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Abstract—Unmanned Aerial Vehicles (UAVs) combined with
Intelligent Reflective Surfaces (IRSs) represent a cutting-edge
technology for improving the channel capacity of wireless com-
munications, by capitalizing on UAVs’ 3D mobility coupled with
the IRSs’ smart radio capabilities. This work envisions a scenario
in which a swarm of UAVs equipped with IRSs serves multiple
Internet of Things (IoT) Ground Nodes (GNs) concurrently
transmitting to a single Base Station (BS) via OFDMA. The
huge number of passive elements composing the IRSs introduces
a significant complexity in the mission design. Therefore, each
IRS is divided into patches that can be simultaneously used to
serve different nodes. Considering general Rician fading, a com-
prehensive channel model for IRS-assisted UAV-aided networks
is derived. Then, a multi-objective mixed-integer non-linear
programming problem is conceived to maximize the sum-rate of
the GNs and, at the same time, minimize the difference among
the users’ data rates, by jointly optimizing the trajectories and
the phase shift matrices. This non-convex problem, reformulated
in terms of scheduling (i.e., patch-GN assignment), is challenging
to solve. Hence, it is rearranged as a Markov Decision Process
and a quasi-optimal solution is obtained via Deep Reinforcement
Learning. Extensive simulation analysis is performed to validate
the results and the accuracy of the proposed model.

Index Terms—Internet of Drones, Intelligent Reflective Sur-
face, Channel Modeling, Deep Reinforcement Learning.

I. INTRODUCTION

Internet of Drones (IoD) [1] is a disruptive paradigm which
is expected to play a key role in upcoming 6G communica-
tions. The inherent versatility of Unmanned Aerial Vehicles
(UAVs) enables a vast plethora of applications [2], such
as sensing, delivery, surveying, and patrolling. Information
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exchange with ground infrastructures often plays a central role
in these use cases. Moreover, UAVs can act as Flying Base
Station (FBS) or relays, thus enhancing the communication ca-
pabilities of Internet of Things (IoT) networks [3], [4]. Indeed,
IoT nodes are usually capability-constrained devices which can
greatly benefit from the aid provided by drones’ versatility
[5]–[7]. Another cornerstone of future cellular communica-
tions are Intelligent Reflective Surfaces (IRSs), also named
Reconfigurable Intelligent Surfaces (RISs). These metasur-
faces are composed by a matrix of elements, namely Passive
Reflective Units (PRUs), and have demonstrated capabilities
of controlling the radio environment. IRS-assisted wireless
systems grant significant performance improvement, enhanc-
ing the channel quality perceived by communicating nodes.
In particular, IRSs are able to shift incident electromagnetic
waves by a programmable phase, thus yielding beamforming.
This unique property is at the basis of the emerging concept
of Smart Radio Environments [8].

Early literature has mainly considered to deploy IRSs on
building facades, so as to reflect incoming signals towards
multiple users. Recently, the possibility to equip UAVs with
IRSs is attracting interest. Drones mobility adds more degrees
of freedom that can be exploited to further improve the channel
quality, with great advantage for IoT applications [9], [10].
Indeed, the high mobility of drones yields a better Line of
Sight (LoS) link and a lower pathloss, due to the possibility
to adjust the IRS location. Moreover, IRSs are characterized by
a limited Size, Weight and Power consumption (SWaP) with
respect to common phased-array antennas [11], which allows
to prolong the mission duration, while still providing broad
coverage. However, this comes with new challenges [12], [13]
and in particular with the necessity of an accurate, general-
purpose, and flexible channel model. Indeed, the presence of
a Base Station (BS) with multiple IRSs and Ground Nodes
(GNs), leads to interference patterns that need to be taken
into account in case of system design and assessment.

This motivated recent studies that started to investigate the
achievable performance of IRS-assisted UAV-aided systems.
In [14] a non-convex optimization problem is formulated
for the joint design of UAV trajectory, IRS’s phase shifts,
scheduling, and resource allocation. The system employs
Orthogonal Frequency Multiple Access (OFDMA), which
introduces frequency and spatial selectivity in the fading of
the resulting channel. However, as the majority of the present
literature, it considers only the LoS component and hence a
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deterministic channel which indeed is not able to capture the
full characteristics of an actual wireless channel. In this regard,
the literature on IRS has investigated different directions to
obtain more realistic channel models. In [15] a formulation is
proposed for IRS-aided wireless networks over Rician fading
channels, which enables closed-form approximations of outage
probability, average symbol error probability, and channel
capacity. However, in this contribution the presence of a direct,
yet weak, transmitter-receiver link is not considered. To fill
this gap, [16] introduces a Rician model to account for the
LoS, which yields a closed-form upper bound for the ergodic
capacity, and a tight approximation for the outage probability.
However, the resulting distribution cannot be recast as a
known one, which limits the practical tractability. To partially
circumvent this issue, simplified expressions are provided in
[15], [16], but only for the asymptotic regime.

More tractable closed-form expressions considering Rician
channels have been recently derived in [17], and evaluated in
terms of outage and symbol error probability. However, the
signal components are assumed to add coherently, which is
not always strictly verified. In fact, there could be scenarios in
which the same IRS has to serve multiple GN, thus introducing
interference among surface elements. Besides, the presence
of a direct, though weak, link is not considered, which
would instead require to consider the additional interference
between PRUs and GN. In order to account for the channel
stochasticity, where interference between PRUs, BS and GNs
is present, while considering the presence of a (possibly weak)
GN-BS link, [18] proposes a channel gain approximation for
IRS-assisted UAV-aided OFDMA communications. Although
this contribution acknowledges several aspects of the commu-
nications, it does not explicitly model a multi-user multi-drone
scenario. Moreover, the model introduces a huge number of
degrees of freedom, one for each element of the IRS, which
guarantees a great customization but at the same brings a
tremendous complexity in terms of beam design. On the other
hand, in [19] the number of degrees of freedom of the surface
is drastically reduced by imposing a constraint on the phase
shifts, which results to be extremely advantageous in terms of
complexity but limits the surface to reflect the signal towards
a single direction per time. Besides, [19] treats only a piece
of the channel model, in a deterministic way, considering the
sole path loss and not the stochastic term due to fading.

In light of the above, the major contributions given by this
work are listed below.

