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Abstract
This work investigates a scenario in which a swarm of unmanned aerial vehicles
serves a set of sensor nodes, adopting the time division multiple access scheme. To
ensure fair resource allocation and derive an optimal scheduling plan, a combinatorial
problem subject to binary constraints is formulated. Thanks to its inherent capabilities,
quantum annealing can be used to solve this class of optimization problems. As a
result, the original problem is mapped to quadratic unconstrained binary optimization
form, in order to be processed by a quantum processing unit. Since state-of-the-art
quantum annealers have a limited number of quantum bits (qubits) and limited inter-
qubit connectivity, the scheduling plan is obtained by employing a hybrid quantum-
classical approach. Then, a comparison with two classical solvers is performed in
terms of acquired data, objective function values, and execution time.

Keywords Internet of drones · IoT networks · Quantum computing · Quantum
optimization · Quantum annealer

1 Introduction

Quantum computing [1] is a disruptive paradigm that takes advantage of quantum
mechanics theory and its properties to solve challenging problems.Nowadays, industry
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Fig. 1 Reference scenario

and academia are puttingmuch effort in increasing the number of quantumbits (qubits)
in quantum devices. Differently from classical bits, a qubit can assume a superposition
of two states until a measurement takes place, thus allowing computation capabilities
to exponentially grow. However, due to the decoherence principle, the number of
qubits is limited. In fact, maintaining the state of a qubit is very challenging, since it
requires specialized infrastructure equipped with a cooling system able to maintain a
near absolute zero temperature.

Despite the challenges introducedby this powerful technology, it is employed in sev-
eral application domains [2] such as (i) chemistry, (ii) machine learning, (iii) finance,
and (iv) telecommunications [3]. The latter gathered the attention of the scientific
community which, in the future, envisions the deployment of quantum computing
devices at the edge of 6G networks to enhance service provisioning [4]. According
to its inherent characteristics, quantum computing can be employed to solve binary
integer programming problems.

The main algorithm used to solve this class of optimization problems is quantum
annealing (QA). Similarly to simulated annealing (SA), it is inspired by the annealing
process in metallurgy. In this case, instead of the temperature decrease, the strength
of the transverse field is used to control the probability of quantum tunneling between
states. In the end, the system remains in the lowest energy level which corresponds to
the solution of the original problem. The first physical implementation was realized
in 2011 by D-Wave Systems [5].

Recently, the pros and cons brought byquantumoptimization havebeen investigated
in the telecommunications field, mainly focusing on scheduling in wireless networks.

In particular, [6] investigates a scenario in which a set of sensors are organized in a
tree network topology as a part of a wireless network. Several parent sink nodes are in
charge of collecting and aggregating sensing data generated by their child nodes. With
the aim of minimizing the overall collecting time, an optimization problem is formu-
lated to obtain the optimal scheduling plan, while considering constraints related to
interference among nodes and time divisionmultiple access (TDMA) adopted scheme.
Quantum annealing together with other methods are used to find the solution and
obtained results are compared in terms of quality and computational time. With the
same aim, [7] investigates a similar scenario in which a K-hop interference model
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is adopted. A weighted maximum independence set (WMIS) problem is formulated
based on a conflict graph corresponding to possible collisions due to the activation of
network nodes. The scheduling solution obtained through QA is then compared with
the SA’s one, where the effect of extra penalty weight adjustment is discussed. Lately,
the same authors studied the same scenario in [8] but with particular focus on the
adoption of Dirichlet protocol in wireless networking, showing significant improve-
ments in the D-Wave 2X solution compared with that of its predecessor, the D-Wave
II.

Although interesting, these works do not consider the channel model and the opti-
mization of network resources. To fill the gap, [9] gives a preliminary evaluation of
QA algorithm applied to resource scheduling, emphasizing its benefits and drawbacks.
This work further investigates these aspects by envisioning a scenario, depicted in Fig.
1, in which a swarm of drones gathers data generated by a set of sensors while con-
sidering a widely adopted communication model for unmanned aerial vehicle (UAV).
Since the systemadopts theTDMAprotocol, thiswork aims to fairly distribute network
resources to sensor nodes (SNs) by employing a hybrid-quantum classical approach.
As a result, a binary optimization problem is derived and then reformulated as a binary
quadratic (BQ) form in order to solve it on D-Wave’s quantum annealer. To evaluate
its potential, a comparison with classical SA and tabu search (TS) algorithm is car-
ried out. The resulting scheduling plans are then evaluated in terms of cost function
value, computational time, and data rate. Results show that hybrid quantum-classical
approach is still in its early stage. In fact, classical algorithms perform better in terms
of execution time, especially in case of a low number of SNs, while no significant
advantages in terms of solution quality emerge.

