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Abstract—This contribution proposes a novel task offloading
scheme for robotics applications in Information-Centric Net-
works. The reference scenario includes heterogeneous agents con-
nected to various wireless Network Attachment Points, asking for
computational services to Multi-access Edge Computing servers
deployed at the network edge. It also uses Information-Centric
Networking facilities to implement resource announcement, re-
source discovery, and service provisioning. The effectiveness of
the conceived solution has been tested through experimental tests
in realistic scenarios.

Index Terms—Information Centric Networking, Industry 4.0,
Task offloading.

I. INTRODUCTION

In the Industry 4.0 domain, the Industrial IoT (IIoT)
paradigm is supporting the definition of new use cases requir-
ing low latency and high-reliability constraints. Considering
that typical IIoT applications such as Autonomous Robotics,
Additive Manufacturing, Digital Manufacturing, and Mixed
Reality (MR) involve different devices with limited com-
putational and energy capabilities [1], complex tasks can
be only provided by demanding computational activities to
remote nodes. As a result, devolving computational activities
to the cloud, fog, and edge computing is becoming more
common. In the context of fifth-generation (5G) and Beyond
5G (B5G) communication systems, differently from conven-
tional approaches, Multi-access Edge Computing (MEC) can
be used to guarantee heavy computational capabilities close
to the end-users, as well as ensure lower and predictable
communication latency in the related service provisioning [2],
[3], [4]. Indeed, MEC represents one of the most important
key enabling technology for the IIoT.

Despite the advantages, new challenges emerge. In fact,
during the task offloading procedure, it is fundamental (and,
depending on the target use case, also challenging) to dy-
namically manage the allocation of services’ requests at the
network edge while considering the upper bound capabilities
of the available MEC servers. This issue has been extensively
investigated in conventional IP-based strategies (e.g., through
centralized or decentralized strategies [5]-[12]), but it remains
far less explored in Future Internet architectures based on the
Information-Centric Network (ICN) paradigm. As well known,
ICN represents a different communication paradigm able to
solve typical issues affecting IP-based deployments, while
providing important performance gains in terms of security,

bandwidth consumption, latency, and energy consumption in
data dissemination services [13]-[17], also in wireless mesh
network [18] and in the IIoT application domains [19], [20].

At the time of this writing, and to the best of the authors’
knowledge, task offloading problems in ICN networks have
been initially investigated in [21]-[25]. Despite the interesting
solutions presented in these works, there are still some open
issues deserving more attention, such as: i) some strategies
require an extension to the native protocol architecture [21],
ii) other contributions do not explicitly consider the actual
capabilities of MEC servers [22], [23], iii) sometimes the
allocation of users’ requests is done via an optimization
algorithm that increases complexity and reduces scalability
[24], and iv) some approaches may lose their effectiveness
when used on a large scale [25].

To bridge this gap, this work proposes a novel task of-
floading scheme for ICN networks. Without loss of generality,
it focuses on robotics applications and considers a reference
scenario where: i) heterogeneous agents are connected to
various wireless Network Attachment Points (NAPs), ii) NAPs
are connected to each other through a wired network grid, and
iii) MEC servers are deployed at the network edge to provide
task offloading functionalities. More specifically, the proposed
approach introduces the following main contributions. First, a
custom namespace has been designed to describe services’
requests and available computational capabilities at the net-
work edge. Second, ICN facilities have been used to man-
age resource announcement, resource discovery, and service
provisioning. Indeed, the resulting solution appears fully data-
centric, efficient, scalable, and distributed. The effectiveness of
the conceived solution has been tested through experimental
tests in realistic scenarios embracing a mix of MR, Automated
Guided Vehicles (AGVs), Unmanned Aircraft System (UAS),
and IIoT devices.

The rest of the paper is organized as follows. Section II
provides a summary of the current state of the art addressing
the task offloading strategies in ICN networks. Section III
describes the reference scenario taken into account in this
contribution and illustrates the proposed methodology. Sec-
tion IV presents a performance assessment of the proposed
methodology, carried out through experimental tests in realistic
scenarios. Finally, Section V concludes the work and clarifies
future research directions.