• A comprehensive channel model for UAV-aided IRS-
assisted OFDMA systems is derived. Specifically, a
swarm of drones equipped with IRSs is considered. The
latter are split into an arbitrary number of patches to
simultaneously serve multiple GNs. The proposed for-
mulation captures inherent dependencies on the relative
positions of the actors (UAVs, GNs, BS) in the environ-
ment. To this aim, constructive/destructive interference
patterns are explicitly modeled through a single control-
lable direction (two degrees of freedom) per patch. The
derived expressions can be specialized in different cases
as (i) absence of the direct BS-GN link, (ii) scattered
(Rayleigh) BS-GN link, (iii) worst possible UAV-BS

alignment, and (iv) best possible UAV-BS alignment.
Furthermore, the expression of the Signal-to-Noise Ratio
(SNR) and maximum achievable data rate, given a certain
outage probability, are derived and a theoretical analysis
is provided.

• A Multi-Objective Mixed-Integer Non-Linear Program-
ming (MINLP) problem is formulated starting from the
proposed channel model. The aim is to maximize the
sum-rate of GNs and, at the same time, minimize the
differences among rates. Each node is served by a single
BS (direct link) and by a swarm of drones (reflected
links), thus requiring the jointly optimization of the phase
shift matrices of the IRSs and the trajectories of the
drones. To achieve this goal a suitable objective function
is defined. It includes a fairness factor that determines
the importance of a uniform distribution of the resources.
The problem is then reformulated in terms of patch
scheduling, i.e., patch-GN assignment. To overcome the
intractability of the non-convex cosine patterns related to
wave interference, the problem is finally rearranged as a
Markov Decision Process (MDP) and solved via a Deep
Reinforcement Learning (DRL) method i.e., a Proximal
Policy Optimization (PPO)-based approach.

• An extensive simulation campaign is carried out to assess
the validity of this work. First, the theoretical findings are
corroborated by a thorough analysis which demonstrates,
employing Monte Carlo simulations, the accuracy of the
proposed channel model. Then, the solutions obtained by
the DRL algorithm are analyzed for different number
of patches and fairness levels. To further prove the
effectiveness of the proposal, the obtained solution is
compared with the special case of absence of the swarm
and with a baseline approach.

The results of this work clearly indicate that (i) the presence
of IRS-equipped drones strongly improves the channel capac-
ity of the GNs, and (ii) the proposed solution outperforms the
baseline in terms of total and average transmitted data.

The remainder of the present contribution is as follows:
Section II describes the adopted system model. Section III
presents the proposed channel model. Section IV describes
the problem formulation and the proposed solution. Section V
analyzes accuracy of the model and investigates the obtained
numerical results. Finally, Section VI concludes the work and
draws future research perspectives.

Notations adopted in this work are hereby described. Bold-
face lower and capital case letters refer to vectors and matrices,
respectively; j =

√
−1 is the imaginary unit; atan2 (x)

denotes the four-quadrant arctangent of a real number x; xT is
the transpose of a generic vector x; x⊗y denotes the Kronecker
product between two generic vectors; diag(x) represents a
diagonal matrix whose diagonal is given by a vector x; arg (x)
returns the phase of a complex number x; x ∼ CN (µ, σ2)
define a circularly symmetric complex Gaussian distribution x
with mean µ and variance σ2. For clarity, the adopted notations
of this paper are summarized in Table I.
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Symbol Description Symbol Description
T Total duration of the mission. dBG

g Distance between the BS and g-th GN.
K Number of discrete timesteps of the mission. dRG

k,g,u,n,m Distance between the g-th GN and the (n,m)-th PRU.
U Number of UAVs involved in the mission. dBR

k,u,n,m Distance between the BS and (n,m)-th PRU.
G Number of GNs deployed on the ground. gBG

k,i,g The channel gain between the g-th GN and the BS.
I Number of available subcarriers. βBG The BS-GN channel power gain at the distance of 1 m.
N Number of PRUs on the rows. αBG The pathloss exponent for BS-GN link.
M Number of PRUs on the columns. κBG

g K-factor for BS-GN link.
δt Duration of a timestep. ΩBG

g Average power for BS-GN link.
qBS Location of the BS. gRG

k,i,g,u,pu
The channel gain between a patch and a GN.

qG
g Location of the g-th GN. gBR

k,i,u,pu
The channel gain between a patch and the BS.

qU
k,u Location of the u-th drone in the k-th timestep. Φk,u,pu The IRS phase shift matrix of pu-th patch of u-th UAV.

vk,u Speed of the u-th drone in the k-th timestep. Gk,i,g The overall channel gain perceived by g-th GN.
w Area of a single PRU. Ck,i,g The channel capacity of the overall link of the g-th GN.
ak,u,m,n The amplitude of the (n,m)-th element. fc The carrier frequency.
ϕk,u,m,n The phase shift of the (n,m)-th element. δf The bandwidth of a single subcarrier.
Pu Number of patches of the u-th IRS. ρk,i,g The transmit power of the g-th GN.
Eu,pu Number of PRUs in pu-th patch of the u-th IRS. N0δF The termal noise power.

TABLE I: Main notation adopted in this work.

II. SYSTEM MODEL

The envisioned scenario, depicted in Figure 1, considers a
swarm of U IRS-equipped UAVs is in charge of optimally
reflecting the incident signal coming from a set of G GNs to
enhance the channel quality at a single BS, located at a known
position qBS = [xB yB zB]T ∈ R3. Both GNs and the BS are
equipped with a single-antenna communication apparatus. The
entire mission lasts T seconds, split into K timeslots of δt
seconds each. Therefore, the UAVs fly following trajectories
discretized into K waypoints qU

k,u = [xU
k,u y

U
k,u z

U
k,u]

T ∈ R3

with a speed denoted by vk,u = [vX
k,u vY

k,u vZ
k,u]

T ∈ R3,
u = 1, . . . , U , k = 1, . . . ,K. IRSs are composed by N ×M
PRUs, all with the same size w = dX × dY m2. The (n,m)-
th element (i) has a center defined as [(m − 1