The rest of the work is organized as follows: Section 2 gives a brief introduction to
quantum optimization. Sections 3 and 4 describe the system model and the problem
formulation, respectively. Section 5 presents the obtained numerical results. Finally,
Sect. 6 closes the work and draws future research perspectives.

2 Background

Quantum optimization is employed to overcome the classical limits in solving com-
binatorial optimization problems. In particular, QA is a metaheuristic algorithm able
to find the global minima of a given problem by manipulating a set of qubits states.
Such a problem needs to be formulated through a time-dependent Hamiltonian H(t)
defined as

H(t) = s(t)H0 + (1 − s(t))H1, (1)

where H0 is an initial Hamiltonian whose ground state, i.e., minimal energy configura-
tion, is easy to find and prepare. H1 represents the given problemand, as a consequence,
its lowest energy level corresponds to the optimal solution. The adiabatic theorem of
quantum mechanics states that if s(t), which mathematically represents the transition
function, is decreased slowly enough from 1 to 0, the system converges to a state close
to the ground one of H1 [10]. Concretely, at the beginning of the process H(0) = H0,
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while at the end of the computation, after τ seconds, H(τ ) = H1. The above process
inspired the construction of D-wave’s quantum processing units (QPUs), which are a
physical representation of an undirected graph with a limited number of qubits and
connections among them. On this basis, a QPU implementing a quantum annealer
algorithm is able to find the optimal solution of a problem in BQ form, i.e., a quadratic
polynomial of binary variables. Such a model can be expressed in two equivalent for-
mulations, i.e., Isingmodel and quadratic unconstrained binary optimization (QUBO).

The former is commonly used in statistical mechanics and considers the solution
variables as spins si ∈ {+1,−1}, which can assume two states, i.e., spin up (↑) and spin
down (↓). Relationships between the spins, represented by couplings, are correlations
or anti-correlations. The objective function defined through the Ising model is

N∑

i=1

hi si +
N∑

i=1

N∑

j=i+1

Ji, j si s j , (2)

where N denotes the number of qubits, hi describes the linear coefficients, i.e., qubit
biases, and Ji, j are the coupling strengths of the quadratic spin terms.

The latter is traditionally employed in computer science, since it uses binary vari-
ables, i.e., xi , which remind classical bits. The QUBO objective function can be
expressed as follows:

N∑

i

Qi,i xi +
N∑

i< j

Qi, j xi x j , (3)

where Q ∈ R
N×N is an upper triangular matrix, whose diagonal elements corre-

spond to linear coefficients, while off-diagonal ones are the coupled coefficients. An
equivalent concise matricial form is

xT Qx . (4)

The above formulation, which is used in this work, does not inherently account for the
presence of constraints that have to be included by adopting specific strategies, such
as penalty methods. It is worth noting that (2) and (3) are exchangeable by means of
a linear transformation, i.e., xi = (si + 1)/2.

Once the BQ problem is derived, it is necessary to map it onto the constrained
topology of the QPU. This process, called embedding, is practically done by associ-
ating the linear coefficients to qubit biases and quadratic ones to coupling strengths.
Furthermore, whereas the problem structure cannot be directly embedded into the
QPU topology, e.g., due to the limited connection between qubits, a logical variable
is represented by a chain of physical qubits. Note that a solution is consistent if all
qubits in a chain have the same value. The embedding can be performed manually or
by heuristic algorithms, such as MinorMiner [11].
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3 Systemmodel

The mission duration T is discretized into k = 1, . . . , K intervals, each one lasting
δt seconds. A swarm of m = 1, . . . , M drones, located at qm ∈ R

3, hover over a
set of n = 1, . . . , N SNs, placed in un ∈ R

3. Moreover, it is assumed that each
drone and each node are equipped with one wireless communication unit. To avoid
interference among UAVs and SNs, the communications toward different drones take
place on different sub-bands, by adopting the orthogonal frequency multiple access
(OFDMA) scheme, and different timeslots, by employing the TDMA scheme. There-
fore, the scheduling plan is described by means of a 2D binary matrix x ∈ {0, 1}M×N ,
containing column vectors denoted as xn[k] ∈ {0, 1}M×1 and its components defined
as xm,n[k]. Specifically, only when xm,n[k] = 1, the mth UAV serves the nth SN.
It is further assumed that all nodes are equipped with a wake-up receiver which
allows to (i) recover from a sleep state to save energy and (ii) identify the associ-
ated UAV and its corresponding sub-band. Besides, the transmission power of each
SN is constant and hence it is defined as Pn∀n. The channel gain [12] between a UAV
m and a node n, for each k, is equal to hm,n =