II. STATE OF THE ART ON TASK OFFLOADING STRATEGIES
IN ICN NETWORKS

In conventional IP-based network architectures, task of-
floading can be managed via centralized and distributed tech-
niques, as explicitly reported in a recent survey [5]. For in-
stance, one or more controllers can be configured to distribute
requested jobs among the available MEC servers, accord-
ing to application type, latency requirements, and resource
types required [6], i.e., by exploiting classical optimization
techniques [7][8], Machine Learning (ML) algorithms [9][10]
or deep reinforcement learning approaches [11][12]. At the
same time, ICN has been identified as a valid and effective
alternative to sustain the definition of the Future Internet
[13][14], thanks to its ability to optimize data retrieval and in-
caching mechanisms [15], improve the Quality of Experience
in multimedia streaming services [16], and support consumer
mobility [17]. The potentials of ICN have been studied also in
the Internet of Things (IoT) context [19][20]. Moreover, at the
time of this writing, and to the best of the authors’ knowledge,
only a few contributions explored the task offloading problem
in ICN networks, mainly implemented through the Named
Data Networking (NDN) paradigm.

For instance, [21] proposes an extension of the baseline
NDN architecture, namely Name Data Networking at the edge
(NDNe), supporting task offloading. Here, the consumer issues
a service request through an enhanced INTEREST packet,
carrying the service name and the related requirements (e.g.,
maximum delay and energy consumption for executing the
task). By gradually increasing its Time-To-Live (TTL) value,
such a request iteratively propagates across the network until
nodes capable of providing the requested service (simply
referred to as service providers) are reached. Indeed, the
suitable service provider replies with an enhanced DATA
packet, including the estimated time and energy consumption
needed to execute the task. After that, the consumer selects
the best service provider and the task offloading operation
starts. The approach is very interesting, but it modifies the
native NDN protocol and does not use ICN network facilities
to autonomously manage service discovery and task allocation.

The work presented in [22] presents a strategy to execute
specific functions at the network edge. These functions are
identified by names, downloaded locally into edge nodes
(according to a score function), and executed on a lightweight
Virtual Machine. This solution is related to task offloading, but
it does not take care of the actual computational availability of
edge nodes. At the same time, it prioritizes popular functions
while determining an increment in the response latency for
services that experience low score values.

Another framework to dynamically distribute IoT data pro-
cessing at the network edge is presented in [23]. It uses
a custom naming scheme for identifying IoT content and
services. However, they extend the NDN architecture with a
data structure to take into account the available service and,
similar to [22], it is updated according to the request popularity
expressed through a score function. Thus, also in this case, the

resulting approach does not consider the resource availability
of edge nodes.

The solution presented in [24] adopts ICN functionalities
to dynamically announce resource availability and distribute
users’ requests. Here, however, the selection of the MEC server
to be involved in task offloading operations is delegated to
the routers and solved through a multi-objective optimization
problem. The resulting approach requires that routers must
explicitly know the available MEC servers and actively par-
ticipate in the task offloading procedure. This may increase
complexity and reduce scalability in complex deployments.

In [25], instead, a strategy to distribute the status of available
resources is addressed by employing scoped-flooding. Specif-
ically, edge nodes distribute Resource Bread-Crumbs (RBCs),
which contain information on the available resources and
include other metrics, such as the number of hops and routing
cost. However, when available resources change, new RBCs
are distributed only within edge node proximity (i.e., until
the metrics in the RBCs exceed the threshold). Accordingly,
the solution seems to lose its effectiveness in large-scale
deployments.

In conclusion, the study of the state of the art highlights
that solutions supporting task offloading in ICN networks still
present some limitations. Therefore, to enrich the scientific
literature in this context, this paper proposes a novel strategy
that addresses the task offloading problem in order to: i)
avoid to modify NDN functionalities (differently from [21]),
ii) announce computational capabilities by always considering
the actual MEC capabilities (differently from [22], [23]), iii)
distribute users’ requests via pure NDN facilities and without
requiring the implementation of complex tasks for network
nodes (differently from [24]), iv) easily support task offloading
in large scale scenarios (differently from [25]).