2 )d
X, (n −

1
2 )d

Y)]T with m = 1 − M
2 , . . . ,

M
2 , n = 1 − N

2 , . . . ,
N
2

and (ii) reflects the incident signal through a complex factor
Γk,u,n,m = ak,u,n,me

jϕk,u,n,m , where ak,u,n,m is the ampli-
tude and ϕk,u,n,m ∈ [−π, π) is the phase shift. The IRSs are
assumed to be controlled by the BS through a dedicated control
channel. PRUs of the u-th IRS are grouped into Pu patches of
Eu,pu = ER

u,pu × EC
u,pu = (Ru,pu − ru,pu)× (Cu,pu − cu,pu)

elements, pu = 1, . . . , Pu, where 1 − M
2 ≤ ru,pu ≤ Ru,pu ≤

. . . ≤ ru,pu ≤ Ru,pu ≤ M
2 and 1 − N

2 ≤ cu,pu ≤ Cu,pu ≤
. . . ≤ cu,pu ≤ Cu,pu ≤ N

2 . Besides, GNs are located at known
positions qG

g = [xG
g y

G
g z

G
g]

T ∈ R3, g = 1, . . . , G, leading to
the definition of the distance dBG

g =
∥∥qBS − qG

g

∥∥ from the BS,
which does not change over time*. On the opposite, UAV-GN
and BS-UAV distances depend on k-th timeslot since they are
a function of the time-varying UAV positions. In particular,
in far-field, the distance between each surface element of the
u-th drone and the g-th GN can be approximated as [19]

dRG
k,g,u,n,m ≃ dRG

k,g,u −
(
m− 1

2

)
dX sin θRG

k,g,u cosφ
RG
k,g,u+

−
(
n− 1

2

)
dY sin θRG

k,g,u sinφ
RG
k,g,u, (1)

where dRG
k,g,u is the distance from the center of the IRS,

while θRG
k,g,u and φRG

k,g,u denote the vertical and horizontal

*In this work, since the kinetics-related parameters are known to the BS,
the Doppler effect is assumed to be perfectly compensated.

Fig. 1: Reference scenario.

Angles of Arrival (AoA) of the signal. In particular, θRG
k,g,u =

acos

(
zU
g−z

G
k,u

dRG
k,g,u

)
and φRG

k,g,u = atan2

(
yG
g−y

U
k,u

xG
g−xU

k,u

)
. Similarly,

the distance between the BS and each PRU of the u-th drone
is

dBR
k,u,n,m ≃ dBR

k,u −
(
m− 1

2

)
dX sin θBR

k,u cosφ
BR
k,u+

−
(
n− 1

2

)
dY sin θBR

k,u sinφ
BR
k,u, (2)

where dBR
k,u is defined as the distance from the center of the

IRS, while θBR
k and φBR

k are the vertical and horizontal Angles

of Departure (AoD), so that θBR
k,g,u = acos

(
zU
g−z

B
k,u

dBR
k,g,u

)
and

φBR
k,g,u = atan2

(
yB
g−y

U
k,u

xB
g−xU

k,u

)
.

III. PROPOSED CHANNEL MODELING

The whole communication system employs OFDMA which
allows to mitigate the interference among the network entities.
As a consequence, the whole available bandwidth B is split
into I subcarriers of δF Hz each that can be assigned to GNs
to transmit. Moreover, the power radiation pattern functions,
including antenna gains, which characterize the antennas of
GNs, BS, and IRSs are denoted by F GN(θ, φ),∀g, F BS(θ, φ),
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hRG, LoS
k,i,g,u,pu

=

[
ej2πfi

(cu,pu− 1
2 )dX sin θRG

k,g,u cosφRG
k,g,u

c · · · ej2πfi
(Cu,pu− 1

2 )dX sin θRG
k,g,u cosφRG

k,g,u
c

]T
⊗
[
ej2πfi

(ru,pu− 1
2 )dY sin θRG

k,g,u sinφRG
k,g,u

c · · · ej2πfi
(Ru,pu− 1

2 )dY sin θRG
k,g,u sinφRG

k,g,u
c

]T
, (8)

hBR, LoS
k,i,u,pu

=

[
ej2πfi

(cu,pu− 1
2 )dX sin θBR

k,u cosφBR
k,u

c · · · ej2πfi
(Cu,pu− 1

2 )dX sin θBR
k,u cosφBR

k,u
c

]T
⊗
[
ej2πfi

(ru,pu− 1
2 )dY sin θBR

k,u sinφBR
k,u

c · · · ej2πfi
(Ru,pu− 1

2 )dY sin θBR
k sinφBR

k,u
c

]T
, (12)

Gk,i,g,u,pu = gBR
k,i,u,pu

TΦk,u,pugRG
k,i,g,u,pu

= ηk,g,u

Ru,pu∑
n=ru,pu

Cu,pu∑
m=cu,pu

hBR
k,i,u,pu,n,m

TΓk,u,pu,n,mh
RG
k,i,g,u,pu,n,m︸ ︷︷ ︸

hBRG
k,i,g,u,pu,n,m

, (15)

and F IRS(θ, φ), respectively. As known, these functions define
how the transmitted/received power at each antenna varies
along a certain direction in inclination θ and azimuth φ angles.

The channel gain between the g-th GN and the BS, in k-th
timeslot and subcarrier i = 1, . . . , I is

gBG
k,i,g =

√
βBGdBG

g
−αBG

F BG(θBG
g , φ

BG
g )h

BG
k,i,g, (3)

where βBG denotes the channel power gain at the reference
distance of 1 m, αBG is the pathloss exponent, F BG(·, ·) =
F BS(·, ·)F GN(·, ·), and hBG

k,i,g ∼ CN (µBG
i,g, 2σ

BG
k,i,g

2) denotes the
channel coefficient representing the stochastic fluctuation due
to multi-path propagation and fading. It is worth noting that
the channel envelope |hBG

k,i,g| is generally Rician [20], with

K-factor κBG
g =

|µBG
i,g|

2

2σBG
k,i,g

2 and average power ΩBG
g = |µBG

i,g|2 +

2σBG
k,i,g

2 = 1, since the presence of a (possibly weak) LoS
path is taken into account — according to the propagation
characteristics of the actual environment and the presence
of obstacles, as depicted in Figure 1. Therefore, the channel
coefficient can be modeled as

hBG
k,i,g =

√
κBG
g

κBG
g + 1

h
BG

k,i,g +

√
1

κBG
g + 1

h̃BG
k,i,g. (4)

In particular, h
BG

i,g = e−j2πfi
dBG
g
c is the LoS component,

characterized by a phase shift depending on the user’s sub-
carrier index, fi = fC + iδF, fc is the carrier frequency, and
h̃BG
k,i,g ∼ CN (0, 1) describes the small-scale fading resulting

from NLoS propagation.