√
β0d

−α
m,n , where β0 is the reference

channel power gain, α is the pathloss coefficient, and dm,n = ∥∥qm − un
∥∥ is the UAV-

SN distance. Therefore, the channel capacity of a UAV-SN link can be expressed as

rm,n = B log2

(
1 + Pn|hm,n|2

σ 2

)
, where σ 2 denotes the noise power and B is the band-

width. Given the mth UAV, rn = [r1,n, . . . , rm,n, . . . , rM,n]T is the column vectors
containing the achievable data rates of all SNs.

4 Problem definition

To reduce the computational complexity, the proposed formulation accounts for a fixed
timeslot j , which corresponds to lower the dimensionality from K ×M×N toM×N .

4.1 Classical formulation

To derive the whole scheduling plan, it is necessary to solve the following problem
for each timeslot:

(P1) :min
x[ j]

N∑

{n,n′}=0,
n �=n′

⎛

⎝
j∑

k=1

xn[k]Trn −
j∑

k=1

xn′ [k]Trn′

⎞

⎠
2

s.t.

N∑

n=1

xm,n[ j] = 1, ∀m : 1...M, (5)

M∑

m=1

xm,n[ j] = 1, ∀n : 1...N , (6)
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xm,n[ j] ∈ {0, 1}, ∀m : 1...M, n : 1...N . (7)

Problem (P1) aims to optimally allocate timeslot j to SNs, thus fairly distributing
resources throughout the mission. This can be mathematically modeled as minimizing
the difference between data rates for each sensor couple. It is worth noting that the
objective function takes into consideration the information exchanged in previous
instants. In fact, given {n, n′}

� j,n,n′ �
j−1∑

k=1

xn[k]Trn −
j−1∑

k=1

xn′ [k]Trn′, (8)

is a known quantity, derived from past iterations (when j = 1 also � j,n,n′ = 0).
Therefore, an equivalent formulation of (P1) is

(P2) :min
x[ j]

N∑

{n,n′}=0,
n �=n′

(
xn[ j]Trn − xn′ [ j]Trn′ + � j,n,n′

)2
s.t. (5)(6)(7)

Constraint (5) imposes that in timeslot j , nomore than one sensor can communicate
with the sameUAV. Similarly, (6) states that a drone has to serve a single SN, in instant
j . The constraint (7) guarantees that the scheduling plan is composed of binary values.

Algorithm 1 Proposed scheduling optimization algorithm
1: Initialize the sensors and drones position as qm and un , respectively;
2: Compute channel capacity rm,n for each drone-sensor couple;
3: Let �1,n,n′ = 0;
4: for k : 1 to K do
5: Solve (P3) to obtain the optimal solution {x[k]∗};
6: Compute �k+1,n,n′ as described in (8);
7: end for

4.2 QUBO formulation

To solve the problem by employing a QPU, the original problem (P2) is mapped to
QUBO form [13]. Therefore, the final objective function is defined as the Hamiltonian
H = HA + HB + HC where

HA =
N∑

{n,n′}=0,
n �=n′

(
xn[ j]Trn − xn′ [ j]Trn′ + � j,n,n′

)2
,

HB = λ

(
1 −

N∑

n=1

xm,n[ j]
)2

,
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HC = η

(
1 −

M∑

m=1

xm,n[ j]
)2

and {λ, η} > 0 as penalty factors. Note that the objective function of (P2) is already
in quadratic form and, hence, does not require any manipulation. On the contrary,
constraints (5) and (6) have been reformulated involving the quadratic penalty method
[13]. Besides, (7) is inherently addressed since quantum optimization is employed.
The final unconstrained formulation of the QUBO problem is

(P3) : min
x[ j]

N∑

{n,n′}=0,
n �=n′

(
xn[ j]Trn − xn′ [ j]Trn′ + � j,n,n′

)2

+ λ

(
1 −

N∑

n=1

xm,n[ j]
)2

+ η

(
1 −

M∑

m=1

xm,n[ j]
)2

,

that can be implemented on a quantum system to be solved, as described in Algorithm
1.

5 Numerical results and discussion

In this section, a simulation campaign has been conducted to evaluate the effectiveness
of the proposed formulation by employing the D-wave leap hybrid solver, which uses
a hybrid quantum-classical approach. This solver is suitable for problems with a large
number of variables that cannot be mapped directly into QPU’s topology. In particular,
a classical process divides the original problem into sub-problems that are dispatched
to theQPU and to the cloud’s classical computing capabilities. The obtained results are
compared with two classical optimization algorithms, i.e., SA and TS, implemented
in the D-Wave Python library, running on a computer with an Intel i5 6200U @ 2.8
GHz and 4 GB of RAM.