III. THE PROPOSED SOLUTION

Fig. 1 shows the IIoT network architecture considered in this
work. Here, several NAPs offer wireless connectivity (e.g., Wi-
Fi, 4G, and 5G) to groups of heterogeneous agents distributed
within an industrial environment. Each NAP covers a limited
geographical area, namely femtocell, and it is connected to
the others through a cabled or wireless network grid. Hence,
at the network edge, beyond each NAP, MEC servers with a
co-located NDN router are deployed to offer task offloading to
IIoT agents. Based on these premises, this work assumes that
these agents, attached to different NAPs, desire to offload some
tasks to the network edge, i.e., by exploiting the computational
resources exposed by MEC servers.

The task offloading problems can be addressed by fully
leveraging ICN functionalities (and specifically the NDN pro-
tocol [26]), also in wireless mesh network. The resulting ap-
proach is scalable, flexible, and fully distributed. The following
sections will deeply describe how computational resources are
i) identified through custom content names and ii) announced
and discovered through NDN primitives.



TABLE I
EXAMPLE OF NAMESPACE

Service Type CPU (MI) Memory (GB) Storage (GB) Service Category Namespace
MR 200 1.3 5 CAT 1 n2n://industry/mr/cat1
MR 400 1.3 5 CAT 2 n2n://industry/mr/cat2
AGV 50 2 1 CAT 1 n2n://industry/agv/cat1
AGV 150 2 1 CAT 2 n2n://industry/agv/cat2
IIoT 30 0.5 10 CAT 1 n2n://industry/iiot/cat1
IIoT 50 0.5 10 CAT 2 n2n://industry/iiot/cat2

Agent

Network Attachment 

Point

MEC Server

with NDN Router

h1 h4 h7

h2 h5 h8

h3 h6 h9

Fig. 1. The reference network architecture.

A. Namespace Design

The namespace has been properly designed in order to
effectively and dynamically announce the ability of MEC
servers to support specific services according to their available
computational capabilities. Indeed, that design carefully con-
siders typical services required in the industrial environment,
such as MR devices, AGVs, UAS, and IIoT devices, and the
different computational capabilities they may request. Some
significant examples, according to the current literature [27]
are reported in Table I. The resulting namespace is also
effective to support resource discovery and provisioning.

In the conceived approach, each MEC server is charac-
terized by its computational capabilities in terms of CPU,
RAM memory, and storage. These capabilities can be used
to serve agents’ requests belonging to a given Service Type
and Service Category. The Service Type explicitly identifies
the type of agent within the network. The Service Category,
instead, reports the upper bound of computational capabilities
that the IIoT agent may request for a specific task, expressed
in terms of: (i) CPU, expressed in Million Instructions Per
Seconds (MIPS) units, represents the maximum number of
MIPS an agent may require from a MEC server, (ii) RAM
memory, expressed in GB, indicates the maximum RAM

memory occupancy on the MEC server, and (iii) storage,
expressed in GB, denotes the maximum amount of storage
memory a task needs.

As shown in Table I, the proposed approach adopts a
namespace structure like:

n2n://industry/[service type]/[service category].

B. Resource Announcement
MEC servers continuously monitor their available compu-

tational resources. When needed, they implement the resource
announcement procedure, willing to clarify the list of services
they are able to support and, accordingly, update their routers’
Link State Database (LSDB).

To define which names can be announced, the MEC server
implements an iterative procedure. In particular, the MEC
server holds the list of available services defined in the
reference scenario. The i-th service may request up to ci
of CPU, mi of RAM memory, and si of storage memory.
Therefore, for each service, the MEC server verifies if it has
enough computational resources. In the affirmative case, it
announces namei, which includes the service type and service
category, through its router.

