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Chapter 1

Boosting Machine Learning Mechanisms in
Wireless Mesh Networks Through Quantum

Computing
Francesco Vista 1,2, Vittoria Musa 1,2,

Giuseppe Piro 1,2, Luigi Alfredo Grieco 1,2, and
Gennaro Boggia 1,2

1.1 Introduction

Nowadays, the ever-increasing demand of data rate and node density, along with low
latency and reliability features, makes the introduction of Wireless Mesh Networks
(WMNs) a key solution for future wireless communication networks [1, 2]. WMNs,
in fact, are self-organised and self-configured networks, where every node is able to
autonomously establish and manage its connection to the network in real-time. In
detail, a WMN consists of two different types of nodes, named Mesh Routers (MRs)
and Mesh Clients (MCs). MRs, as in traditional wireless communication systems,
are usually equipped with multiple interfaces to integrate the WMN with internet and
various existing wireless networks (e.g., wireless sensor networks, wireless-fidelity
(Wi-Fi), and mobile networks). MCs, instead, correspond to typical wireless devices
which, differently from MRs, can be mobile and cannot be used as gateways (e.g.,
laptops, mobile phones, and tablets) [3]. Based on node functionalities, WMNs
can be deployed by following three different network architectures. In backbone
WMNs, only MRs build the mesh network by creating an infrastructure for clients
and providing access to the backbone by leveraging existing wireless interfaces. In
client WMNs, instead, also end-users act as relay nodes forwarding incoming pack-
ets through the network. To reduce the overall network cost and complexity of the
previous architectures, the hybrid WMN considers that each MC can directly com-
municate with neighbouring MCs or access the mesh network exploiting MRs.

Despite the manifold advantages introduced by the adoption of WMNs in terms
of reliability, network installation costs, long-range communications, and large-
coverage connectivity, several critical factors negatively affect WMN performance,
including network capacity and management issues, scalability, and mobility [3, 4].
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Some of these drawbacks can be partially solved through the introduction of novel
enabling technologies already investigated by the scientific community. For instance,
the network flexibility and capacity can be strongly enhanced by the introduction
of single-user or multi-user Multiple-Input/Multiple-Output (MIMO) systems [5,6].
Moreover, several works exploit unique capabilities of Software-Defined Network-
ing (SDN) paradigm, such as global visibility, real-time programming, and agility,
to guarantee optimal network management and further improve the system perfor-
mance [7, 8]. The Quality of Service (QoS) of the communication system can be
also enhanced by the adoption of Intelligent Reflective Surfaces (IRSs) which im-
prove the Signal to Noise Ratio (SNR) both in Line of Sight (LoS) or Non-Line of
Sight (NLoS) scenarios by exploiting the environment as a controllable signal re-
flector [9]. A further improvement in terms of capacity and QoS, while guaranteeing
secure and fault-tolerant communications, is provided by the application of Machine
Learning (ML) algorithms to solve design and management tasks in WMNs [10].
In the last years, in fact, the scientific community is promoting the adoption of ML
techniques to strongly enhance the network adaptability according to real-time con-
ditions also in highly variable scenarios. However, given the continuous growth of
involved devices and, in turn, the amount of data to be exchanged and processed in
future WMN applications (e.g., wearable devices [11], Vehicular Ad Hoc Networks
(VANET) [12], and smart cities [13]), the computational time required by traditional
computers to solve ML algorithms is expected to proportionally increase, demanding
much efforts for training and inference procedures [14].

Under these premises, the innovation progress triggered by the emerging of
Quantum Computing (QC) can be considered as a turning point to counteract this
issue. Indeed, QC investigates quantum mechanics principles to develop new types
of algorithms able to solve complex problems faster than classical approaches. Ac-
cordingly, the adoption of QC may speed up ML techniques, making them suitable
also for extreme scenarios (i.e., computationally heavy and real-time applications).
The scientific community already proposed the usage of QC-aided ML (i.e., Quan-
tum Machine Learning (QML)) for several challenging applications, such as 6G net-
works [14], chemistry, and physics [15]. However, at the time of this writing and to
the best of authors’ knowledge, the application of QML algorithms for WMNs re-
mains an unexplored research topic. To bridge this gap, this work provides a twofold
contribution. First, it defines design strategies and new logical entities useful to
exploit the potential of QC for WMN intelligence. Specifically, it proposes a cen-
tralised and a distributed network architectures according to the quantum computers
location. The centralised architecture is supposed to perform QML tasks by exploit-
ing quantum computers already deployed by Tech Giants in their cloud. Traditional
computers, instead, are supposed to be spread at the edge of the network to solve
simpler ML problems. In this case, a new node is added to the network in order
to efficiently allocate computing resources (i.e., traditional and quantum computers)
based on the task complexity and the status of computing resources. The distributed
architecture, instead, is expected to be feasible only in very far future where quan-
tum computers, equipped with a lower number of quantum bit (qubit), will placed
at the edge of the network and communicate by exploiting the quantum Internet. In
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this case, a creation of a quantum network allows to distribute computing resources
more efficiently and also to solve more complex ML problems. Anyway, this ap-
proach requires the introduction of new nodes which setup the quantum network by
distributing entangled particles between involved quantum computers. Second, this
work presents pros and cons of the proposed WMN architectures, pointing out the
main issues to be solved and paving the way for future research activities in this
promising topic.

