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Abstract—Digital services and digital service chains are the
heart beating of the modern economy. Their composition involves
several players, i.e., processes, software, devices, and many
kinds of data exchanged among them. In such a scenario,
it is important to guarantee data confidentiality, integrity, as
well as authentication and authorization procedures between
the communicating parties of a service chain. Cyber-security
frameworks are explicitly designed for this purpose. They rely
on the integration of different software modules, mutually in-
terfaced to accomplish complex security tasks. Nevertheless, it
is important to guarantee a high level of protection during
data exchange among the modules. Currently, standardized
authentication and authorization mechanisms are implemented
through proprietary “As-a-Service” products, but the deployment
of a mature on-premise solution is still missing. To bridge
this gap, this contribution proposes an authentication and au-
thorization module that automatically protects the information
flowing among the modules of cyber-security frameworks. It
guarantees resource availability only to authenticated subjects.
Thus, their operations are confined in what actions they are
authorized for. The proposed module has been implemented and
tested in a real cyber-security framework under development
into the H2020 GUARD project. Experimental tests show that
the proposed module enables authentication and authorization
procedure delegation among GUARD modules, which eases their
implementation, while maximizing the flexibility of the set of
access control policies and an efficient protection of the services.

I. INTRODUCTION

Future economy will be driven by digital service

chains. They are progressively changing the communication

paradigms by creating, processing, sharing, and consuming

data and contents in a digital continuum. Service composi-

tion translates into chaining several processes, software, and
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devices, anytime and anywhere, feeding them with relevant

users data [1]. As a consequence, frontiers between different

application domains are blurring, due to dynamic service

deployments and withdrawals with unprecedented agility. This

process is supported by the adoption and integration of existing

software paradigms, e.g., cloud computing, software-defined

networking, and Internet of Things (IoT) [2].

In such a scenario, data protection is a very important issue

to be addressed. From one side, sensitive data need to be

secured from unauthorized access. From the other, attacks and

threats should be timely detected and countermeasures taken

accordingly [3].

To this end, the Cyber-Security Framework (CSF) proposed

in [2] can be a viable solution. It is currently under devel-

opment into the H2020 GUARD project. Its aim is to collect

security-related events and measurements from dynamic and

evolving ICT systems and infrastructures. Data are collected

and categorized by distributed third-party software agents. The

power of such a CSF resides in the integration of different

modules, external and internal to the platform, accomplishing

heterogeneous and articulated tasks through several logical

interconnections [1], [2], [4]. As a consequence, there is the

need to protect information about service features, users data

and exchanged information from unauthorized access, so to

guarantee a high level of security among multiple domains

and protocols.

With the goal to meet these requirements, this work pro-

poses an Authentication (AuthN) and Authorization (AuthZ)

module that protects data flowing among module interfaces of

the CSF. It guarantees resource availability only to authenti-

cated subjects and allows only the specific actions they are

authorized for. The proposed module has been implemented

in the context of the GUARD CSF developed in [5], to

enable robust AuthN and AuthZ procedures while minimizing

information exposure to unauthenticated and/or rogue services.

In this way all CSF components delegate their security mech-

anisms for inter-service communications to the proposed mod-
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ule, consequently facilitating the overall CSF implementation

through a dedicated and uniform security system that purely

focuses on authentication and fine-grained authorizations. This

is actually a challenge in complex CSFs, characterized by a

vast variety of modules, provided by different parties, and

operators that exchange heterogeneous and sensitive data.

The remainder of this paper is organized as follows. Section

II summarizes the main features of the GUARD architecture.

The security mechanism is presented in Section III and imple-

mented in GUARD as described in Section IV. Performances

of the proposed module are evaluated in Section V. Finally,

Section VI concludes the work.

II. THE REFERENCE ARCHITECTURE

The GUARD platform can be seen as a collection of security

services with the aim to analyze and protect data to pro-

vide situational awareness and counteract malicious patterns.

Each service provides a specialized capability to manage the

acquired data, based on particular criteria. The architecture

can be generally subdivided into the following macro-blocks,

illustrated in Fig. 1:

• Security Services in the centralized platform, that focus

on data analysis.