Then, announced names propagate through the network by
following the typical name distribution mechanism conceived
for Named-data Link State Routing (NLSR) networks [28].
Indeed, each router in the network periodically checks if the
other routers have new available content names and eventually
triggers synchronization mechanisms to update its LSDB. A
change in the LSDB state is propagated through Link State Ad-
vertisements (LSA) message to nearby routers. Upon receiving
the new LSA, the routers update their LSDB, recalculate the
paths, and update their Forwarding Information Bases (FIBs).

In particular, each router sends a Sync INTEREST message
to the others, entailing a hash of all the content names
registered locally with NLSR and those injected by connected
routers. When a router receives a Sync INTEREST, it com-
pares the hash in the content name with the hash generated by
its LSDB. If the hashes mismatch, the router answers with a
Sync Reply message enclosing the missing LSA name. Upon
receiving the Sync Reply message, the router with a missing
LSA sends a LSA INTEREST message to retrieve it. Finally,
the router answers with a LSA DATA packet enclosing the
new LSA.

C. Resource discovery and service provisioning
The resource discovery procedure allows agents to find a

MEC server in the network able to perform task offloading.



As a first step, the agent sends a task offloading request to the
reference NAP, by using the namespace structure described in
Section III-A. Then, the NAP routes the request through the
network until an NDN router, which announces the required
service, is reached. Finally, it replies by performing a sub-
scription to the right agent in order to execute task offloading
operations.

Fig. 2 shows in detail the message exchange during the
proposed resource discovery procedure. Specifically, an agent
sends a resource request through an INTEREST message
(Step 1). Once the INTEREST message reaches the first
NDN router with the requested service, it replies to the agent
through a DATA message, signaling the availability of its
MEC server to execute task offloading operations (Step 2).
Thus, the MEC server reserves the computation resources to
the agent for a given time. Furthermore, it checks the current
amount of available resources and, if necessary, its NDN router
broadcasts a new adjacency LSA to the entire network. The
most recent version of the LSAs is saved in the LSDB, in
accordance with the NLSR protocol [28]. Then, the designated
NDN router sends a semi-permanent INTEREST to subscribe
to the agent (Step 3), by following the same approach stated
in [29], [17]. This enables the agent to send DATA messages
(with input data), through the network, to the MEC server
(Step 4) offering task offloading services.

It is worth noting that, in the conceived approach, the DATA
messages of NDN routers require freshness to avoid conflicts
over name requests. Hence, they are not stored within the
Content Store (CS) of intermediate nodes. Finally, at the end
of the task offloading operations, the resources will again be
available within the MEC server, so the available services must
be updated via resource announcement procedure.

D. Running example

For the sake of clarity, this section provides a running
example further explaining the workflow that characterizes
the proposed solution. The considered scenario is composed
of a MR agent and 3 NDN routers, each one linked to the
corresponding MEC servers. Moreover, as depicted in Fig. 3,
each MEC server announces the service it can offer among
those listed in Tab. I through its co-located NDN router.

Figure 3a shows that the MR agent issues a request for the
service n2n://industry/mr/cat1, through an INTER-
EST packet. Since the MEC server attached to the router h1
cannot support the requested service, the INTEREST message
is delivered to h2 (according to its FIB). Then, the node h2
replies to the agent with an ACK message, followed by a semi-
permanent INTEREST message. Finally, the h1’s Pending
Interest Table (PIT) table is updated with the information
of the requesting agent for routing subsequent messages (see
Figure 3b).

IV. PERFORMANCE ASSESSMENT

The performance of the proposed task offloading scheme
in realistic deployments is investigated in this paper through
experimental tests. To this end, the Mini-NDN emulation tool

NAPAgent
1. INTEREST Message


n2n://industry/[service_type]/[service_category]


MEC server with 
NDN Router

4. DATA

Intermediate NDN Node

LSA Update

LSA Update

Task
offloading

Resource
discovery2. DATA Message - "Ok"

3. Semi-permanent INTEREST

Fig. 2. Messages exchanged during the service provisioning.
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Fig. 3. Running example.

is used to create a network architecture, as depicted in Fig.
1, composed of a grid of 3x3 NDN routers with their MEC
servers and NAPs, as well as all the functionalities described in
Section III. Specifically, each MEC server is configured with
the following parameters: RAM = 16 GB, storage = 240 GB,
and CPU = 105 MIPS, according to the industrial computer
state of the art [30].

