thus ensuring that IoD-Sim
can be easily introduced to newcomers, especially university
students and researchers.

A. Report Module

The Report Module, illustrated in Figure 7, is an extension
of IoD-Sim which stores data at run-time and elaborates, at the
end of simulation, a comprehensive summary. The aim of the
extension is to introspect simulator’s data structures to gather
relevant data to be reported (e.g., data traffic, trajectory, and
telemetry). To provide a final report that is both human and
machine readable, the XML format has been chosen. There-
fore, a schema is defined to describe the expected structure of
the produced file.

More insights about the structure of the proposed ex-
tension are provided hereby. The root XML element, i.e,
Simulation, represents the summary of a scenario previ-
ously executed. The attributes that characterize the simulation
are scenario, which is a string that carries the name of the
scenario that was executed, and executedAt, which reports
the date and time of execution of this simulation. Moreover,
Simulation presents further information about simulation
results, such as its duration, which is reported in real and

Fig. 7: Block diagram of the Report Module.

virtual time, World, which contains the Buildings and
InterestRegions, and entities containers.

The first of these containers is Zsps, which is a complex
XML type that summarizes each ZSP through position
described by the 3D coordinates, and NetDevices, which is
a list of configured network devices. Each of them is described
by structures that represent the configuration of the PHY,
MAC, and network layers, together with the data traffic. Each
captured packet is expressed by direction, length in bytes,
timestamp, and textual representation of the payload.

Similarly, Drones summarizes the state of each Drone.
This structure maintains the NetDevices already discussed
for Zsps. Additionally, particular characteristics of drones
are reported, such as trajectory and the set of onboard
Peripherals. The former is defined by a list of points,
each of them with its own timestamp. The latter reports the
characteristics of the used peripherals type.

Finally, Remotes are described only by their
NetDevices.

This output XML file is put together with other files relevant
to the simulation in the results directory.

B. Results Aggregator

Log Files gather all the relevant information and debug
messages about the internal components of the simulation. Pri-
marily, the General Purpose Scenario emits progress.log
and IoD Sim.log files. The former is the output of the
progress information messages that are also delivered on the
standard output during scenario execution. The latter contains
all debug messages coming from the different internal com-
ponents of IoD-Sim. The log components can be enabled by
specifying them in the logComponents field of the scenario
configuration JSON file.
progress.log file starts by determining the current date

and time of the start of the simulation. For each second, it
prints a status report on a single line. The status report presents
the following fields:

• The simulation time instant at which the report is refer-
ring to.

14

• The speed up in simulating the scenario with respect to
real time. This is dependent on the simulator performance
and how many events are elaborated.

• The number of events processed in the time interval
relative to the previous status report.

The file then ends with the current date and time and the
duration of the simulation as Elapsed wall clock.

Trace Files are ASCII-encoded text files that record all the
activities regarding a specific Network Device. All the traces
are bounded by what is sent or received at the MAC layer.
A Trace File name is composed of three fields, separated by
a hyphen: (i) the global layer name, (ii) the unique identifier
of the host in the network, and (iii) the unique identifier of
the host network device. For instance, internet-2-1.tr
indicates that the trace has been done on the first network
device of the second host in the virtual Internet network.

LTE Log Files are ASCII-encoded text files that represent
a series of statistics on relevant Key Performance Indexes
(KPIs). These log files are focused on specific low-level layers
of the LTE stack, particularly PHY, MAC, Radio Link Control,
and Packet Data Convergence Protocol. For each layer, there
are two separate trace files: one for downlink and one for
uplink communications. As part of the LTE Log Files, there
are also PCAP traces of the S1-U interface that links the RAN
with the Evolved Packet Core.

PCAP Files are well-known files that record network activ-
ity in the PCAP format and contain the traffic that occurred
on a certain network device of a host. The filename format
is similar to Trace Files. Due to the fact that these files are
binary, a suitable decoder should be used to explore the data
structure. A popular decoder is the libpcap open-source
project, used by frameworks for PCAP data analysis, e.g.,
Scapy, and Graphical User Interface (GUI) programs such as
Wireshark. As these PCAP Files are generated by a simulation,
each captured frame is marked with the relative timestamp
of the simulation. Therefore, each PCAP File starts with the
transmission/reception of captured frames at 0 seconds.

C. Airflow

Airflow is a high-level abstraction tool that gives visual
clues during simulation design, thus enriching the user expe-
rience, especially for newcomers. Airflow has been developed
on top of Splash, a specialized transpiler for IoD-Sim. It scans
the source code of the simulator and outputs visual blocks that
can be referenced in the Core Editor to configure a scenario.
Thanks to the GUI editor, a scenario can be exported into
a JSON file that can be interpreted by IoD-Sim Scenario
Configuration Interface. From a software design standpoint, as
illustrated in Figure 8, the Airflow project is entirely decoupled
from IoD-Sim. Its integration with the simulator relies on
interfaces that enable bidirectional communications.

1) Splash: Splash is a middleware that analyzes IoD-Sim
source code and translates ns-3 models into visual block code
used by Airflow. These blocks can be added to the editor as
external packages. Splash enables the decoupling mechanism,
able to ensure that Airflow and IoD-Sim can be developed
asynchronously and updated when needed.

Fig. 8: Airflow Architectural Design.

In particular, it accomplishes the following tasks:
1) Parses the source code of IoD-Sim by relying on Clang

lexical and syntax analyzers, producing the Abstract
Syntax Tree (AST) that is stored into a binary file.