The rest of this book chapter is organised as follows. Section 1.2 presents the
role of ML for WMNs, highlighting the usage of well-known algorithms to solve typ-
ical issues in this context and discussing their main limitations. Section 1.3 describes
QC principles and introduces QML algorithms as a possible solution to overcome
ML limits. Section 1.4 proposes two network architectures to integrate quantum
computers in WMNs and, finally, Section 1.5 draws the conclusions of this work and
faces possible future research directions.

1.2 The Role of Machine Learning in WMNs

ML algorithms are a subset of Artificial Intelligence (AI) techniques aiming at im-
proving the performance of a system starting from data and information collected
during previous tasks. Unlike optimisation schemes, they are strongly adaptable to
environmental conditions, resulting particularly suitable for time-variable use cases,
such as WMN-based applications. Typically, ML techniques are classified as super-
vised, unsupervised, reinforcement, and deep learning. Given the features of these
algorithms, they can be used in WMNs to solve different design and management
tasks [16]. Fig. 1.1 summarises the main ML algorithms exploited in WMN scenar-
ios.

1.2.1 Supervised Learning
Supervised learning employs a training dataset, composed of input-output pairs, to
develop a model that learns over time and computes the corrected output correspond-
ing to new input data. To this end, supervised learning algorithms aim at minimis-
ing a loss function in an iterative manner by modifying the hyperparameters of the
model. In this context, the most commonly used algorithms for WMNs are Decision
Tree (DT), Support Vector Machines (SVMs), and K-Nearest Neighbors (KNN),
typically performing classification or regression tasks.

Specifically, DT algorithms exploit a tree-like structure to solve both classifi-
cation and regression problems. The attributes of the input data are compared with
features labelling internal nodes of the tree. Starting from the root node and perform-
ing these comparisons, the algorithm traverses the tree until it reaches the leaf nodes
which represent the class or the relationship between dependent and independent
variables. SVM, instead, is a ML technique commonly used for classification tasks.
In this case, the algorithm constructs hyperplanes aiming at maximising the width of
the gap between points belonging to different classes in order to increase the classi-
fication precision of successive input data. SVM and DT algorithms are employed
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Figure 1.1 Summary of ML techniques and corresponding role in WMNs.

in WMNs to build efficient cross-layer-based [17] and network-layer-based [18] in-
trusion detection systems. In this case, the model is trained starting from packet
delivery ratio, packet arrival interval, and end-to-end delay statistics in order to eas-
ily detect anomalous behaviour and remove malicious nodes. These algorithms are
also integrated with a threshold that avoids false decisions. An easier algorithm
used to perform both classification and regression tasks is the KNN. Here, the input
data is classified by considering a similarity concept (i.e., every data point falling
near others belongs to the same class). Considering an Internet of Things (IoT)
network supported by a software-defined WMN, the presented supervised learning
approaches (i.e., DT, SVM, and KNN) are used for optimising the management of
the network and perform time granular analysis of the network traffic. The compar-
ison among these learning strategies demonstrated that the KNN algorithm provide
the best performance in terms of accuracy [7].

1.2.2 Unsupervised Learning
Unsupervised learning algorithms are used to find unknown patterns from a training
dataset containing unlabelled data. In particular, this kind of algorithm analyses
the internal structure of the training dataset, thus discovering patterns between data
without any external information. The main unsupervised algorithms used in WMNs
are K-means and Principal Component Analysis (PCA).
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K-means is a clustering algorithm that groups the input unlabelled data in k clus-
ters with an iterative procedure. Specifically, at each iteration, the n observations are
grouped in order to minimise the variance intra-cluster and maximise the distance
inter-cluster. Here, the distance, usually measured through a Euclidean metric, is
computed considering the cluster centres, named centroids. The iterative procedure
ends when the algorithm converges. In WMNs, K-means can be used for the load
balancing of the network [19] or the channel allocation [10]. In detail, load balancing
is performed in order to optimise the resource allocation, increase the overall load of
the network, and reduce the congestion at the gateways [19]. Moreover, the K-means
clustering can be used to group the MRs efficiently, choosing the cluster head accord-
ing to the computed centroid [10]. The PCA algorithms, instead, aim at reducing the
data dimensionality by describing each data point only with several uncorrelated
principal components, while maintaining the highest training-data variance in the
first component. Given that the PCA algorithm allows handling high-dimensionality
application scenarios, it is particularly suitable for real-time fault detection in high-
interference environments, such as WMNs [20].