The channel gain between the pu-th patch of the u-th UAV
and the g-th GN in timeslot k, subcarrier i, is obtained by
collecting in a vector the corresponding Eu,pu channel gains
of the PRUs, i.e.

gRG
k,i,g,u,pu

=
√
βRGdRG

k,g,u
−αRG

F RG(θRG
k,g,u, φ

RG
k,g,u)h

RG
k,i,g,u,pu ,

(5)

hRG
k,i,g,u,pu =

√
κRG
k,g,u

κRG
k,g,u + 1

hRG

k,i,g,u,pu +

√
1

κRG
k,g,u + 1

h̃
RG

k,i,g,u,pu ,

(6)

hRG

k,i,g,u,pu = e−j2πfi
dRG
k,g,u
c hRG, LoS

k,i,g,u,pu
, (7)

h̃
RG

k,i,g,u,pu ∼ CN (0, IEu,pu
), and F RG(·, ·) = F IRS(·, ·)F GN(·, ·).

Moreover, hRG, LoS
k,i,g,u,pu

∈ CEu,pu×1 in (7) denotes the far-field
array response defined in (8) (reported at the top of this page).

Similarly, the channel gain between a certain patch pu of a
UAV u and the BS is

gBR
k,i,u,pu

=
√
βBRdBR

k,u
−αBR

F BR(θBR
k,u, φ

BR
k,u)h

BR
k,i,u,pu , (9)

hBR
k,i,u,pu =

√
κBR
k,u

κBR
k,u + 1

hBR

k,i,u,pu +

√
1

κBR
k,u + 1

h̃
BR

k,i,u,pu , (10)

hBR

k,i,u,pu = e−j2πfi
dBR
k,u
c hBR, LoS

k,u , (11)

where hBR, LoS
k,u ∈ CEu,pu×1 is given in (12) (reported at

the top of this page), F BR(·, ·) = F BS(·, ·)F IRS(·, ·), and
h̃

BR

k,i ∼ CN (0, IEu,pu
). Note that κBR

k,g,u depends on the UAV,
specifically on the elevation angle θ

BR

k,g,u = π
2 − θBR

k,g,u [21]:

κBR
k,u = κMIN,BR

k,u eγ
BRθ

BR
k,g,u , γBR =

2

π
ln
κMAX,BR
k,u

κMIN,BR
k,u

, (13)

with κMIN,BR
k,g,u and κMAX,BR

k,g,u the minimum and maximum possible
K-factors, respectively. The same holds true for κRG

k,g,u and
κBG
k,g,u. The IRS phase shift matrix Φk,u,pu ∈ CEu,pu×Eu,pu ,

for each timeslot k, UAV u, patch pu is defined as
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µGk,i,g,u,pu
= ak,u,puηk,g,u

√
κBRG
k,g,ue

−j
(

2πfi
c (dBR

k,u+d
RG
k,g,u)

) Cu,pu∑
m=cu,pu

ej
2πfi

c dX(m− 1
2 )ψ

X
k,g,u,pu

Ru,pu∑
n=ru,pu

ej
2πfi

c dY(n− 1
2 )ψ

Y
k,g,u,pu

= ak,u,puηk,g,u

√
κBRG
k,g,u

sin
(
πfi
c d

XEC
u,puψ

X
k,g,u,pu

)
sin
(
πfi
c d

YER
u,puψ

Y
k,g,u,pu

)
sin
(
πfi
c d

XψX
k,g,u,pu

)
sin
(
πfi
c d

YψY
k,g,u,pu

)
︸ ︷︷ ︸

χk,g,u,pu

e
−j

(
2πfi

c (dBR
k,u+d

RG
k,g,u)

)︸ ︷︷ ︸
ωk,i,g,u

(19)

ν2k,i,g =

U∑
u=1

Pu∑
pu=1

|µGk,i,g,u,pu
|2 + |µBG

i,g|2 + 2
∑
u≥u′

∑
pu>p′u

Re(µ∗
Gk,i,g,u,pu

µGk,i,g,u′,p′u
) + 2

U∑
u=1

Pu∑
pu=1

Re(µ∗
Gk,i,g,u,pu

µBG
i,g)

=

U∑
u=1

Pu∑
pu=1

χ2
k,i,g,u,pu + 2

∑
u≥u′

∑
pu>p′u

|χk,i,g,u,pu ||χk,i,g,u′,p′u
| cos (φk,i,g,u − φk,i,g,u′)

︸ ︷︷ ︸
νBRG
k,i,g

2

+ λ2gκ
BG
g + 2

U∑
u=1

Pu∑
pu=1

|χk,i,g,u,pu ||λg
√
κBG
g | cos

(
φk,i,g,u + 2πfi

dBG
g

c

)
︸ ︷︷ ︸

νBG
k,i,g

2

(23)

Φk,u,pu = diag
(
Γk,u,ru,pu ,cu,pu

, . . . ,Γk,u,ru,pu ,Cu,pu
, . . . ,

Γk,u,Ru,pu ,cu,pu
, . . . ,Γk,u,Ru,pu ,Cu,pu

)
(14)

recalling that in general Γk,u,n,m = ak,u,n,me
jϕk,u,n,m . Since

each patch pu is meant to coherently reflect the incident signal
towards a certain location (to serve one of the G GNs), all its
elements can share the same amplitude ak,u,n,m = ak,u,pu
for all (n,m) belonging to patch pu, and their phases can be
described in terms of two parameters only, denoted by ϕX

k,u,pu
and ϕY

k,u,pu
. In general, it is possible to reduce the amount of

degrees of freedom introduced by PRUs by imposing that:

2πfi
c

(
dX

(
m− 1

2

)
ϕX
k,u,pu+d

Y

(
n− 1

2

)
ϕY
k,u,pu

)
=ϕk,u,m,n.