2) Scans the AST to find relevant simulation models,
excluding internal structures and routines that are not
relevant for the design of a scenario. This information
is then encoded in an Intermediate Representation (IR).

3) Optimizes the IR by solving model hierarchies and
removing redundancies.

4) Generates Python code that describes the models as
Airflow visual blocks. This output can then be moved
to the Airflow project folder for integration.

Concretely, this pipeline works as follows. The script

Fig. 9: The tree-traversal search algorithm employed by Splash
to extract the models from the IoD-Sim source code. The
numerical ordering given on the edges reflects the algorithm
logic used to extract model information.

15

Fig. 10: An overview of the configuration of a generic model in Airflow.

splash.sh can be executed by passing the IoD-Sim project
directory as an argument. The program then searches for any
relevant C++ source code files in it. This process is eased
by the ns-3 convention: models have the suffix -model.cc,
-manager.cc, -mac.cc, and -application.cc in
their filenames. To this end, other files are filtered out to
optimize parsing operations and to prevent the exposure the
simulator’s internal structures.

For each file found, the clang command is used to analyze
the source code and solve any include directives needed by the
preprocessor. Finally, the output is an AST, which is encoded
in an optimized binary file readable only through clang’s
APIs. The file extension is named Precompiled Header (PCH).

The PCH file is then passed into splash core executable.
This program relies on cxxopts library to behave like an
interactive command-line application, on boost-json to
serialize C++ data structures in JSON, and on libclang
to read the AST. The application requires the PCH file path
as input with the output directory path in order to store the
IRs. These IR files are encoded into JSON to ensure software
interoperability and readability.

Once the command-line program is executed, the entire
translation unit of the AST is scanned in order to lookup
for any model used in the simulator. A custom tree-traversal
algorithm is used to optimize the parse time. It works as
a hybrid implementation of the classical Breadth-first and
Depth-first search algorithms. A high-level representation of
the translation unit is given in Figure 9. The key feature of
this approach is the speed up introduced by the algorithm.
In fact, it first traverses the tree using Depth-first to find
the depth at which one or more ns3::TypeId can be
found, and then uses Breadth-first to analyze each model at
the same depth. The same strategy is applied to extract all
the attributes relevant to the simulator model. Each model is
represented and exported into a JSON file having the following
structure: the name of the parent model, the model name,
and a list of attributes, each one described by a name, an
optional description, and the ns-3 data type that characterizes
it. Once the entire model hierarchy is solved and optimized,
the attributes are copied from parent to children, if any. Then,

a code generator is executed to create the visual blocks for
the editor GUI. Each block name reflects the model’s one and
the attributes are considered as block input parameters. The
generated Python code is interpreted by the GUI to display
a visual block with the model name as its title and model
attributes as its inputs, as illustrated in Figure 10.

2) Graphical User Interface: The Airflow GUI, shown in
Figure 10, is based on the open-source engine named Ryven†,
which is a dynamic runtime, flow-based visual programming
environment for Python scripts. It offers: (i) a central rendering
view to place blocks and link them together, (ii) a settings
area to customize options, (iii) a variable management section
to include and store data that can be integrated with the
flow, and (iv) a console to report errors. Ryven includes
additional features to optionally debug internal routines with
the help of console messages. Moreover, thanks to its modular
design, it allows blocks generated by Splash to be aggregated
into packages. Ryven has been deeply extended to inter-
operate with IoD-Sim, especially for its compatibility with the
Scenario Configuration Interface.

The user interface is organized into the following compo-
nents:

1) A menu bar at the top of the GUI window.
2) A Console on the left in order to monitor errors and

messages coming from Airflow or IoD-Sim. Informative
messages are reported in blue, while errors are displayed
in red.

3) A central workspace to design the scenario by placing
blocks and connecting them together.

4) A settings panel on the right.
The menu bar is divided into three categories: with File

it is possible to import Airflow packages to extend the user
experience with third-party visual blocks. Moreover, it pro-
vides features to save the project or export it as an IoD-Sim
configuration file. View offers graphical options, such as
changing the theme, making a screenshot of the project, and
tuning performance parameters. Finally, Debugging enables
technical features to ease troubleshooting of the program, such
as increasing verbosity level on the Console.

†https://ryven.org/

https://ryven.org/

16

Fig. 11: A simple scenario with one drone and ZSP designed from scratch in Airflow.

The central workspace is the canvas where blocks and links
are placed by the user to design a scenario. A block, as
depicted in Figure 10, consists of a set of inputs and outputs.
Each input and output can be connected to other outputs and
inputs of other blocks, in order to create a tree. The root
block is named Scenario. Each block has a different meaning
and function. As a general overview, blocks can be divided
into the following categories: operators, helpers, and IoD-Sim
models. Operators are built-in blocks that can be used to work
with values, constants, and data structures. Instead, helpers are
special blocks that ease the configuration of a scenario, i.e.,
entities, Wi-Fi, and LTE configuration blocks. Usually, blocks
provide a single output without a label. This output delivers
the information of the block, along with all its inputs, to the
next connected block. Blocks can be added to the workspace
by a specific menu that is shown by clicking with the right
mouse button. Moreover, each block can be right-clicked to
show its contextual menu that can be used (i) to remove it,
(ii) to refresh it (and hence to read all its inputs again), and
(iii) to use some particular features available in certain blocks.
For instance, toList offers some additional controls to add
or remove inputs.