1.2.3 Reinforcement Learning
The training of Reinforcement Learning (RL) models is an iterative process aim-
ing at choosing the optimal decisions among a set of available actions to maximise
cumulative feedback received from the environment, named cumulative reward.

The most known RL algorithm is the Q-learning. Its main feature is the ca-
pability to train a model without the knowledge of the environment. Q-learning
algorithms, in fact, are based on a Q-value that is updated at each iteration: the opti-
mal action corresponds to the largest cumulative Q-value. In WMNs, RL strategies
can be exploited for routing purposes in order to decide the optimal route, among
many possible paths, to take from source to destination node. RL fits very well with
this kind of problem: the next MR could be chosen, at each iteration, from a set
of possible actions in that state. Moreover, Q-learning can be used to avoid critical
problems, such as the congestion at the gateway, by dynamically learning an opti-
mal routing scheme that considers several metrics (e.g., loss-ratio, interference, and
load at the gateways) [21]. Since classical routing protocols may suffer from exces-
sive energy consumption and do not consider past experience, Q-learning can also
optimally enhance the energy balance of the network [22].

1.2.4 Deep Learning
Deep Learning (DL) is a sub-field of ML which involves multiple layers for the
processing of input raw data in order to progressively extract higher-level features. It
commonly uses an artificial neural network composed of many perceptrons organised
in multiple dense hidden layers. To properly train a model, it also needs an initial step
useful to tune the hyperparameters starting from a huge amount of data. Specifically,
DL algorithms train the model by minimising the loss function over the training
dataset and extracting the weights of the final model. The main DL architectures
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used for WMNs are Deep Convolutional Neural Network (DCNN) and Deep Belief
Network (DBN).

DCNN is an example of DL architectures, mostly used in computer vision. In
this case, the classification task is performed by filtering the input data using convo-
lution layers in order to extract low-level information. Then, the size of the extracted
features is reduced by pooling layers, thus obtaining the output of the fully con-
nected layer (i.e., a vector which contains the result of the classification process). In
WMNs, gateways receive traffic information from both MRs and MCs, leading to
a higher probability that several nodes become congested. To overcome this issue,
DCNN can be used to periodically train a model in order to make optimal routing
decisions based on past events [23]. On the other hand, DBN is a class of deep neural
network defined as a stack of Restricted Boltzmann Machines (RBMs), which is a
two-layer undirected graphical model. Each RBM layer is connected with both the
previous and next layers and the nodes alongside any layer are not connected with
each other. Since RBMs training process is unsupervised, a DBN ending with a Soft-
max layer can be used both for classification and clustering of unlabelled data. This
makes the DBNs algorithms particularly suitable in WMNs to improve the network
management operations in terms of network traffic prediction [24].

1.2.5 Deep Reinforcement Learning
Deep Reinforcement Learning (DRL) combines two sub-fields of ML: RL and DL.
To efficiently use RL, in fact, agents must infer a good representation of the en-
vironment, thus choosing the action which maximises the reward by following a
trial and error strategy. However, if the state spaces or action spaces are too large,
this decision can be a complex task that requires more computational time. In this
context, DL can help agents to make decisions by learning policies directly from
high-dimensional and unstructured input data [25]. The most promising example of
DRL for WMNs is the Deep Q-Learning Network (DQN).

DQN combines deep neural networks and Q-learning in order to estimate and
maximise the Q-values by considering both states and rewards. It can be employed in
WMNs to control the data flow and enhance the throughput. In fact, classical control
flow methods suffer from the continuous growth of the number of mesh nodes and
the complexity of data applications which make these kinds of scenarios strongly
dynamic. DQN, instead, intrinsically has the capability to manage and optimise
complex traffic communication flows [26]. DRL algorithms can also be used for
optimally planning the network in real-time, thus optimally deploying gateways in
the WMN and choosing the network topology [27]. Moreover, DRL can manage the
channel access in dynamic spectrum scenarios, where multiple discrete channels are
shared by different types of nodes without any a priori knowledge [28].