• Local Agents, external to the main core architecture,

that extend GUARD capabilities by means of additional

specialized security functions. Here the Context Broker,

internal to the Core Platform, is vital in providing the

status of the internal Security Services and managing

Local Agent communications.

• A message broker, i.e. Kafka, for inter-service data ex-

change. Kafka is a distributed messaging system based

on the publish/subscribe model that stores information in

a distributed commit log [6].

• A Security Dashboard, to orchestrate and manage policies

and security pipelines, i.e., the connections between a

data source and a set of services.
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Fig. 1. Macroscopic overview of the GUARD Architecture.

The macro-blocks communicate via three Application Pro-

gramming Interfaces (APIs), each one with its own role:

• API #1 for collecting data, characterized by the commu-

nication of messages structured in a common data format

using a message broker. Moreover, this API provides

capability control by means of a REpresentational State

Transfer (REST) interface exposed by Local Agents.

• API #2 for Create, Read, Update, and Delete (CRUD)

operations on data models available on the platform by

means of a common REST interface.

• API #3 for delivering notification messages. Furthermore,

this API provides the configuration of security services

through REST and Remote Procedure Call (RPC) inter-

faces.

III. THE PROPOSED SECURITY MECHANISM

The goal of the proposed AuthN/AuthZ module is to provide

protection to the interfaces presented in Section II, while

taking into account their differences in order to maximize

the flexibility of access control policies to be encoded in an

identity. A service identity can be used by the communicating

services for sender validation and apply access policies based

on Attribute-Based Access Control (ABAC) [7]. This access

control method has been introduced by the National Institute

of Standards and Technologies (NIST). It is based on granting

or denying user requests based on both attributes of users and

attributes of the object to be accessed to. Moreover, environ-

mental conditions may be taken into account to further refine

access policies. This access control model offers a high degree

of flexibility in heterogeneous and complex architectures like

GUARD [8]. In this scenario, it is necessary to issue identities

from a centralized security platform apt to configure identities

with all the security features in place.

To this end, the Identity Provider (IdP) authenticates ser-

vices with secure identities and exposes public keys to verify

them. Therefore, it is a middleware and a trusted authority

between GUARD services and Security Operators, as illus-

trated in Fig. 2. This subsystem has a logical core that

manages identities for software entities, namely Identity and

Attribute Manager (IAM), and stores them in a persistent

storage location, called the Identity Database. An identity

is a complex object with a dictionary of attributes and a

security signature to protect it from forging, replay, and

tampering attacks. It is defined and maintained by Security

Operators through the Administration Interface. Identities can

be retrieved by services through the AuthN Endpoint by means

of a secret, which is generated upon service registration on the

IdP. The identity is released in the form of a limited-lifespan

security token that contains related attributes and a Message

Authentication Code (MAC) to preserve its integrity. Once

services have been correctly identified, they can communicate

with other services across the platform. On the other hand,

services, that receive requests or data, validate the sender by

its identity signature using the IdP public keys available from

the Attestation Endpoint. These keys are used to decrypt the

identity MAC and verify its digest.

Fig. 3 proposes a three-actor communication model com-

monly found in cloud environments, where a service sends

data to a message broker, or bus, which then delivers them to

other services. Connections between services and message bus
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Fig. 3. Communications guarded by the proposed security mechanism.

are protected by the same security mechanism to ensure that

the data flow is protected, thus minimizing the risk of their

leakage. The procedure is composed of the following steps:

1) Sender/Recipient retrieves its identity by authenticating

with the IdP.

2) Sender and recipient connect to the message bus and send

their identity during the initial connection phase (i.e., their

handshake).

3) The attestation module validates the identity and performs

AuthZ procedures to protect the message bus.

4) Sender/Recipient, if correctly authenticated and autho-

rized, can send/receive messages.