In the settings panel, it is possible to set the IoD-Sim path
in order to enable interoperability features, such as checking
the scenario configuration for errors, or running the scenario
and reporting the status on the Console. These features can be

used by clicking on the Build and Run buttons, respectively.
Finally, a variable manager can be used to create, store, and
reference values by their respective labels on the workspace.
This allows to reduce redundancy and to make the block tree
more compact.

VII. SIMULATION CAMPAIGN

This Section demonstrates the huge potential of IoD-Sim by
means of an extensive simulation campaign which investigates
the many facets of IoD scenarios. Firstly, the discussion
explains how the simulation can be designed. Secondly, three
different scenarios with increasing complexity are presented.

In particular, the first scenario discusses the use-case of
telemetry with a few drones flying in a RoI, which follow
customized trajectories while gathering data. The purpose of
this scenario is to demonstrate that it is possible to monitor
one or more variables with on-board sensors, while estimating
the energy consumption associated with flight dynamics.

The second scenario has a wider perspective since it focuses
on surveying and monitoring activities, further completed with
the acquisition of multimedia signals by each drone. The
possible applications include several real-world use cases in
the fields of civil engineering, smart agriculture, or envi-
ronmental monitoring, e.g., coastal erosion and other slow
phenomena. In fact, in this scenario, drones are on a mission
in neighboring areas since it is assumed that the information of

17

interest needs to be contextualized, i.e., must be gathered at the
same time. Furthermore, this case investigates the possibilities
enabled by different data storage capabilities of drones. Also,
the offloading functionality of the acquired data avoids the
overload/saturation of onboard available resources. Once data
is gathered, they can be involved in offline post-processing,
evaluation, and analysis.

The third scenario has been specifically designed to be the
reference benchmark for IoD applications. It is set in the
context of smart cities and involves clusters of low-power
IoT sensors. This scenario models real-world applications
and, hence, shadowing and pathloss phenomena are included,
thanks to the adoption of propagation models that are influ-
enced by the presence of buildings. In order to guarantee a
reliable communication, drones are in charge of relaying traffic
to ensure coverage to all sensors in the city.

A. Scenario Design
Airflow represents the foremost application for visual sce-

nario development. To better understand how to design simu-
lations, a simple configuration setup is provided hereby. The
envisioned scenario considers a drone that follows an arc-like
trajectory and communicates telemetry to a ZSP by means
of Wi-Fi. Specifically, the drone acts as a station and the
ZSP as an access point. The entire configuration is depicted
in Figure 11, where all the visual components, encompassed
in the Airflow workspace, are properly set up and linked
together. Starting from the right, the block Scenario glues
some configuration input values, e.g., Name and Duration,
with more complex components, such as (i) PHY/MAC/NET
Layers, (ii) Drone List, and (iii) ZSP List.

In particular, the communication layers are configured to
implement the Wi-Fi stack. The WiFi PHY Layer object
defines the PHY layer to be used with particular propagation
and loss models. The WiFi MAC Layer, instead, specifies
the SSID of the network and the Wi-Fi Manager object that
handles the MAC control plane. Further, the IPv4 Network
Layer determines the address and mask of the overlying
network.

Fig. 12: Scenario #1.

Both Drone List and ZSP List properties are
connected to the simulated entities, namely Drone and
ZSP. These two components share different properties
such as Applications, Mobility Model and
Network Devices. However, the Drone block
is also characterized by its unique features, i.e.,
Peripherals, Mechanics, and Battery. In this
configuration, the ConstantPositionMobilityModel
allows placing the ZSP at a fixed location, while the
ParametricSpeedMobilityModel is employed to
define the drone trajectory. In this regard, the Trajectory
component, linked to the FlightPlan property of the
mobility model, facilitates the design of the desired path.

The Network Devices property of both drone and
ZSP is linked to a WiFi Net Device block. While
StaWifiMac characterizes the device of the former,
ApWifiMac is associated with the latter. Finally, a
LiIonEnergySource defines the power supply of the
drone.

The development strategy discussed above represents the
common ground for the design of the following three scenar-
ios.

B. Scenario #1 - Telemetry

The first scenario, as depicted in Figure 12, envisions three
drones with the same mechanical characteristics, all equipped
with an Inertial Measurement Unit (IMU). In this scenario,
drones are flying in the same RoI at a constant speed, following
different trajectories. Moreover, a ZSP is deployed on the
ground. The latter is released in [60 45]T, which continuously
monitors drones’ operations by acquiring telemetry through
Wi-Fi.

UAVs’ trajectories are based on the ParametricSpeed-
DroneMobilityModel, which is configured to guarantee a con-
stant speed of 5m/s, 3m/s, and 4m/s, respectively. They are
also equipped with IMUs, which are generic drone peripherals
that provide basic telemetry data to the ZSP thanks to a
dedicated application, as mentioned in Section V-E1. It is
worth specifying that drones’ IMUs have different power
consumption, i.e., 12W, 5W, and 6W.

The outcome of the simulation is hereby discussed. Figures
13 and 14 depict the power consumption trend with respect to
time and trajectories. In the former, the three curves share an

0 5 10 15 20 25 30 35 40 45 50

Time [s]

20

25

30

35

40

45

50

55

60

65

70

P
o

w
er

 [
W

]

Drone #1

Drone #2

Drone #3

Peripheral OFF

Peripheral ON

Peripheral STANDBY

Fig. 13: Power consumption and peripheral state for each
drone, in the first scenario.