1.2.6 Open issues in the Application of ML for WMNs
The network management improvement reached with the introduction of aforemen-
tioned ML techniques in WMNs is motivating the scientific community to implement
these intelligence strategies in real-time applications. However, features of WMNs
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make them particularly suitable for the management of high dynamic scenarios. In
this context, the training dataset must be continuously updated in order to accurately
describe the behaviour of considered networks, thus requiring a periodical re-trained
of ML models [7]. Moreover, the number and heterogeneity of devices involved
in future networks are expected to grow exponentially, thus increasing the number
and dimensionality of data to be managed. At the same time, the training time of
traditional ML methods strongly depends on the data-space dimension [14]. Ac-
cordingly, the benefits obtained by the application of ML algorithms in WMNs may
be invalidated by delays related to real-time training procedures, thus requiring the
introduction of novel intelligence strategies.

1.3 Quantum Computing: Background and Quantum Machine
Learning

QC, a subfield of Quantum Information Science, is a well-known paradigm that is
gaining momentum in the last years for its particular features. In fact, it harnesses
quantum mechanics principles, completely transforming traditional computing ap-
proaches and providing performance enhancements in terms of tasks execution time,
accuracy, and computational complexity [29]. For instance, superposition and entan-
glement principles can be exploited to perform complex tasks that in classic realm
would be very challenging. Accordingly, QC emerges as a promising solution to
overcome the aforementioned issues for the application of ML in WMNs.

1.3.1 Superposition Principle
The quantum computation is based on the concept of qubit. A qubit is a mathematical
representation of a discrete two-level quantum system, where the two computational
basis states are commonly denoted as |0〉 and |1〉. Physically, for instance, a qubit can
be described as the polarisation of a photon, where the two orthogonal basis states are
the horizontal and the vertical polarisation of the photon. Differently from classical
computers, where bits can assume exactly one binary value at any time (i.e., either
0 or 1), in quantum computers qubits can be in a superposition of two simultaneous
values until it is observed. According to the superposition principle, hence, n qubits
can encode all the 2n possible states at once. As a consequence, the power of QC,
as well as the information intrinsically kept, grows exponentially with the number of
involved qubits [30].

1.3.2 Quantum measurement
In quantum mechanics, it is not possible to establish the state of a qubit by directly
observing the quantum state. However, it is allowed to observe the results of the
measurements. According to the quantum measurement postulate, after the mea-
surement of the original quantum state, a qubit collapses in either the zero state or
the one state (or in one state of the basis states in case of multi-qubit systems). The
result of the quantum measurement depends on the amplitude probability associated
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with each state and any further measurement will give the same result. This deeply
impacts the design of the quantum network: a quantum state cannot be transmitted
by simply measuring the qubit and sending the result [30].

1.3.3 No-cloning theorem
The no-cloning theorem states that it is not allowed to make a copy of an unknown
quantum state. This is a fundamental concept of the Quantum Key Distribution
(QKD), since if an eavesdropper tries to read the state of a photon, which travels
along the path from a sender to a receiver, it will destroy the state of the photon. Fur-
thermore, since it is not possible to store redundant copies of the qubit, new strategies
are needed to send a qubit among remote quantum devices, such as quantum entan-
glement and teleportation [30].

1.3.4 Entanglement
Entanglement is a quantum phenomenon with no equivalent example in the classic
world, where two (or more) distant particles share a quantum state. In this case, a
measurement performed on one particle affects the outcome of the entangled one.
The maximally entangled quantum states are the well-known Bell states [30]:

|Φ±〉= 1√
2
(|00〉± |11〉)

|Ψ±〉= 1√
2
(|01〉± |10〉)

The entanglement is a key resource to enable teleportation in quantum net-
works. Accordingly, two remote quantum computers which want to communicate
must share entangled particles. In this context, three different methods can be em-
ployed to generate and distribute entanglements [31].

The first method, known as Spontaneus Parametric Down-Conversion (SPDC),
generates a pair of entangled photons using their polarisation. A non-linear crystal is
hit by a laser beam generating two photons with vertical and horizontal polarisation.
These photons, called flying qubit, reach the interested nodes through a quantum
channel. Then, at each side, flying qubits are transferred to a computation qubit by
using a transducer device to execute quantum operations.

The second method uses optical fiber to connect optical cavities to each side.
In particular, entanglement is generated at the sender by exciting the atom with a
laser beam, which causes the emission of a photon entangled with the atom. This
photon reaches the other node passing through the optical fiber and it is absorbed
by the optical cavity. At this point, the atom-photon entanglement is mapped to an
atom-atom entanglement.

The latter method also uses optical cavities, but it generates the entanglement
at both remote quantum computers by exciting both the atom at the same time. The
emitted photons reach a particular device, which is in charge of performing a Bell
state measurement in order to map the atom-photon entanglement on both sides into
an atom-atom entanglement between the remote quantum computers.
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Figure 1.2 Quantum teleportation circuit.