For this particular communication model, the attributes,

included in identities, declare the type of messages that are

delivered in the message bus, like topic names. This means that

senders and recipients must respect the declarations reported

on the identity to ensure an authorized data exchange through

the message bus. Therefore, once they are authorized, they

cannot divert their behavior and publish messages on other

channels of the bus. Consequently, service interference is

minimized, thus preserving the state of the message bus and

their channels.

IV. MODULE IMPLEMENTATION

The experimental scenario has been developed as a stan-

dalone test bed. It has been organized in microservices us-

ing Docker, which helps building small software units in a

container-based environment [9].

The security mechanism hereby implemented focuses on the

initial handshake procedure between services. Their AuthN has

been integrated with the proposed security mechanism with

the support of the IdP. Moreover, AuthZ operations have been

tightly integrated to each service to provide flexibility over

adopted policies for each particular operation on a specific

service.

The experimental scenario is a composition of containers,

enabling the evaluation of the proposal with a set of diverse

service configurations:

• WSO2 Identity Server (IS), that acts as the IdP of ref-

erence, configured for the proposed security mechanism

[10].

• An Apache Kafka broker [6] equipped with the Attesta-

tion Module to provide secure communications.

• A Java-based Kafka client that uses its identity to au-

thenticate with Kafka and publish messages in a specific

topic.

• A Java-based Kafka client that consumes messages from

a determined topic.

The IdP, exposed by the AuthN/AuthZ module, is based

on the open source IS project developed by WSO2 [10]. It

is an extensible Identity Management platform that provides

secure and standardized AuthN mechanisms, identity feder-

ation, access control procedures, and APIs to automate its

administration. This IdP has been identified as the ideal one to

provide the basic software infrastructure for the AuthN/AuthZ

module. In fact, it allows security operators to register, manage

and dispose identities and attributes via a Hyper-Text Transport

Protocol (HTTP)-based Administration Interface.

A service to protect must be registered on the IS as a Service

Provider. In order to do so, a security operator has to configure

the IS by providing essential information to recognize the

service. Service Provider registration consists of a two-steps

procedure:

1) Register the new Service Provider, also known as the ap-

plication to protect. This operation consists in providing

a service name and an optional description. At the end

of the registration, the IS provides a unique identifier to

refer to such service.

2) Register a new OAuth2 Inbound Authenticator associated

with the Service Provider. It exposes the necessary soft-

ware infrastructure of the IS for AuthN procedures that

follow a specified protocol, OAuth2 in this case [10].

This procedure can be entirely automated by interfacing

with the exposed IS APIs. Specifically, in order to register
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a new Service Provider programmatically, the procedure must

send a request to the IS. It is composed of a payload, also

known as Simple Object Access Protocol (SOAP) Envelope,

and a header that contains the HTTP AuthZ field to authen-

ticate with the IS. The SOAP Envelope is an XML-formatted

HTTP body containing name and description of the Service

Provider and its OAuth2 Inbound Authenticator to activate.

In this test bed, Kafka has been protected in order to

evaluate the authenticity of each connected service and their

authorizations. This scenario has the goal of protecting the

message bus in case of service misuse, minimizing the poten-

tial interference of infected services to other communications

if they acquire rights to publish/subscribe to other topics.

To this end, the test bed comprises a Kafka broker and

service examples that produce and consume messages. The

goal of this test is to demonstrate the possibility of integrating

the security mechanism with Kafka. This broker already

provides high-level software interfaces for AuthN via Simple

Authentication and Security Layer (SASL) and OAuth2 [6],

but it is limited to the validation of unsecured JSON Web

Tokens (JWTs), i.e., it does not check the MAC, and it does

not support external IdPs like WSO2 IS. To overcome this

limitation, this test bed includes a library that provides all the

necessary implementations to enable security checks between

Kafka and the IS by following SASL and OAuth2 specifica-

tions. It also decodes and validates JWTs through public keys

available from the IdP JSON Web Key Sets (JWKS) endpoint.