18

(a) Drone #1. (b) Drone #2. (c) Drone #3.

Fig. 14: Drones’ trajectories with their power consumption, in the first scenario.

0 5 10 15 20 25 30 35 40 45 50

Time [s]

-125

-120

-115

-110

-105

-100

-95

-90

R
S

S
I

[d
B

m
]

Drone #1

Drone #2

Drone #3

Fig. 15: Measurement of the Received Signal Strength Indi-
cator (RSSI) of each drone by the ZSP in the first scenario.

initial peak which corresponds to the energy required to take
off. Indeed, acquiring altitude requires more power than flying
along the xy plane, as highlighted. This phenomenon is further
remarked in Drone #2 landing maneuver. It includes a little
parabola that yields a peak in the last part of the associated
curve of Figure 13, which is also present in Figure 14b.
After ∼ 10 s, the drones reach and almost maintain a target
altitude. The corresponding power consumption, for Drones
#1 and #3, is characterized by peaks due to hovering over the
interest points for 1 s and 3 s, respectively. These points are
identified by the vertices of the snake-like and octagon-shaped
trajectories. Instead, this phenomenon is not present on Drone
#2, since its trajectory describes a continuous curve. When
the drones enter the RoI, the peripherals become active, and
hence the IMUs power contribution is non-zero. Spikes can
be noticed in the curves of Figure 13, especially in Drones
#1 and #2, since they are equipped with two more energy-
demanding peripherals. As soon as drones exit such a region,
the peripherals go into standby mode, which preserves energy.

Figure 15 illustrates the measured RSSI of each drone
during the mission. Measurements are carried out by the ZSP.
In general, such values can be conceived as an assessment
of ranging operations carried out by a single node when
its position is fixed. From this Figure, it clearly emerges
that, on average, Drones #1 and #2 maintain a better signal
quality with respect to the UAV #3. Obviously, the higher
altitude, and hence the greater distance from the ZSP, worsens
the communication quality due to the Friis propagation loss
employed to model the fading effects in this scenario.

Fig. 16: Trajectory design and eNB attachment for each drone,
in the second scenario.

C. Scenario #2 - Multimedia Signals Acquisition

The second scenario is depicted in Figure 16. A swarm of
four drones is in charge of acquiring multimedia signals in an
operating area that is 106 m2 wide. Acquired data are stored
on-board and off-loaded to a remote server as soon as the
drone is able to communicate with a ground infrastructure. The
latter, which allows data upload, is composed of three ZSPs,
also referred to as eNBs, that are deployed on the ground in
three different locations: [50 800]T, [900 200]T, and [700 900]T,
respectively. All the entities involved in the mission, which
lasts 250 s, are equipped with LTE interfaces, where the
Okumura-Hata propagation loss model has been employed.
Drones follow snake-like trajectories, each different from the
other in terms of amplitude and frequency. Nevertheless, they
adopt the same mobility model with a constant acceleration of
4m/s2 and a maximum velocity between 15 and 20m/s. Each
drone is equipped with cameras that operate at different data
rates, 2Mbps, 1.6Mbps, 1.3Mbps, and 1Mbps, respectively.
The communication between each UAV and the remote server
is handled by Generic Traffic Applications (see Section V-E2),
with a payload size of 1024 bytes and a TCP Max Segment
Size of 1380 bytes.

19

0 20 40 60 80 100
0

1

2

3

Drone #1 Drone #2 Drone #3 Drone #4

ZSP #1 ZSP #2 ZSP #3

0 20 40 60 80 100 120 140
0

1

2

3

T
h

ro
u

g
h

p
u

t
[M

b
p

s]

0 50 100 150 200
0

1

2

3

0 20 40 60 80 100 120 140 160 180

Time [s]

0

1

2

3

Fig. 17: Drones’ throughput, in the second scenario.

0 50 100 150 200 250

Time [s]

0

10

20

30

40

50

60

70

O
cc

u
p

ie
d

 S
to

ra
g

e
M

em
o

ry
 [

M
b

it
]

Drone #1

Drone #2

Drone #3

Drone #4

Fig. 18: Memory occupancy for each drone, in the second
scenario.

In the same figure, it can be further observed the attachment
of the drones to the ZSPs. Throughout the mission, Drones
#2 and #3 remain linked to the same eNB, i.e., ZSP #2 and
#1. On the other hand, UAV #1 and #4 perform a handover
procedure which changes the reference ZSP from #1 to #2 and
from #2 to #3, respectively. It is worth noting that, despite
Drone #1 takes off in the same area where Drone #2 lands,
they are not attached to the same ZSP. Indeed, even if the
two trajectories share the same direction, they have opposite
verse: while one approaches an eNB, as the mission goes
by, the other flies away from the ZSP without really getting
closer to another one. Figure 17 shows the throughput for
each drone on the associated ZSP over time. It is shown

that UAV #1 experiences an average data rate of ∼ 1Mbps
until the handover procedure takes place, which increases this
value by ∼50%. Similarly, the average throughput of Drone
#4 is also ameliorated since it increases from ∼ 800 kbps
to ∼ 1.1Mbps. It is worth noting that there exists a pattern
correspondence between the throughput and the occupied
storage curves (see Figure 18). This is particularly evident
for Drones #3 and #4: when the occupied memory lowers
and goes to zero, the data rate decreases as well, and tends
to zero. Indeed, for the information causality principle, it is
not possible that a larger amount of information is transmitted
with respect to the stored one. Notice that this happens as long
as the acquisition rate remains lower or equal to the channel
capacity which, for instance, is not the case of Drone #1.