By considering (5), (9), and (14), the composite
channel gain Gk,i,g,u,pu is given by (15) (reported at
the top of the previous page) where hBR

k,i,g,u,pu,n,m
and

hRG
k,i,g,u,pu,n,m

are the components of the channel vectors
hBR
k,i,g,u,pu and hRG

k,i,g,u,pu , respectively. Moreover, ηk,g,u =√
βBRGdBR

k,u
−αBR

dRG
k,g,u

−αRG
F BRG(θBR

k,u, φ
BR
k,u, θ

RG
k,g,u, φ

RG
k,g,u),

λg =
√
βBGdBG

g
−αBG

F BG(θBG
g , φ

BG
g ), F BRG(·, ·, ·, ·) =

F BR(·, ·)F RG(·, ·), βBRG = βBRβRG, and hBRG
k,i,g,u,pu,n,m

describes
the composite BS-PRU-GN channel coefficient.

The composite BS-PRU-GN channel coefficient involves the
pairwise product of two complex Gaussian Random Variables
(RVs), whose distribution, named complex double Gaussian,
is given in terms of an infinite sum of modified Bessel
functions [22]. For better tractability, it is however possible to
approximate such a product through a complex Gaussian [18],
thus implying that the envelope |hBRG

k,i,g,u,pu,n,m
| is a Rician

RV. The following expression for the channel coefficient, for
the generic (n,m)-the element of the pu-th patch, is obtained:

hBRG
k,i,g,u,pu,n,m = ak,u,pu

(√
κBRG
k,g,ue

−j 2πfi
c Ψk,i,u,pu,n,m

+
√
κ̃BRG
k,g,u h̃

BRG

)
, (16)

where

κBRG
k,g,u =

κBR
k,uκ

RG
k,g,u

(κBR
k,u + 1)(κRG

k,g,u + 1)
, (17)

κ̃BRG
k,g,u =

κBR
k,u + κRG

k,g,u

(κBR
k,u + 1)(κRG

k,g,u + 1)
, (18)

Ψk,i,g,u,pu,n,m = dBR
k,u + dRG

k,g,u − dX

(
m− 1

2

)
ψX
k,g,u,pu

− dY

(
n− 1

2

)
ψY
k,g,u,pu ,

ψX
k,g,u,pu = sin θBR

k,u cosφ
BR
k,u + sin θRG

k,g,u cosφ
RG
k,g,u + ϕX

k,u,pu ,

ψY
k,g,u,pu = sin θBR

k,u sinφ
BR
k,u + sin θRG

k,g,u sinφ
RG
k,g,u + ϕY

k,u,pu

and h̃BRG ∼ CN (0, 1) since phase terms are irrelevant to the
scatter component [14].

The expression derived in (15), which includes (16) and the
subsequent definitions, requires further elaboration in order
to obtain a more compact form, with a lower computational
complexity. To this aim, the following result will be useful to
compute the sum of the PRUs’ channel coefficients belonging
to the same patch pu.

Lemma 1. The finite sum of complex exponentials ej(l−
1
2 )x

for l = 1 − L
2 , . . . ,

L
2 , with L even, can be rearranged as
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a ratio of sine (or equivalently as L times a ratio of sinc)
functions, as

L
2∑

l=1−L
2

ej(l−
1
2 )x =

sin
(
L
2 x
)

sin
(
x
2

) = L
sinc

(
L
2 x
)

sinc
(
x
2

)
Proof. Please refer to [19] and [23]. ■

The following theorem is one of the main contributions of
this work. Indeed, it characterizes the overall gain Gk,i,g , given
by the sum of all signals reflected towards user g (by any patch
from any UAV) plus the direct link.

Theorem 1. Let Gk,i,g be the channel gain perceived by a
GN g, in timeslot k and subcarrier i. The channel envelope
|Gk,i,g| is a Rician RV having κk,i,g =

ν2
k,i,g

2σ2
Gk,i,g

and average

power Ωk,i,g = ν2k,i,g + 2σGk,i,g
2, with ν2k,i,g and 2σGk,i,g

2

defined in (23) and (24), respectively.

Proof. Leveraging the result of Lemma 1, since (15) is a
sum of complex Gaussian distributions, and assuming that
all the elements of the same patch pu have the same am-
plitude ak,u,pu , the channel coefficients sum of all the PRUs
Gk,i,g,u,pu ∼ CN (µGk,i,g,u,pu

, 2σ2
Gk,i,g,u,pu

) is described by
the mean in (19) (reported at the top of the previous page)
and by the second moment

2σ2
Gk,i,g,u,pu

= a2k,u,puEu,puη
2
k,g,uκ̃

BRG
k,g,u. (20)

Finally, the expression of the channel gain perceived by a
certain GN g is

Gk,i,g =

U∑
u=1

Pu∑
pu=1

Gk,i,g,u,pu + gBG
k,i,g. (21)

Following the same rationale adopted in [18] it is possible
to derive the K-factor κk,i,g and average power Ωk,i,g of the
envelope of Gk,i,g as

κk,i,g =
ν2k,i,g

2σ2
Gk,i,g

, Ωk,i,g = ν2k,i,g + 2σGk,i,g

2, (22)

being ν2k,i,g ≜ |µGk,i,g
|2 the squared LoS component, defined

in (23) (reported at the top of the previous page) with
φk,i,g,u = arg (ωk,i,g,u),∀k, i, g, u and κBG

g =
κBG
g

κBG
g +1

. Finally,
the Non Line of Sight (NLoS) component reads

2σ2
Gk,i,g

=

U∑
u=1

η2k,g,uκ̃
BRG
k,g,u

Pu∑
pu=1

a2k,u,puEu,pu︸ ︷︷ ︸
2σBRG

Gk,i,g

2

+ λ2gκ̃
BG
g︸ ︷︷ ︸

2σBG
Gk,i,g

2

,

(24)

where κ̃BG
g =

(
κBG
g + 1

)−1
. ■

Corollary 1. The proposed general channel model can be spe-
cialized in case of scattered, i.e., Rayleigh fading (κBG

g → 0), or
even totally absent direct BS-GN link (λg → 0). In both cases,
the squared LoS component ν2k,i,g → νBRG

k,i,g
2, since νBG

k,i,g
2 →

0. However, the NLoS component is 2σ2
Gk,i,g

→ 2σBRG
Gk,i,g

2+λ2g

in the former case, while is 2σ2
Gk,i,g

→ 2σBRG
Gk,i,g

2 in the latter
case since 2σBRG

Gk,i,g

2 → 0.