1.3.5 Teleportation
Quantum teleportation allows sending qubits without the transmission of the physical
particle that stores the quantum state. In fact, although a qubit can be encoded by the
photon polarisation, if it is lost due to attenuation or altered by the environment while
it is transferred to a remote quantum computer, the original quantum state cannot be
recovered. Hence, quantum teleportation is a workaround procedure for transferring
quantum information leveraging classical communication media.

At the basis of quantum teleportation, it is assumed that a specific node in a
quantum network can generate and distribute entanglement between the source and
destination node. Given the quantum measurement postulate and the no-cloning
theorem, the source node has to send the quantum state |ϕ〉 to a destination node
without any a priori knowledge about its state. To this end, the source node must
perform some operations, depicted in Fig. 1.2, between the qubit to be sent and its
owned part of the entangled particle, i.e., |Φ+〉. In particular, the sender performs
a Bell state measurement which consists of a Controlled NOT (CNOT) operation
followed by a Hadamard operation and two measurements. The CNOT operation
acts on two qubits and performs a bit-flip (i.e., a NOT operation) on the target qubit
when the control qubit is |1〉. Otherwise, the target qubit remains unchanged. The
Hadamard operation is applied on the first qubit and creates a superposition of the
two basis states. Both the CNOT and Hadamard operations are used to rotate the
Bell basis into the computational basis of the two qubits. Finally, the outcomes of
the measurement on the two qubits, i.e., b1 and b2, are sent to the destination node
through a classical channel.

At this point, based on the measurement outcomes, the receiver can recover
the original quantum state from its entangled particle by either applying X or Z
operations, both or none. The X and Z operations correspond to a bit-flip or phase-
flip on the qubit, respectively.

It should be noted that the teleportation of a quantum state does not violate the
relativity principle, since it requires classical communication. Furthermore, quan-
tum teleportation guarantees a safe state transferring, since even though an attacker
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can intercept the classical bits, it does not have the destination’s entangled particle
and thus it cannot recover the original state. It also does not violate the no-cloning
theorem, because the Bell state measurement destroys the original qubit as well as
the entangled particle held by the sender. Clearly, to perform another qubit telepor-
tation, it is necessary to generate a new entanglement and distribute it between the
two communicating nodes.

1.3.6 Quantum Machine Learning
The combination of QC and ML is emerging as a new powerful technique to improve
learning algorithms [15]. Specifically, depending on whether the input data and the
information processing system are quantum or classical, there are four different ap-
proaches to merge QC and ML [32, 33]:

• Classical-classical approach. It implements quantum-inspired classical algo-
rithms on classical computers. Here, classical data are processed by classical
computers, by employing traditional ML algorithms based on quantum princi-
ples theory.

• Quantum-classical approach. It consists in employing ML techniques in a QC
system. In particular, ML can help quantum computers to learn from data. For
instance, ML can be used to analyse measurement data, thus reducing the num-
ber of measurements of a quantum state.

• Classical-quantum approach. It is commonly known as QML. This approach
aims at translating classical ML algorithms into a quantum-compliant language
to take advantage of quantum mechanics by running it on quantum comput-
ers. The adoption of this approach requires a pre-processing step to convert the
classical input data into suitable data for quantum computers. Nowadays, the re-
search community proposes several encoding methods, such as basis encoding
and amplitude encoding [32, 34].

• Quantum-quantum approach. It aims to develop quantum algorithms to manip-
ulate quantum data. In this approach, it is not required to encode data, as the
input is directly the quantum state of the system.

In particular, this work considers the third approach, as in the real world scenario
most of the input data are classical. Moreover, since quantum-inspired algorithms
are executed on classical computers, the achievable speed-up is not comparable with
running it on quantum computers [15].

Nevertheless, QC and, in turn, the application of QML have to face some hard-
ware problems. Quantum states, in fact, are very fragile (i.e., decoherence principle)
and suffer from every gate operation, thus inevitably altering computation tasks and
limiting quantum computers capabilities. To avoid these problems, the scientific lit-
erature proposes two main strategies: first, quantum circuits must be embedded in
a specialised large infrastructure with cooling systems able to maintain a near ab-
solute zero temperature [35]; second, the state of qubits must be preserved through
the introduction of quantum error correction schemes which spread the information
originally belonging to one logical qubit into several physical qubits [29].
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However, due to the continuous growth of the number of devices involved in
the WMN and, consequently, the amount of exchanged information, QML can help
to speed up algorithms used in WMN. In fact, it can improve the computational
time, thus getting results faster and also in real-time, as well as increasing the learn-
ing capacity and efficiency by discovering more intricate patterns from the input
data [36, 37]. In detail, preliminary studies on the performance comparison between
QML and ML algorithms demonstrated that the QML is convenient in the case of
high-dimensionality input data [38]. Hence, future wireless networks must take into
account the possibility to jointly use traditional ML and QML capabilities by sup-
porting the integration of quantum computers.