D. Scenario #3 - Smart Cities

The third scenario reproduces a smart city context, in which
drones are in charge of relaying traffic coming from clusters
of Ground Users (GUs), using Wi-Fi technology, to a remote
server over the Internet, through LTE. In this regard, the
presence of buildings plays an important role both in trajectory
design and in fading phenomena. The envisioned scenario
is designed starting from the map of an urban area in the
neighborhood of the Central Station of Bari, Puglia, Italy.

The xy coordinates (i) are extracted from OpenStreetMap
with the aid of OpenCV [29], (ii) rescaled according to their
real profile, and (iii) transposed into the spatial reference
system of the simulator. Finally, the buildings’ heights are
generated using a random variable uniformly distributed in
[24, 30], which corresponds to the characteristic height (in
meters) of the buildings in that area. As shown in Figure
19, four GUs clusters of different size are present on the
ground. Each of them is served by a drone, which relays the

0 50 100 150 200 250 300

x [m]

0

50

100

150

200

250

300

y
 [

m
]

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Relay Trajectory Ground User ZSP Building

Fig. 19: Scenario #3 simulation environment.

20

1 4 7 10 13 16 19 22 25 28 31 34

GUs [#]

0

10

20

30

40

50

60

70

80

90
L

at
en

cy
 [

m
s]

1 2 3 4

Cluster ID

Fig. 20: GUs application latency of link combined by Wi-Fi,
relay drone, and LTE.

1 4 7 10 13 16 19 22 25 28 31 34

GUs [#]

0

10

20

30

40

50

60

70

80

90

100

110

L
at

en
cy

 [
m

s]

Fig. 21: GUs application latency over LTE-only link.

traffic by means of the NAT application discussed in Section
V-E3. The entire simulation lasts 180 s and employs the
ns3::HybridBuildingsPropagationLossModel to
take into account the fading caused by the presence of build-
ings. It includes a combination of Okumura-Hata model and
COST231 for long-range communications, ITU-R P.1411 for
short-range communications, and ITU-R P.1238 for indoor
ones. This allows to support a wide range of frequencies span-
ning from 200MHz up to 2600MHz. Moreover, each building
is characterized by a window per room and is assumed to be
built with concrete walls. The Wi-Fi stack has been configured
based on the 802.11ax standard operating at 2.4GHz and
is contRrolled by the ns3::IdealWifiManager, which
allows to keep track of the SINR. Thanks to this mechanism,
it is possible to always choose the best transmission mode to
be used, i.e., a combination of modulation, coding scheme,
and data rate.

As for the network level, each cluster is connected to its
relay according to the 10.[1 − 4].0.0/24 network address

1 4 7 10 13 16 19 22 25 28 31 34

GUs [#]

0

0.2

0.4

0.6

0.8

1

P
L

R
 [

#
]

1 2 3 4

Cluster ID

(a) Wi-Fi & LTE

1 4 7 10 13 16 19 22 25 28 31 34

GUs [#]

0

0.2

0.4

0.6

0.8

1

P
L

R
 [

#
]

(b) LTE

Fig. 22: GUs application PLR for Scenario #3.

Scenario # Events [#] real time [s] Sim. Time [s]

1 57,437 9 50
2 18,226,323 761 250
3 LTE 37,178,812 4,620 180
3 Wi-Fi & LTE 28,903,306 2,858 180

TABLE X: Comparison of the total number of events, the real
time taken to execute, and the simulated time of each scenario.

range, while LTE uses 7.0.0.0/8. Drones’ trajectories are
designed to the layout of the streets in order to minimize the
shadowing effects and maximize the Line of Sight with the
GUs. Furthermore, the path also maximizes energy efficiency
as the translation in the xy plane is less costly when compared
to changes of altitude. At each angle of the trajectory, the
drones pause for 1 s in order to simulate an accurate 90 degrees
yaw.

Accordingly, each relay drone flies at a constant al-
titude of 50m at 5m/s. Drones are equipped with the
ns3::NatApplication, which implements a simple Port-
based NAT strategy for UDP communications. Each GUs
has a constant position and is equipped with a sim-
ple ns3::UdpEchoClientApplication, which period-
ically sends a packet of 1024 bytes to the remote address
200.0.0.1:1337 with a frequency of 10Hz. Each packet
is equipped with an application header that reports an incre-
mental sequence number and the time of creation. Finally, the
remote has a ns3::DroneServerApplication, which
records via log messages the received packets.

The only ZSP, located at [60, 120, 40]T, provides LTE access
to the drones, thus allowing the communication with the
remote host. Figures 20 and 21 clearly show the advantage
brought by the relay activity by the drones. In the relay case
(Figure 20), all the GUs experience an average latency of
∼ 25ms, a result that is achieved also thanks to the proposed
trajectory design.

On the contrary, in absence of relay drones (see Figure 21),
while the GUs that are closer to the ZSP are affected by a
latency similar to the previous case, the farther ones register a
significant delay, which inevitably compromises the reliability
of the link and, hence, the QoS. Nevertheless, this comes with
a trade-off as highlighted in Figure 22, which shows the PLR
in both cases. In the former, all nodes are able to transmit
data to the remote, but with a loss ratio of ∼10% for the
cluster #2 and #3. It is worth noting that this result can be
further improved by properly optimizing the trajectory design

21

1 2 3 (LTE)
3 (WiFi & LTE)

Scenario [#]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E
v

en
ts

 p
er

 s
ec

o
n

d
 [

#
]

104

(a) Number of events.