To demonstrate the proper behavior of the proposed solu-
tion, this work evaluates the occupancy of MEC servers (i.e.,
CPU, RAM, and storage memory) while agents’ requests are
satisfied by considering two representative scenarios. The first
assumes that agents are directly connected to a single NAP,
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Fig. 4. Proof of operation of the proposed algorithm with agents connected
to a single NAP.

whereas the second considers that agents’ requests are sent to
multiple NAPs. Moreover, in both scenarios, MEC servers h3,
h6, and h9 are enforced to be out of service, thus they cannot
serve any agents’ requests.

It is worth noting that the communication technology em-
ployed between the agent and NAPs does not affect the
effectiveness of proposed solution.

A. Agents connected to a single femtocell

The first scenario considers different IIoT agents directly
connected to the NAP h3.

The experimental results, depicted in Fig. 4, show the total
number of agents’ requests and the resource occupancy of
MEC servers over time. In particular, in the beginning, it
can be observed that agents send a total of 20 requests to
the NAP h3. These requests are initially served by the MEC
server h2, filling its RAM. As expected, MEC server h2 stops
exposing the service name to avoid resource overloading. As
a result, the following agents’ requests are sent to the MEC
server h1 (through h2, which acts as a router). When node h2
completes its assigned operations, it exposes services again
and resources are allocated for other requests. Furthermore, as
the number of requests increases, i.e., between 150 s and 200
s, MEC servers h7 and h8 are involved in the task offloading
process as well. This is because the nearest MEC servers have
already allocated all of their computational resources. At the
end of task offloading operations, connections between MEC
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Fig. 5. Proof of operation of the proposed algorithm with agents connected
to multiple NAP.

servers and agents are closed, and then the allocated computing
resources become available again.

Results demonstrate that the proposed methodology allows
to offload tasks efficiently and distribute them over the network
by always (i.e., in real-time) considering the MEC servers’
occupancy.

B. Agents connected to multiple femtocells

The second scenario, instead, considers different IIoT agents
connected to the NAPs h3, h6, and h9.

Experimental results, depicted in Fig. 5, show that the first
requests received by NAP h3, h6, and h9 are fulfilled by MEC
servers h2, h5, and h8, respectively. The subsequent requests,
instead, are routed and then fulfilled by the remaining MEC
servers in the network. In particular, when the number of
requests to the NAP h3 grows, i.e., between 150 s and 200
s, they are initially satisfied by MEC server h1 since h2 is
not available. Then, when the resources of MEC servers h2
become available again, it may serve the following requests.

This shows that the proposed approach allows to i) fulfill
the requests of the agents by the MEC servers closest to their
reference NAPs and ii) reduce network traffic and evenly dis-
tribute service load by routing the agents’ requests according
to the rules defined within the FIB tables.



V. CONCLUSIONS

This work proposed a novel task offloading scheme by
fully leveraging ICN functionalities. The reference scenario
involves heterogeneous agents connected to different wire-
less NAPs and requesting computational services from MEC
servers placed at the network edge. A custom namespace
has been designed to describe the service request and the
available computational capabilities provided by edge nodes.
Furthermore, the NDN protocol has been used to manage
resource announcements and discovery, as well as service
provisioning. An experimental campaign has been carried out
to prove the benefits of the proposed strategy. The obtained
results show that the proposed approach efficiently offloads
tasks and distributes them over the network while accounting
for the MEC servers’ occupancy. Moreover, future research
will also take into account the agent delay requirements (e.g.,
by extending the service category fields) to select the best
MEC server, as well as an extension of the naming scheme to
support services with looser latency requirements and execute
the demanded operations in the cloud to further spread the
workload. At the same time, future work will investigate
the performance of the proposed solution while accounting
for the service latencies introduced by the communication
technologies employed.
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