Based on the above results, it is possible to obtain expres-
sions for the maximum achievable data rates, outage proba-
bility, and other inherent performance metrics. In particular,
recalling Shannon’s capacity formula, the channel capacity in
timeslot k and subcarrier i is given by

Ck,i,g = δF log2

(
1 +

ρk,i,g |Gk,i,g|2

N0δF

)
, (25)

where ρk,i,g is the transmit power of GNs in i-th subcarrier and
N0 is the spectral noise power. Given a maximum achievable
data rate Rk,i,g , to guarantee a reliable communication, it is
required that the outage probability remains below a threshold
ε, such that

P (Ck,i,g < Rk,i,g)=P

|Gk,i,g|2<N0δF(2
Rk,i,g

δF − 1)

ρk,i,g


= F|Gk,i,g|2

(
N0δF(2

Rk,i,g
δF − 1)

ρk,i,g︸ ︷︷ ︸
u

)
≤ ε,∀ k = 1, . . . ,K,

i = 1, . . . , I,

with F|Gk,i,g|2 denoting the Cumulative Distribution Function
(CDF) of |Gk,i,g|2. Therefore, considering the maximum tol-
erable outage, i.e., ε, the previous equation can be rewritten
as

F|Gk,i,g|2(u) = 1−Qm

(√
2κk,i,g,

√
2(κk,i,g + 1)

Ωk,i,g
u

)
= ε,

with Qm denoting the Marcum Q-function. It follows that the
inverse expression, with respect to the second argument is:√

2(κk,i,g + 1)

Ωk,i,g
u = Q−1

m (
√
2κk,i,g, 1− ε) ≜ ζk,i,g(ε).

Since the inverse Marcum Q-function has no closed-form
expression, to avoid numerical computation an approximated
formula can be used as in [24, Eq. 17]

ζk,i,g(ε)=


√
−2 log(1− ε)e

κk,i,g
2 , for κk,i,g ≤ K2

0

2√
2κk,i,g +

1
2Q−1(ε)

× log(

√
2κk,i,g√

2κk,i,g−Q−1(ε)
)−Q−1(ε), for κk,i,g ≥ K2

0

2

with K0 the intersection of the sub-functions at
√

2κk,i,g >
Q−1(ε) and Q−1(x) the inverse Q-function. Finally, since

u =
N0δF(2

Rk,i,g
δF − 1)

ρk,i,g
≈ ζk,i,g(ε)

2Ωk,i,g
2(κk,i,g + 1)

,

the expression of the achievable data rate can be derived as

Rk,i,g = δF log2

(
1 +

ρk,i,gζk,i,g(ε)
2Ωk,i,g

2(κk,i,g + 1)N0δF︸ ︷︷ ︸
SNRk,i,g

)
, (26)

with SNRk,i,g denoting the SNR.
In the following the scaling behavior of the SNR and other

properties are analyzed.
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Theorem 2. The SNR of the g-th GN scales by a factor∑U
u=1

∑Pu

pu=1Eu,pu ≤ ξ ≤ (
∑U
u=1

∑Pu

pu=1Eu,pu)
2.

Proof. The maximum squared LoS component is obtained
when the swarm is perfectly aligned with BS and GNs, which
∀k, i, g and ∀u ≥ u′ corresponds to

mod

(
2πfi
c

(φk,i,g,u − φk,i,g,u′) , 2π

)
= 0,

mod

(
φk,i,g,u + 2πfi

dBG
g

c
, 2π

)
= 0,

(27)

(28)

thus allowing to recast it in the more compact notation

ν2k,i,g =

(
U∑
u=1

Pu∑
pu=1

|χk,i,g,u,pu |+ λgκ
BG
g

)2

. (29)

Therefore, assuming that all the patches of the swarm perfectly
reflect the incident signal towards the desired GN yields

νMAX
k,i,g

2 = lim
{ψX

k,g,u,pu
}→2πb

{ψY
k,g,u,pu

}→2πc

ν2k,i,g,

=

(
U∑
u=1

ηk,g,uκ
BRG
k,g,u

Pu∑
pu=1

ak,u,puEu,pu + λgκ
BG
g

)2

,

for any b, c ∈ Z, which is verified when

ϕXk,u,pu = − sin θBR
k,u cosφ

BR
k,u − sin θRG

k,g,u cosφ
RG
k,g,u,

ϕYk,u,pu = − sin θBR
k,u sinφ

BR
k,u − sin θRG

k,g,u sinφ
RG
k,g,u. (30)

Consequently,

lim
{Eu,pu}→+∞

νMAX
k,i,g

2 = O
(
E2
)
,

being E =
∑U
u=1

∑Pu

pu=1Eu,pu . Furthermore, recalling the
definition of the average power in (22) and the NLoS com-
ponent in (24), as {Eu,pu} → +∞ the following inequalities
hold true

O (E) ≤ Ωk,i,g ≤ O
(
E2
)

(31)

and since

lim
{Eu,pu}→+∞

ζk,i,g(ε)
2

2(κk,i,g + 1)
≈ lim

{Eu,pu}→+∞

2κk,i,g
2(κk,i,g + 1)

=O(1)

the SNR derived in (26) scales as
∑U
u=1

∑Pu

pu=1Eu,pu ≤ ξ ≤
(
∑U
u=1

∑Pu

pu=1Eu,pu)
2. ■

Corollary 2. Following the same rationale of Theorem 2, it
is not difficult to show that in case of a single drone (U = 1),
since the alignment condition (27) is inherently satisfied, the
SNR measured at a specific GN illuminated by P ≤ Pu scales

as ζ ≥
(∑P

pu=1Ep

)2
.

Corollary 3. In the special case of no direct BS-GN link
(λg → 0), a single drone (U = 1) illuminating one GN
(G = 1) with the entire IRS (P = 1), the channel follows
a Rician distribution characterized by κk,i =

κBRG
k

κ̃BRG
k

E and
Ωk = a2kη

2
k

(
κBRG
k E2 + κ̃BRG

k E
)
, where g, u, p are omitted for

brevity. Further, the corresponding SNR scales as ζ = E2.

IV. TRAJECTORY AND PHASE SHIFT MATRIX
OPTIMIZATION

Leveraging the model derived in the previous Section, an
optimization problem aiming at maximizing the sum-rate of
nodes and, at the same time, at fairly distributing the resources
to the GNs is formulated and a resolution approach provided.