Furthermore, as the local AuthZ mechanism, this extension

mandates that each service declares a set of topics that it will

use during execution through additional attributes encoded in

the JWT. This is a confinement strategy to preserve application

rights and limit what the service can do at runtime. Services

must be compatible with this new procedure to be authorized

by the broker, otherwise the broker will abruptly close the

connection. The broker validates the identity and elaborates

an AuthZ response to send back to the sender. After that, the

traditional Kafka session can begin by following its reference

protocol.

V. PERFORMANCE EVALUATION

The implementation of the AuthN/AuthZ module described

in Section IV has been realized in the GUARD platform,

to test the communication functionalities and to validate the

proposal. In this context, the performance of the module

has been evaluated by checking the authentication procedures

and access control mechanisms between GUARD services.

Different performance indicators have been chosen in terms

of response time (e.g., elapsed time for service authentication

and authorization and latency during message-based communi-

cations with Kafka) and resource usage (e.g., CPU Load and

Memory Usage) during the authentication and authorization

processes.

The related measurements, made during the establishment

of the handshake procedure between the service and Kafka to

send/retrieve messages, have been carried out with and without

the integration of the proposed security mechanism, to measure
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Fig. 4. Latency distribution for service authentication to Kafka, for different
numbers of producers.

the time and resource overhead taken by the AuthN/AuthZ

module.

Simulations have been set up in a Docker environment with

8 virtual processors, 4 GB of memory, and 4 GB of swap

memory on Solid State Drive. It has been configured with (i)

an IdP that constitutes the AuthN/AuthZ module, (ii) a Kafka

broker with the AuthN/AuthZ module extension to provide

authentication and authorization functionalities, (iii) a number

of Kafka clients, called producers, that publish data on a fixed

reference topic, and (iv) one Kafka client, called consumer,

that subscribes to the same reference topic of the producers.

Each simulation run lasts 10 minutes. During this time

period, the producers publish messages in bursts of 100

messages each. After each burst, they are restarted and the

process is repeated, until the end of the run. This generates a

huge number of samples (about 1.1e5) for a robust analysis

of the Key Performance Indicators evaluated in the following

subsections.

A. Elapsed time for service authentication and authorization

Fig. 4 depicts the latency distribution for a number of

concurrent producers (1, 3, and 5) that conclude successfully

the authentication procedure to Kafka. Table I reports the mean

(µ) and the variance (σ2) of the latency obtained for service

authentication and for a different number of producers.

TABLE I
MEAN AND VARIANCE OF AUTHENTICATION LATENCY FOR DIFFERENT

NUMBERS OF PRODUCERS.

Number of Concurrent Producers µ [ms] σ
2 [ms

2]

1 296.75 1541.11

3 471.23 12547.07

5 768.88 15539

As depicted in Table I, both the latency mean value and the

dispersion around it increase with the number of producers.

This behavior is confirmed by the curves depicted in Fig. 4,

where the latency distribution is shifted towards higher values
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as the number of producers increases, being also sparser

around the mean value.

The growth of the mean latency and the variance both derive

from the complexity of the OAuth protocol used to authenti-

cate services. The more concurrent authentication procedures

are performed, the more resources are needed by the central-

ized IdP to accomplish those procedures simultaneously.

Regarding service authorization, Kafka has been stressed

with a number of concurrent producers publishing messages

on the same reference topic, and with one consumer subscrib-

ing to that topic. The role of the AuthN/AuthZ module is

to check the correct authorization of each client during its

publish/subscribe operations. Table II shows the mean and

the variance results of the latency values obtained for service

authorization.

TABLE II
MEAN AND VARIANCE OF AUTHORIZATION LATENCY FOR DIFFERENT

NUMBERS OF PRODUCERS.

Number of Concurrent Producers µ [ms] σ
2 [ms

2]

1 0.146 0.2227

3 6.013 11211.5

5 9.162 20472

As it can be seen from Table II, authorization latency for 1

producer is very small, but it incurs in a performance penalty

of 97.6% when the number of producers increases from 1

to 3, whereas the performance penalty is of 98.4% when the

number of producers increases from 1 to 5. The dispersion

of the measured latency around the mean highly increases for

increasing numbers of producers. This is due to the producers

concurrently requesting authorization to publish new data.