1.4 Introduction of QML in WMNs: Design principles and
Research Challenges

The application of QML methodologies in WMNs can be achieved only with the
definition of novel network architectures. In fact, the integration of quantum and tra-
ditional computers performing QML and ML algorithms, respectively, requires the
introduction of new logical entities embedded with new functionalities. To this end,
this Section presents design principles for the realisation of two innovative network
architectures, denoted by centralised and distributed approaches, able to combine the
benefits provided by traditional and quantum computers deployed either in the cloud
or at the edge of the network.

1.4.1 Centralised Architecture
The integration of QML functionalities in future WMNs first requires the introduc-
tion of quantum computers in their architectures. Nowadays, some Tech Giants, such
as IBM, Google, and Microsoft, have already developed quantum computers with up
to a hundred qubits, also envisioning strong improvements in this direction for the
next years [35]. Accordingly, a first suitable approach for integrating quantum com-
puters in WMNs is the centralised architecture depicted in Fig. 1.3, where quantum
computers deployed by Tech Giants in their cloud are supposed to perform QML
algorithms.

The proposed architecture is composed of the access network, the wireless mesh
backbone, and the remote cloud:

• The access network includes all the application scenarios sustained by the WMN
(e.g., mobile networks, wireless sensor networks, and vehicular networks) and
the related network attachment points which provide the connection to the mesh
network (e.g., Base Station (BS) and sink node).

• The wireless mesh backbone hosts MRs (with or without gateway capabilities),
a Data Aggregator node which stores and transmits dataset for intelligence op-
erations, and traditional computers solving simple and low-dimensionality ML
problems. Given the heterogeneity and complexity of the wireless mesh back-
bone, the traffic flow is managed by an SDN controller, thus avoiding network
congestion issues.
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Figure 1.3 QC-aided network intelligence: centralised deployment.

• The remote cloud provides orchestration and high-dimensionality computa-
tional capabilities to the overall network. In detail, the Intelligence Orchestrator
performs the allocation of computing resources among ML and QML tasks ac-
cording to their data-dimensionality, while the Network Function Virtualization
Orchestrator (NFVO) provides service management functionalities. It is worth-
while to note that quantum computers are equipped with a Quantum Interface
(QI) useful for data pre-processing.

1.4.1.1 The Information Exchange in the Centralised Architecture
As illustrated in Fig. 1.4, the information exchange in the centralised architecture
can be summarised as in what follows.

• Phase 1: Dataset Creation. Each node belonging to the network generates in-
formation data to be processed by traditional or quantum computers for the pur-
poses listed in Section 1.2. The collected data strongly depends on the consid-
ered node. While end-users (e.g., mobile phones, sensors, and vehicles) acquire
data from the surrounding environment, such as channel quality indicators and
performance levels of high-level applications, network equipment (e.g., MRs,
BSs, sink nodes, SDN controllers, and NFVO) provide information related to
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Figure 1.4 Message sequence chart of the centralised architecture.

the network functionalities, such as bandwidth and energy consumption. All the
collected data are transmitted to Data Aggregators by means of REST or REST-
ful communication protocols in order to increase the performance, scalability,
simplicity, and reliability of the network. Then, Data Aggregators pre-process
incoming data and compare them with existing network information in order to
create and/or update datasets useful for intelligence operations.

• Phase 2: Tasks Assignment. The Intelligence Orchestrator must assign the gen-
erated datasets to computing resources (e.g., traditional or quantum computers).
To this end, given the huge amount of data to be exchanged, the Data Aggrega-
tors periodically create and transmit to the Intelligence Orchestrator a data de-
scriptor message containing high-level information about the available datasets,
such as data format, data size, and statistical variability with respect to previous
updates. Starting from this information and considering the status of computing
resources, the Intelligence Orchestrator performs the task allocation and sends a
task assignment message to the Data Aggregators in order to efficiently transmit
the datasets to designed traditional or quantum computers.
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• Phase 3: Intelligence Operations. Quantum computers in the cloud offer a
suitable environment where implementing QML techniques. However, classi-
cal data cannot be directly used as input of quantum computers. Accordingly,
when QML capabilities are required, a Quantum Interface (QI) logical entity is
first used for converting classical data into quantum data, and vice-versa. With-
out loss of generality, this work considers that these logical entities are directly
equipped in the quantum computer. After the data pre-processing, ML and QML
operations are performed by traditional and quantum computers, respectively,
thus obtaining the corresponding outcomes (e.g., the hyperparameters of the
model in case of learning procedures; classification, prediction, or specific ac-
tions in other cases). These results are, finally, transmitted to different network
equipment for specific purposes, ranging from service management to network
optimisation. For instance, the NFVO can exploit these outcomes for optimally
managing upper layer services and allocating virtual resources among active
applications. SDN controllers, instead, dynamically configure network func-
tionalities (e.g., flow forwarding and load balancing) and solve complex routing
problems based on users’ mobility and traffic dynamics. Finally, edge nodes
and BSs use ML and QML outcomes to update ML models or perform resource
scheduling and allocation.