A. Problem formulation

Let assume that (i) the UAVs fly at a constant altitude
zU
k,u = H ∀k, u, (ii) the GNs have a dedicated subcarrier,

and (iii) the drones have the same number of patches, i.e,
Pu = P ∀u. Moreover, it is assumed that the UAVs have
enough energy to fulfill the mission, since its duration is lim-
ited. The objective is to maximize the sum-rate

∑
k,i,g Rk,i,g ,

with Rk,i,g given in (26) and, at the same time, to minimize the

sum of the absolute differences
∑
g>g′

∣∣∣ K∑
k=1

I∑
i=1

Rk,i,g −Rk,i,g′
∣∣∣

among these amounts, so as to provide an adequate level of
fairness among users. This multi-objective problem requires
the optimization of the trajectories Q = {qk,u, ∀k, u}, the
speed profiles V = {vk,u, ∀k, u}, the acceleration profiles
A = {ak,u, ∀k, u}, and the phase shift matrices ΦX

k =
{ϕX

k,u,p, ∀u, p} and ΦY
k = {ϕY

k,u,p, ∀u, p}. Therefore, it can
be formulated as follows

max
Q,V,A,{ΦX

k},{Φ
Y
k}

K∑
k=1

I∑
i=1

G∑
g=1

Rk,i,g

1 +ϖ
∑
g>g′

∣∣∣ K∑
k=1

I∑
i=1

Rk,i,g −Rk,i,g′
∣∣∣ s.t. (32)

q1,u = q0,u, u = 1, . . . , U, (32a)

qk+1,u = qk,u + vk,uδt +
1

2
ak,uδ2t ,

k = 1, . . . ,K,
u = 1, . . . , U,

(32b)

vk+1,u = vk,u + ak,uδt, k = 1, . . . ,K, u = 1, . . . , U, (32c)
∥vk,u∥ ≤ vMAX, k = 1, . . . ,K, u = 1, . . . , U, (32d)
∥ak,u∥ ≤ aMAX, k = 1, . . . ,K, u = 1, . . . , U, (32e)∥∥qk,u − qk,u′

∥∥ ≥ dMIN,
k = 1, . . . ,K,

{u, u′} = 1, . . . , U ∧ u ̸= u′
(32f)

where ϖ is a penalty factor that determines the fairness
of the solution. The constraint (32b) and (32c) encode the
possible 2D movement of the drones and (32a) describes the
start point of the trajectory. Constraints (32d) and (32e) state
that the speed and acceleration norm is upper-bounded by
vMAX and aMAX, respectively. (32f) guarantees that, throughout
the mission, a minimum security distance dMIN is maintained
among UAVs. Since the GNs positions are known, it is
possible to derive the optimal patch phase shift through
(30). Therefore, the problem can be rearranged in terms of
scheduling, i.e, patch-GN assignment, by means of a matrix
Sk = {Sk,u,p ∀k, u} ∈ {1, . . . , G}U×P . Let define an
auxiliary function

Θ : Sk → [ΦX
k,Φ

Y
k] , (33)

which takes as input the scheduling matrix and returns the op-
timal phases vectors. Therefore, the expression of the data rate
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can be rearranged as Rk,i,g ≜ Rk,i,g(·,Θ). The optimization
problem is cast as

max
Q,V,A

, {Sk}

K∑
k=1

I∑
i=1

G∑
g=1

Rk,i,g

1 +ϖ
∑
g>g′

∣∣∣ K∑
k=1

I∑
i=1

Rk,i,g −Rk,i,g′
∣∣∣ (34)

s.t. (32a) − (32f)

Problem (34) is a MINLP problem and hence very challenging
to solve. Common techniques as Block Coordinate Descendent
(BCD) and Successive Convex Approximation (SCA) cannot
be applied in this case, since the channel model involves cosine
interference patterns, which are not convexificable. Therefore,
in this work a DRL approach is employed to achieve a quasi-
optimal solution.

B. Background on Proximal Policy Optimization (PPO)

DRL is a branch of machine learning which involves an
agent interacting via actions with an environment. Among the
vast plethora of available DRL algorithms, PPO [25] represents
the most adopted solution due to the noticeable performance.
The benefits brought by PPO approach are numerous. The
most important ones are (i) ease of implementation, (ii)
low complexity, (iii) sample efficiency, and (iv) few hyper-
parameters are needed in the learning process. It ensures
a smoother training, compared with other approaches, by
constraining the new policy to not excessively differ from the
previous one. This yields lower variance in the training process
and prevents the agent from taking unrecoverable paths. In
this work, it is adopted to solve problem (34) and hence
achieve a quasi-optimal solution. PPO uses an Actor-Critic
(AC) approach, which employs two Deep Neural Networks.
The Actor, denoted as Qϑ(sk, ak), at each discrete time instant
k, observes the current state sk. Based on that, it takes a certain
action ak, according to the current policy πϑ(sk|ak), being
ϑ the corresponding parameter set. Consequently, it receives
a reward rk and moves to the next state sk+1. The Critic,
denoted as Vτ (sk), evaluates the action taken by the Actor and
provides a rating. Based on this value, the Actor improves the
current policy πϑ, adopting a gradient descent algorithm, to
take better, or to avoid worst, actions in the future. Concretely,
the aim of this framework is to derive the optimal policy
π∗
ϑ from the transition tuples ⟨sk, ak, rk, sk+1⟩ that maximize

the discounted cumulative sum of all future rewards. Hence,
πϑ(sk|ak) maps each state to the probability p(sk+1|sk, ak)
of taking action ak.

PPO offers several advantages [25] over classical AC al-
gorithm. Specifically, it incorporates a trust region optimiza-
tion approach, ensuring stable policy updates and preventing
catastrophic policy changes. The clipped surrogate objective
further constrains the policy update range, enhancing robust-
ness. Moreover, the multiple epochs of mini-batch updates
allow efficient utilization of collected data, thus improving
learning effectiveness. Differently from the AC algorithm, PPO
demonstrates scalability, sample efficiency, and compatibility
with both continuous and discrete action spaces. It strikes

a balance between exploration and exploitation, facilitating
optimal policy learning. In contrast, classical AC algorithms
often lack such robustness, require careful hyperparameter
tuning, exhibit higher variance in updates, and may have
limited exploration capabilities.

To provide more technical background, the rationale behind
the Policy Gradient Methods, and hence of the PPO algorithm,
are hereby discussed.