B. Latency overhead in message reception

To evaluate the latency overhead due to the AuthN/AuthZ

module, latency results have been compared with those ob-

tained without the integration of the module. In the latter

case, the only Transport Level Security (TLS) protocol has

been implemented for a secure communication with Kafka.

To derive the frequency of occurrence of latency overhead,

the range of the experimented latency samples has been

subdivided into 2000 bins, of size 1.2 ms each. In Fig. 5,

only the first 12 bins, up to 14.5 ms of latency, have been

plotted. In fact, even if also higher latency values have been

observed, their number is negligible and their sparsity is high.

Therefore, they have not been represented in the figure for the

sake of better clarity.

Given the same number of producers, the performance

behavior with and without the AuthN/AuthZ module are very

similar to each other. Additionally, the latency distribution, in

case of the adoption of the AuthN/AuthZ module, is sparser

in the range depicted in Fig. 5.

To provide a more complete analysis, Table III shows mean

and variance of latency values for all the numbers of producers,

considering all the results collected in the experiments.

If the AuthN/AuthZ module is adopted, the average value

of the latency keeps around 5 ms, almost independently of the
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TABLE III
MEAN AND VARIANCE OF LATENCY RESULTS WITH AND WITHOUT THE

AUTHN/AUTHZ MODULE, FOR DIFFERENT NUMBERS OF PRODUCERS.

Number of

concurrent

producers

µ [ms] σ [ms
2]

With the

proposed

module

Without

the

proposed

module

With the

proposed

module

Without

the

proposed

module
1 5.286 11.727 544.744 6769.822

3 5.811 5.738 1875.025 2238.178

5 5.332 2.476 1550.494 2132.536

number of producers. Conversely, it progressively decreases

for an increasing number of producers if the module is absent.

This behavior is mainly due to cache optimization of IS and

Kafka module, which penalizes the use of a small number

of authentication procedures (a more detailed and accurate

steady-state analysis can be done in the future to evaluate

the effective scalability of the mechanism). By comparing the

variance results, it can be argued that if the AuthN/AuthZ

module is present, the variability around the mean latency

value is smaller, if compared to the case of the only TLS

adoption. This behavior is mainly due to the AuthN and AuthZ

procedures between the module and Kafka.

C. Resource consumption

To test the impact of the module implementation on the

utilized resources, Kafka has been tested with and without

the integration of the AuthN/AuthZ module, evaluating the

temporal evolution of the CPU and memory load for 10

minutes of simulation. Fig. 6 and 7 depict the related results.

From Fig. 6, it can be noticed that after a start-up phase,

which includes the procedure to authenticate Kafka as a trusted

Service Provider in GUARD, the evolution of the CPU load

is similar in the two scenarios with (blue line) and without

(yellow line) the AuthN/AuthZ module. On average, Kafka

with the AuthN/AuthZ module integration requires a CPU

Load of 29%, whereas the base version of it requires a CPU
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Load of 19%. So, the overhead in CPU Load introduced by

the AuthN/AuthZ module is of about 36%.

Fig. 7 shows that Kafka integrating the AuthN/AuthZ mod-

ule has an average memory usage of 956 MB, whereas 834 MB

are required, on average, without the AuthN/AuthZ module

integration. To this end, the introduced overhead is of 13%.

VI. CONCLUSIONS

In this work, an ABAC-based security mechanism has

been presented to protect inter-service communications in the

GUARD Cyber-Security Framework. It has been implemented

as a module that provides authentication procedures and

local authorization policies at each service by relying on a

trusted Identity Provider managed by Security Operators. The

proposed module has been successfully implemented in the

GUARD environment by using a set of services and a Kafka

broker for publish/subscribe messaging.

Experimental results show that latency performances of the

proposed module are very close to those obtained without

its integration, even if this comes at a cost of an increased

resource consumption in terms of CPU and memory. Nev-

ertheless, the proposed module brings a much higher degree

of flexibility in authentication and authorization procedures,

thanks to the ABAC paradigm; this is a great value added in

a complex platform with many heterogeneous modules and

stakeholders.
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