1.4.1.2 Benefits and Research Challenges
The implementation of the proposed centralised architecture in WMNs presents both
advantages and disadvantages, thus providing several research directions to the sci-
entific community. On the one hand, at the time of this writing, the number of avail-
able quantum computers and qubits is strongly limited by physical and economical
constraints, making the centralised approach the first feasible solution to integrate
QML in WMNs. Moreover, the centralised architecture presents only one point of
failure (i.e., the central nodes in the cloud). As a consequence, it is the easiest ar-
chitecture to maintain and control. The simplicity of this approach, in fact, allows to
efficiently control the computing resources by directly managing the few quantum
computers placed in the cloud. On the other hand, the centralised approach is very
unstable, since any issue affecting the central nodes in the cloud inevitably causes im-
pairment throughout the network. Furthermore, when QML operations are required,
the network must sustain the transmission of a huge amount of data from the Data
Aggregator to the remote cloud, thus producing very high bandwidth and energy
consumption, along with possible congestion episodes. In addition, the centralised
approach presents high communication latency, significantly impairing the benefits
provided by the introduction of quantum computers. These open issues introduced
several possible research challenges. The transmission of data from Data Aggrega-
tors and QIs, in fact, requires the introduction of optimised and energy-aware routing
strategies. At the same time, the network scalability can be improved through the
optimisation of the number and the position of Data Aggregators based on services
details and users’ statistics. These problems can be solved by the introduction of the
same QC in WMNs. In fact, QML can be used for complex optimisation tasks, like
routing problems (i.e., select the optimal path of data-packets) or location strategies.
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Figure 1.5 QC-aided network intelligence: distributed deployment.

1.4.2 Distributed Architecture
Despite the current limited number of quantum computers and qubits, the growing
interest of the scientific community in QC supports the idea of developing also a
distributed architecture in a very far future. The decentralisation of QC capabilities
entails a higher number of quantum computers, geographically distributed at the
edge of the network and equipped with few qubits to mitigate the deployment cost.
However, to scale up the number of qubits, it is possible to consider a network of
quantum nodes that communicate through the quantum Internet paradigm in order to
solve also complex QML tasks [39].

The proposed distributed architecture is illustrated in Fig. 1.5. It requires the
introduction of novel logical and physical nodes, along with those presented for the
centralised architecture, in order to efficiently sustain the deployment of distributed
quantum computers:

• The wireless mesh backbone contains two new nodes, named Entanglement
Generator and Distributor (EGD) and Quantum Repeater (QR). The former rep-
resents a third party used to generate and distribute entangled particles follow-
ing, for example, the SPDC method. The latter, instead, allows to distribute
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Figure 1.6 Representation of the entanglement swapping procedure.

entangled particles between remote quantum computers. In fact, the reliabil-
ity of the entanglement distribution is strongly affected by attenuation effects
due to the distance between quantum computers [39]. However, since the no-
cloning theorem does not allow to simply read and copy qubits, traditional re-
peaters must be replaced by QRs, which perform the entanglement swapping
to establish longer-distance end-to-end entanglements. Fig. 1.6 depicts an ex-
ample of this procedure involving two distant quantum computers and a QR. In
particular, the EGD first creates and delivers a pair of entanglement particles
to the involved quantum computers and the QR. Then, the QR performs a Bell
state measurement on its particles, thus causing their collapse. The resulting
measurement outcomes are transferred to both quantum computers by means
of classical channels. Finally, each quantum computer carries out correction
operations in order to reconstruct the end-to-end entanglement. Without loss
of generality, this procedure can be extended for multiple quantum repeaters
scenarios where each QR must be able to receive, process, and transmit both
classical and quantum data.

• The entangled particle distribution can be also supported by a satellite or a drone
network. Satellites and drones, in fact, can act as QRs for the entanglement
distribution of two distant quantum remote computers, completely substituting
ground QRs or simply supporting them. On the one hand, the main benefit of
using satellite is that photons loss takes place at low levels of the troposphere
and the transmission path has no photon absorption [40]. On the other hand,
since low-orbital satellites serve specific ground quantum computers only for a
limited time, drones can be used as QR, receiving a photon and retransmitting it
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Figure 1.7 Message sequence chart of the distributed architecture.

to the involved quantum remote computer, the next drones, or the next ground
QR [41].