For the D-wave leap hybrid solver, default parameters have been adopted, e.g.,
number of reads set to 100. Besides, the minimum penalty factors have been chosen
such that no improvement of the solution is obtained, i.e., λ = 1017, η = 102.
The mission time T has been split into K = 60 timeslot of δt = 1 second each.
Furthermore, M = 4 drones are deployed in [15 15 80]T , [20 70 100]T , [75 20 110]T ,
and [80 80 90]T , serving N = {25, 50, 75, 100} SNs uniformly distributed over a
100x100 m area. As for the transmission, B = 1 MHz, Pn = 10 mW ∀n, α = 2,
σ 2 = N0B, and N0 = −174 dBm/Hz [14].

Given the scheduling plan x, obtained as the solution of problem (P3), it is possible
to compute the sum-rates of each sensor at the end of the mission.

Thanks to the proposed formulation, as can be seen from mean and standard devia-
tion reported in Table 1, UAVs are able to fairly serve nodes regardless the number of
SNs and algorithm used, without showing any sensible difference. As a matter of fact,
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Table 1 Sum-rate means and standard deviations of the algorithms

Algorithms
H SA TS
Mean Std Mean Std Mean Std

SNs 25 263.09 12.074 264.41 12.783 262.55 11.697

50 132.38 10.556 132.53 10.748 132.31 10.417

75 87.72 13.084 87.86 10.769 87.23 10.41

100 65.69 13.084 65.88 13.129 65.45 12.961

Fig. 2 Acquired data at the end
of the mission, with N = 25

Fig. 3 Acquired data at the end
of the mission, with N = 50

when the number of SNs approaches the number of drones, the amount of gathered
data increases since a drone serves less sensors during the whole mission, vice versa
when M 	 N the sum-rate decreases. Indeed, in the first configuration, the swarm is
able to collect ∼ 260 Mbits, while in the last one just ∼ 65 Mbits.

To provide further insights, for each sensor, the sum-rates in case of N = 25 and
N = 50 are shown in Figs. 2 and 3, respectively. Although different amounts for
each SN are exhibited, the transmission fairness is clearly achieved, regardless the
employed algorithm.

A comparison among the different objective function curves for different algorithms
is presented inFig. 4.When25SNs are considered, the classical SAalgorithmperforms
worse than the hybrid approach and TS algorithm, which instead provide comparable
results. As the number of SNs increases, i.e., M 	 N , a difference is still present
although irrelevant.

Finally, a thorough comparison of the algorithms’ execution time, to solve the
formulated optimization problem, is hereby analyzed. For what concerns the hybrid
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Fig. 4 Comparison of objective function curves with different number of SNs

Fig. 5 Comparison of execution time for each solver

solver, the total time and the QPU access time are reported separately [15, 16]. The
latter is a portion of overall hybrid solver time and consists of (i) a one-time setup
procedure to prepare the QPU and (ii) the sampling time. It should be noted that the
embedding procedure period, the network latency and the queuing time, which all take
approximately 4 s, are not included in this analysis [17].

As depicted in Fig. 5, regardless the number of SN, the hybrid solver takes about 3 s
to complete the process. Instead, for N = 25 and N = 50, classical algorithms perform
slightly better in terms of execution time, which confirms the results obtained in [15–
17]. As the number of sensors increases, the execution time of SA and TS increases as
well. In particular, for N = 75, classical algorithms and hybrid solver give comparable
results. This trend remains for N = 100, except for SA which performs worse, i.e.,
∼ 5 s.
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6 Conclusions

In this work, scheduling optimization is employed to fairly allocate channel resources
of a UAV-enabled Internet of Things (IoT) network. A combinatorial problem stem
from the proposed formulation,which is first encoded intoQUBOformand then solved
by (i) hybrid quantum-classical approach, (ii) SA, and (iii) TS.According to the results,
quantum optimization is still in its infancy. In fact, no significant gain is observed in
solution quality. From a execution time perspective, instead, classical algorithms take
less or comparable time with respect to the hybrid solver, with the only exception
of SA in case of large number of sensors. More research is needed to overcome the
limitations brought by quantum computing applied to optimization problems. Future
works will investigate the joint optimization of transmission scheduling plan, multiple
drones’ trajectories, as well as the correspondent energy consumption.