4

5

6

1 2 3 (LTE)
3 (WiFi & LTE)

Scenario [#]

0

0.1

0.2

0.3

0.4

0.5

0.6

S
p
ee

d
u
p
 [

#
]

(b) Simulation speedup time.

Fig. 23: Performance evaluation of the different simulated
scenarios.

to target the desired trade-off. In the latter, instead, six nodes
have 100% PLR, which means that there is no exchange of
data.

E. Performance Evaluations

To evaluate the performance of the simulator, and hence its
scalability, the performance metrics of the simulated scenarios
are analyzed and compared hereby. The runtime environment
is characterized by the following hardware and software
specifications: (i) Intel (R) Xeon (R) Bronze 3106 at 1.70
GHz with 16 cores and no hyper-threading, (ii) RAM 92 GB
DDR4 at 2666 MHz, (iii) 7200 RPM hard drives and (iv)
OS Fedora 35 on LXD container [30]. It is worth specifying
that the present assessment is made leveraging a single-core
configuration, although multi-processing support is available.
To fairly compare the simulations, two metrics are selected.
The former takes into account the number of events processed
per second for each simulation, thus providing an insight
related to the scenario complexity. The latter considers the
ratio between the simulated time and the real time, thus further
addressing the complexity of the designed missions. Moreover,
Table X summarizes the total number of events, the time
taken to simulate (real time), and the simulated time of each
scenario. It is worth noting that all scenarios are constructed
differently and hence are difficult to compare. However, some
clear indications can be derived from the following analysis.
Indeed, Figure 23 shows that in Scenario #1 the employment
of Wi-Fi technology slows the number of events processed
per second, which means that the complexity is higher. On
the contrary, the adoption of LTE (either mixed with Wi-Fi)
reduces the overall computational complexity. However, in the
first case (Scenario #1) the speedup is greater with respect to
the second case (remaining scenarios): this is due to the fact
that the number of generated events is way lower. This is
particularly evident in Scenario #3, where the simulation time
and the number of GUs are the same, as shown in Table X.
Overall, even if the number of actors increases when drone
relays are employed (LTE & Wi-Fi), the lower number of
events generated guarantees better performance.

Moreover, in order to further investigate the simulator
performance and derive more insights regarding the required

4 8 16 32 64 128 256 512

GUs [#]

10
1

10
2

10
3

10
4

10
5

T
im

e
 [

s]

(a) Execution time.

4 8 16 32 64 128 256 512
GUs [#]

0

200

400

600

800

1000

1200

M
em

o
ry

 [
M

B
]

(b) Maximum reserved memory.

Fig. 24: Performance evaluation of the simulator with respect
to the number of GUs.

Metric a b c d

Time 117.2 1.197 87.45 3.961
Memory 64.35 -0.05182 85.62 1.717

TABLE XI: Coefficients of Equation 7.

resources to run a computationally complex scenario, the fol-
lowing final evaluation is provided. A square area is partitioned
into four quadrants, each one with a central drone relay.
According to a uniform random distribution, a set of GUs is
generated and symmetrically placed into the four regions with
respect to the BS, which is placed in the center of the area.
The number of considered GUs is then increased in accordance
with the power of 2. Given this scenario, execution time
and the maximum reserved memory are considered reference
metrics and are reported in Figure 24. As it can be deduced,
both exponentially grow with an increasing number of GUs, as
confirmed by the regression performed on the obtained data.
Indeed, it is possible to predict the time and memory required
for a specific simulation as

aebx + cedx, (7)

where x is the number of GUs, and a, b, c, d are the fitted
coefficients provided in Table XI.

VIII. CONCLUSION

The IoD paradigm enables trailblazing applications, as
the flexibility proposed by drones may significantly boost
the effectiveness of existing activities, e.g., first response,
monitoring, delivery, and surveillance. Moreover, drones are
already becoming pervasive in several industrial sectors, such
as smart agriculture, proactive maintenance, civil engineering,
and many more.

As a matter of fact, the large-scale adoption should be
evaluated after a prototyping phase that can be time-consuming
and may require unfeasible costs. To tackle this problem,
simulators are an essential tool to facilitate the testing phase
and state the readiness for real-world exploitation. At the same
time, simulators can be a learning tool for young professionals,
engineering students, and researchers to improve their knowl-
edge and explore scenarios never considered before.

In these regards, IoD-Sim is a thorough and user-welcoming
tool that can be used to evaluate the many facets of IoD sce-
narios, including trajectory design, networking functionalities,

22

mechanical characteristics, and data analytics. Nevertheless,
IoD-Sim has been created as a modular tool that can be up-
dated and upgraded as needed. A Visual Programming Editor
for IoD-Sim has also been developed, relying on compilers’
theory and tools to dynamically update its contents based on
the main simulator platform, ensuring that such project can be
maintained with ease in the long term. Moreover, a predictable
build environment is used to ease the installation due to its
dependencies that require careful setup and knowledge about
the underlying simulator, libraries, and compilers.

Even though IoD-Sim is a reliable solution, in the future
more efforts will be focused on the improvement of the
entire project, especially along the following research and
development lines:

• Extend the support to design scenarios using technologies
such as MAVlink, satellite communications, and 5G-New
Radio.