It is important to note that the EGD can be either a separated physical node of
the network or simply a logical entity equipped by involved QRs (e.g., ground QRs,
satellites, or drones). Without loss of generality, this work considers the EGD as a
physical ground entity placed in the wireless mesh backbone.

1.4.2.1 The Information Exchange in the Distributed Architecture
The distributed architecture, shown in Fig. 1.5, works as in what follows.
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• Phase 1: Dataset Creation. As for the centralised architecture, in the first phase
of the information exchange procedure, end nodes belonging to different use
cases and network equipment deployed in the wireless mesh backbone and in
the cloud generate a huge amount of data. This information is, then, transmitted
to the Data Aggregator which creates new datasets or updates existing ones.

• Phase 2: Task Assignment. Also the second phase, aiming at allocating tasks
among computing resources (i.e., traditional and quantum computers), is equiv-
alent to the corresponding phase in the centralised architecture. Here, Data Ag-
gregators transmit metadata of the generated datasets (such as the format or size
of data) to the Intelligence Orchestrator, thus avoiding the exchange of an ex-
cessive amount of information and, in turn, the congestion of the network. The
Intelligence Orchestrator, starting from the aforementioned metadata and from
the status of the intelligence network, assigns specific tasks to computing re-
sources and sends a task assignment message to the Data Aggregator. Involved
datasets are, finally, delivered to traditional or quantum computers.

• Phase 3: Network Setup. Differently from the centralised architecture, in the
distributed approach quantum nodes are deployed at the network edge and dy-
namically grouped in clusters in order to scale up the number of qubits and
efficiently solve more complex QML problems. In this case, the Intelligence
Orchestrator creates quantum computer networks aiming at grouping comput-
ing resources based on the number of available qubits and the distance between
them in order to reduce attenuation effects. Since quantum computers belonging
to the same cluster share quantum states through the aforementioned teleporta-
tion protocol, the third phase of the information exchange envisages setting up
the QML network by generating and transmitting entangled particles among
involved quantum nodes. They are, then, able to establish a long-distance end-
to-end entanglement through the entanglement swapping procedure.

• Phase 4: Intelligence Operations. Again, when quantum computers are in-
volved in the computing operation, the received dataset is converted by the QI
devices before executing QML algorithms. The outcomes of ML and QML
operations are, finally, transmitted to the nodes of the network for different pur-
poses (e.g., the SDN controllers for optimal routing procedures, the NFVO for
allocating virtual resources, BSs for optimal resource scheduling).

1.4.2.2 Benefits and Research Challenges
The issues pointed out for the centralised architecture in WMNs can be easily over-
come by employing the proposed distributed architecture. In fact, the deployment
of multiple quantum computers into the wireless mesh backbone mitigates possible
network congestion episodes, improves scalability, and reduces communication la-
tency. On the other side, since quantum Internet is in its fancy, the entanglement
distribution and heterogeneity of qubit may represent a first hindrance for the physi-
cal implementation of the distributed architecture [39]. In fact, quantum information
will be initially transferred to quantum computers belonging to the same cluster and
equipped with homogeneous qubits. Then, according to the scientific community
long-term vision, the proposed architecture will be practicable when hardware het-
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erogeneity of different quantum computers will be taken into account and entangled
particles will be distributed between distant quantum computers. Another issue is
related to the simplicity of involved quantum computers in terms of the number of
qubits. In this case, complex QML tasks require a high cluster size which dras-
tically increases the number of transferred quantum states and, in turn, the delays
and error rates due to the quantum teleportation procedure. Furthermore, the in-
troduction of new physical and logical entities in the distributed architecture entails
a more complex system with respect to the centralised approach, thus making the
Intelligence Orchestrator a possible point of congestion for the load balancing of
computing services. Here, since many quantum computers are involved, it is impor-
tant to efficiently distribute quantum algorithms among them by jointly minimising
the size of the cluster and the user-quantum computer distance. Another research
challenge to take into account is the optimal allocation of quantum computers where
more computational tasks is expected.

1.5 Conclusions

The need of combining quantum computing and machine learning to fulfil the re-
quirements of future wireless mesh networks envisages the definition of proper net-
work architectures with the introduction of new logical entities. After describing
the role of different machine learning algorithms for wireless mesh networks and
the main properties of quantum computing, this work introduced the application of
quantum machine learning for wireless mesh networks. Specifically, it proposed a
centralised and a distributed architecture where quantum machine learning capabili-
ties are placed in the cloud or at the edge, respectively. Design principles and infor-
mation exchange procedures are deeply discussed for both these architectures, also
highlighting their advantages, disadvantages, and possible future research directions.
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