Acknowledgements This work has been supported by the PRIN project no. 2017NS9FEY entitled “Real-
time Control of 5G Wireless Networks: Taming the Complexity of Future Transmission and Computation
Challenges” funded by the Italian MIUR, the project entitled “The house of emerging technologies of Mat-
era (CTEMT)” funded by the ItalianMISE, the ItalianMIUR PON projects AGREED (ARS01_00254), and
the Warsaw University of Technology within IDUB programme (Contract No. 1820/29/Z01/POB2/2021).

Data availability Data sharing not applicable to this article as no datasets were generated or analyzed during
the current study.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

References

1. Gyongyosi, L., Imre, S.: A survey on quantum computing technology. Comput. Sci. Rev. 31, 51–71
(2019)

2. Caleffi, M., Cacciapuoti, A.S., Bianchi, G.: Quantum Internet: from communication to distributed
computing! In: Proceedings of the 5th ACM International Conference on Nanoscale Computing and
Communication (2018)

3. Kim, M., Venturelli, D., Jamieson, K.: Leveraging quantum annealing for large MIMO processing
in centralized radio access networks. In: Proceedings of the ACM Special Interest Group on Data
Communication, pp. 241–255 (2019)

4. Vista, F., Musa, V., Piro, G., Grieco, L.A., Boggia, G.: Network intelligence with quantum computing
in 6g and b6g: Design principles and future directions. In: 2021 IEEE Globecom Workshops (GC
workshops), pp. 1–6 (2021)

5. Johnson, M.W., Amin, M.H., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley, A.J.,
Johansson, J., Bunyk, P.: Quantum annealing with manufactured spins. Nature 473(7346), 194–198
(2011)

6. Ishizaki, F.: Computational method using quantum annealing for TDMA scheduling problem in wire-
less sensor networks. In: 2019 13th International Conference on Signal Processing andCommunication
Systems (ICSPCS), pp. 1–9 (2019)

7. Wang, C., Chen, H., Jonckheere, E.: Quantum versus simulated annealing in wireless interference
network optimization. Sci. Rep. 6(1), 1–9 (2016)

8. Wang,C., Jonckheere, E.: Simulated versus reduced noise quantumannealing inmaximum independent
set solution to wireless network scheduling. Quantum Inf. Process. 18(1), 1–25 (2019)

9. Vista, F., Iacovelli, G., Grieco, L.A.: Quantum scheduling optimization for UAV-enabled IoT networks.
In: Proceedings of the CoNEXT Student Workshop. CoNEXT-SW ’21, pp. 19–20 (2021)

123



Hybrid Quantum-Classical Scheduling... Page 11 of 11    47 

10. Hauke, P., Katzgraber, H.G., Lechner,W.,Nishimori, H., Oliver,W.D.: Perspectives of quantum anneal-
ing: methods and implementations. Rep. Prog. Phys. 83(5), 054401 (2020)

11. Cai, J., Macready, W.G., Roy, A.: A practical heuristic for finding graph minors. arXiv:1406.2741
(2014)

12. Zeng, Y., Zhang, R.: Energy-efficient UAV communication with trajectory optimization. IEEE Trans.
Wireless Commun. 16(6), 3747–3760 (2017)

13. Glover, F., Kochenberger, G., Du, Y.: Quantum Bridge Analytics I: a tutorial on formulating and using
QUBO models. 4OR 17(4), 335–371 (2019)

14. Iacovelli, G., Grieco, L.A.: Drone swarm as mobile relaying system: a hybrid optimization approach.
IEEE Trans. Veh. Technol. 70(11), 12272–12277 (2021)

15. Feld, S., Roch, C., Gabor, T., Seidel, C., Neukart, F., Galter, I., Mauerer, W., Linnhoff-Popien, C.: A
hybrid solution method for the capacitated vehicle routing problem using a quantum annealer. Front.
ICT 6, 13 (2019)

16. Hussain, H., Javaid, M.B., Khan, F.S., Dalal, A., Khalique, A.: Optimal control of traffic signals using
quantum annealing. Quantum Inf. Process. 19(9), 1–18 (2020)

17. Kizilirmak, R.C.: Quantum annealing approach to NOMA signal detection. In: 2020 12th International
Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), pp. 1–5
(2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

http://arxiv.org/abs/1406.2741

	Hybrid quantum-classical scheduling optimization in UAV-enabled IoT networks
	Abstract
	1 Introduction
	2 Background
	3 System model
	4 Problem definition
	4.1 Classical formulation
	4.2 QUBO formulation

	5 Numerical results and discussion
	6 Conclusions
	Acknowledgements
	References