• Speedup in Splash compilation with the use of parallel
multiprocessing and optimized algorithms.

• Develop interactive visual blocks to preview or design
more accurate simulations in less time.

• Improve the overall User Experience of the visual editor.
• Allow the employment of multi-processing systems and

clusters.
• Directly compare the performance and the features with

other IoD simulation platforms.
Finally, the birth of a thriving and empowering community
on open-source collaboration platforms will be crucial in
assessing the future development efforts of this work.

REFERENCES

[1] M. Gharibi, R. Boutaba, and S. L. Waslander, “Internet of drones,” IEEE
Access, vol. 4, pp. 1148–1162, 2016.

[2] P. Boccadoro, D. Striccoli, and L. A. Grieco, “An extensive survey on
the internet of drones,” Ad Hoc Networks, vol. 122, p. 102600, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1570870521001335

[3] M. A. Hoque, M. Hossain, S. Noor, S. M. R. Islam, and R. Hasan,
“IoTaaS: Drone-Based Internet of Things as a Service Framework for
Smart Cities,” IEEE Internet of Things Journal, vol. 9, no. 14, pp.
12 425–12 439, 2022.

[4] S. Horsmanheimo, L. Tuomimäki, V. Semkin, S. Mehnert, T. Chen,
M. Ojennus, and L. Nykänen, “5G Communication QoS Measurements
for Smart City UAV Services,” in 2022 16th European Conference on
Antennas and Propagation (EuCAP), 2022, pp. 1–5.

[5] S. H. Alsamhi, O. Ma, M. S. Ansari, and S. K. Gupta, “Collaboration of
drone and internet of public safety things in smart cities: An overview
of qos and network performance optimization,” Drones, vol. 3, no. 1,
p. 13, 2019.

[6] N. S. Labib, M. R. Brust, G. Danoy, and P. Bouvry, “The Rise of
Drones in Internet of Things: A Survey on the Evolution, Prospects
and Challenges of Unmanned Aerial Vehicles,” IEEE Access, vol. 9, pp.
115 466–115 487, 2021.

[7] ——, “The rise of drones in internet of things: A survey on the evolution,
prospects and challenges of unmanned aerial vehicles,” IEEE Access,
vol. 9, pp. 115 466–115 487, 2021.

[8] S. H. Alsamhi, O. Ma, M. S. Ansari, and F. A. Almalki, “Survey on
collaborative smart drones and internet of things for improving smartness
of smart cities,” IEEE Access, vol. 7, pp. 128 125–128 152, 2019.

[9] S. H. Alsamhi, F. A. Almalki, H. Al-Dois, S. Ben Othman, J. Hassan,
A. Hawbani, R. Sahal, B. Lee, and H. Saleh, “Machine learning for smart
environments in B5G networks: connectivity and QoS,” Computational
Intelligence and Neuroscience, vol. 2021, 2021.

[10] S. Liao, J. Wu, J. Li, A. K. Bashir, and W. Yang, “Securing collabo-
rative environment monitoring in smart cities using blockchain enabled
software-defined internet of drones,” IEEE Internet of Things Magazine,
vol. 4, no. 1, pp. 12–18, 2021.

[11] Y. Zeng, I. Guvenc, R. Zhang, G. Geraci, and D. W. Matolak, UAV
Communications for 5G and Beyond. John Wiley & Sons, 2020.

[12] S. Baidya, Z. Shaikh, and M. Levorato, “Flynetsim: An open source
synchronized uav network simulator based on ns-3 and ardupilot,”
in Proceedings of the 21st ACM International Conference on Modeling,
Analysis and Simulation of Wireless and Mobile Systems, ser. MSWIM
’18. New York, NY, USA: Association for Computing Machinery, 2018,
p. 37–45. [Online]. Available: https://doi.org/10.1145/3242102.3242118

[13] N. R. Zema, A. Trotta, G. Sanahuja, E. Natalizio, M. Di Felice, and
L. Bononi, “Cuscus: An integrated simulation architecture for distributed
networked control systems,” in 2017 14th IEEE Annual Consumer
Communications Networking Conference (CCNC), 2017, pp. 287–292.

[14] E. A. Marconato, M. Rodrigues, R. d. M. Pires, D. F. Pigatto, A. R.
Pinto, K. R. Branco et al., “Avens-a novel flying ad hoc network
simulator with automatic code generation for unmanned aircraft system,”
in Proceedings of the 50th Hawaii international conference on system
sciences, 2017.

[15] J. A. Millan-Romera, J. J. Acevedo, A. R. Castaño, H. Perez-Leon,
C. Capitán, and A. Ollero, “A utm simulator based on ros and gazebo,” in
2019 Workshop on Research, Education and Development of Unmanned
Aerial Systems (RED UAS), 2019, pp. 132–141.

[16] M. Tropea, P. Fazio, F. De Rango, and N. Cordeschi, “A new
fanet simulator for managing drone networks and providing dynamic
connectivity,” Electronics, vol. 9, no. 4, 2020. [Online]. Available:
https://www.mdpi.com/2079-9292/9/4/543

[17] S. Acharya, B. Amrutur, M. Bharatheesha, and Y. Simmhan, “Cornet
2.0: A co-simulation middleware forrobot networks,” 2021.

[18] S. Park, W. G. La, W. Lee, and H. Kim, “Devising a distributed co-
simulator for a multi-uav network,” Sensors, vol. 20, no. 21, p. 6196,
2020.

[19] G. Grieco, R. Artuso, P. Boccadoro, G. Piro, and L. Grieco, “An open
source and system-level simulator for the internet of drones,” in Proc.
of IEEE International Workshop on Internet of Mobile Things (IoMT),
in conjunction with PIMRC 2019, Istanbul, Turkey, Sep. 2019.

[20] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng et al., “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

[21] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), vol. 3, 2004, pp. 2149–2154 vol.3.

[22] G. F. Riley and T. R. Henderson, The ns-3 Network Simulator. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 15–34. [Online].
Available: https://doi.org/10.1007/978-3-642-12331-3 2

[23] A. Varga, OMNeT++. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 35–59. [Online]. Available: https:
//doi.org/10.1007/978-3-642-12331-3 3

[24] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken,
M. Booth, F. Rossi, and R. Ulerich, GNU scientific library. Network
Theory Limited, 2002.

[25] M. Yip, “Rapidjson—a fast json parser/generator for c++
with both sax/dom style api,” THL A29.[Online]. Available:
https://github.com/miloyip/rapidjson, 2015.

[26] C. Shepherd, “Theoretical design of primary and secondary cells. part 3.
battery discharge equation,” NAVAL RESEARCH LAB WASHINGTON
DC, Tech. Rep., 1963.

[27] O. Tremblay, L.-A. Dessaint, and A.-I. Dekkiche, “A generic battery
model for the dynamic simulation of hybrid electric vehicles,” in 2007
IEEE Vehicle Power and Propulsion Conference. Ieee, 2007, pp. 284–
289.

[28] Sun, Y. and Xu, D. and Ng, D. W. K. and Dai, L. and Schober, R.,
“Optimal 3d-trajectory design and resource allocation for solar-powered
uav communication systems,” IEEE Transactions on Communications,
vol. 67(6), pp. 4281–4298, 2019.

[29] I. Culjak, D. Abram, T. Pribanic, H. Dzapo, and M. Cifrek, “A brief
introduction to opencv,” in 2012 Proceedings of the 35th International
Convention MIPRO, 2012, pp. 1725–1730.

[30] S. Senthil Kumaran, Practical LXC and LXD: linux containers for
virtualization and orchestration. Springer, 2017.

https://www.sciencedirect.com/science/article/pii/S1570870521001335
https://www.sciencedirect.com/science/article/pii/S1570870521001335
https://doi.org/10.1145/3242102.3242118
https://www.mdpi.com/2079-9292/9/4/543
https://doi.org/10.1007/978-3-642-12331-3_2
https://doi.org/10.1007/978-3-642-12331-3_3
https://doi.org/10.1007/978-3-642-12331-3_3

23

Giovanni Grieco received the Dr. Eng. degree (with
honors) in Telecommunications Engineering from
Politecnico di Bari, Bari, Italy in October 2021.
His research interests include Internet of Drones,
Cybersecurity, and Future Networking Architectures.
He is the principal maintainer of IoD Sim. Since
2021, he has been a Ph.D. student at the Depart-
ment of Electrical and Information Engineering at
Politecnico di Bari.

Giovanni Iacovelli received the Dr. Eng. degree
(with honors) in information engineering from Po-
litecnico di Bari, Bari, Italy, in July 2019. His
research interests include Internet of Drones, Ma-
chine Learning, Optimization and Telecommunica-
tions. Since November 2019 he is a Ph.D. Student
at the Department of Electrical and Information
Engineering, Politecnico di Bari.

Pietro Boccadoro received the Dr. Eng. degree (with
honors) in electronic engineering from Politecnico
di Bari, Bari, Italy, in July 2015. From Nov. 2015
to Oct. 2020, he collaborated as a researcher at
Politecnico di Bari. In 2021, he finished his Ph.D.
Course. He is cureently R&D Software engineer at
Nextome srl. His research interests include Internet
of Drones, Robotic-aided IoT and Future Internet
Architectures.

L. Alfredo Grieco is a full professor in telecom-
munications at Politecnico di Bari. His research
interests include Internet of Things, Future Internet
Architectures, and Nano-communications. He serves
as Founder Editor in Chief of the Internet Technol-
ogy Letters journal (Wiley) and as Associate Editor
of the IEEE Transactions on Vehicular Technology
journal (for which he has been awarded as top editor
in 2012, 2017, and 2020).

	Introduction
	Related Works
	Architectural Overview
	Underlying Platform
	Core of IoD-Sim
	World Definition
	Buildings
	Regions of Interest

	Drones
	Peripherals
	Mechanics and Energy Consumption

	Other Simulation Entities: ZSPs and Remotes
	Mobility
	Constant Acceleration Drone Mobility Model
	Parametric Speed Drone Mobility Model

	Applications
	Telemetry Applications
	Generic Traffic Applications
	Relaying Application

	Scenario Configuration Interface
	Scenario Configuration Objects and Helpers
	Scenario Simulation Helpers
	General Purpose Scenario
	JSON Configuration Schema

	Simulation Development Platform
	Report Module
	Results Aggregator
	Airflow
	Splash
	Graphical User Interface

	Simulation Campaign
	Scenario Design
	Scenario #1 - Telemetry
	Scenario #2 - Multimedia Signals Acquisition
	Scenario #3 - Smart Cities
	Performance Evaluations

	Conclusion
	References
	Biographies
	Giovanni Grieco
	Giovanni Iacovelli
	Pietro Boccadoro
	L. Alfredo Grieco