The algorithm compares the current and new policies to
maximize the following objective function

Lϑ,ϑ′(sk, ak) =min
(
πϑ,ϑ′(sk, ak)Â

π
k (sk, ak),

clip (πϑ,ϑ′(sk, ak), 1− ϵ, 1 + ϵ) Âπk (sk, ak)
)

with

πϑ,ϑ′(sk, ak) =
πϑ(sk|ak)
πϑ′(sk|ak)

being the probability ratio, ϑ′ the old policy parameters, and ϵ
a small constant. Moreover, Aπk (·, ·) is the advantage function
defined as:

Âπk (sk, ak) = (1−m)

K∑
l′=k

ml′−1Aπk,l′(sk, ak), (35)

Aπk,l′(sk, ak) =

l′−1∑
l=k

ς l−krk+l − Vτ (sk) + ςkVτ (sk+l), (36)

where m ∈ [0, 1] is a smoothing factor and Aπk,l′(sk, ak) is
the l′-step look-ahead advantage function, with l′ = k, . . . ,K.
clip(·, ·, ·) denotes the clipping function [25] which bounds the
first argument in range of the last two, such that the new policy
is not allowed to go too far from the old. While, in case of
positive advantage the objective reduces to

Lϑ,ϑ′(sk, ak) = min
(
πϑ,ϑ′(sk, ak), 1 + ϵ

)
Âπk (sk, ak), (37)

where the first term limits to how much the objective can
increase. Similarly, for negative advantage:

Lϑ,ϑ′(sk, ak) = max
(
πϑ,ϑ′(sk, ak), 1− ϵ

)
Âπk (sk, ak). (38)

Therefore, the clipping function provides a regularization of
the objective function by preventing extreme changes, and the
hyperparameter ϵ represents how far the new policy πϑ(sk|ak)
can go from the old one πϑ′(sk|ak). Finally, the two networks
are trained using a stochastic gradient descent method, namely
Adam [26], over a mini-batch of D samples. For each one, the
parameters of the policy πϑ(sk|ak) and the Actor network are
updated as

ϑ∗ = argmax
ϑ

Lϑ,ϑ′(sk, ak), (39)

while the Critic parameters as

τ∗ = argmin
τ

(
Âπk (sk, ak)

)2
. (40)

For further details the reader is referred to [25] and [27].
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C. Proposed Solution

Problem (34) is reformulated as a MDP, which is a mathe-
matical framework at the foundation of DRL. In this way, it is
possible to embed the optimization problem into a PPO-based
algorithm.

First, to increase training speed and prevent divergence, the
scheduling matrix is normalized such that −1 ≤ Sk,u,p ≤ 1,
as follows

Sk,u,p =
⌊
G

Sk,u,p + 1

2

⌋
. (41)

Similarly, also the acceleration profile vectors ak,u are nor-
malized as ak,u =

aa,u

aMAX . The reference MDP ⟨S,A,P,R, ς⟩,
is described by:

• State Space S: The set of all the possible states sk ∈ S
that can be observed by the agent while interacting with
the environment with

sk = {qT
k,1, . . . ,q

T
1,U , . . . ,Sk,1,1, . . . ,Sk,1,P ,

. . . ,Sk,U,1, . . . ,Sk,U,P } (42)

• Action Space A: The set of all possible actions ak ∈ A
that the agent can perform during a timestep where

ak = {aTk,1, . . . , a
T
k,U , . . . ,Sk,1,1, . . . ,Sk,1,P ,

. . . ,Sk,U,1, . . . ,Sk,U,P } (43)

• Transition Probability P: The set of probabilities pk ∈ P
which denote the transition from a state sk to sk+1.

• Reward function R: The rewards rk ∈ R obtained by
maximizing the objective function. In this case, it has
been already defined in problem (34).

• Discount factor ς: The discount factor that determines the
importance of future rewards, where 0 ≤ ς ≤ 1.

At the beginning, it is necessary to initialize the structures
needed for the computation. In particular, the initial positions
of the drones is set according to (32a). After the initialization
phase, at each timeslot k, the agent observes from the environ-
ment the current positions of the drones Qk and the assignment
of the patches Sk. Then, the agent provides the acceleration
profile Ak and the new scheduling matrix Sk in input to the
algorithm that computes the new positions and speed profiles
of the drones, according to (32b) and (32c), and the data rate of
each GNs. The final output of the computation is the new state
(observation), the generated reward, and a flag that notifies
weather the mission has terminated or not. Clearly, whereas
the mission ends before K, the cumulative reward would be
lower; this mechanism is employed to satisfy the remaining
constraints (32d),(32e), and (32f).

V. NUMERICAL RESULTS AND DISCUSSION

In this Section a simulation campaign is carried out to
investigate different aspects of the proposed model.

In particular, the analysis first focuses on the validation of
the channel model from a probabilistic standpoint by compar-
ing the derived approximation with Monte Carlo simulations.
Then, the radiation pattern corresponding to different patch
configurations is studied. Moreover, results are shown for the
optimization problem defined in Section IV, to demonstrate the

Symbol Value Symbol Value
K {1, 10} G {1, 2, 20}
U {1, 3} I {1, 2, 20}
w 10−4 [m2] ρk,i,g , ∀k, i, g 20 [dBm]
dX = dY 10−2 [m] N0 -174 [dBm/Hz]
fc 10.5 [GHz] κMIN 6 [dB]
δf 10 [kHz] κMAX 10 [dB]
αBG {3,4} ak,u,pu , ∀k, u, p 1
δt 1 [s] ϖ 5e-4, 1.25e-4
ε 0.01 dMIN 5 [m]
vMAX 30 [m/s] ς 0.3
aMAX 5 [m/s2] ϵ 0.2

TABLE II: Parameter set used in the simulations.

potential of the diversity introduced by the patches. Finally, the
solution is compared with the case of absence of IRS-equipped
drones and with a baseline approach implementing a random
patch scheduling.

In all the simulations, all the involved antennas are isotropic,
thus F BG(·, ·) = F BRG(·, ·, ·, ·) = 1, with unitary gains. All the
considered IRS are composed by N ×M = 48×48 elements.
Moreover, according to [19], the cascaded channel BS-UAV-
GN is characterized by βBRG = c2s

64π3f2
i

and αBR = αRG = 2,

while the direct weak BS-GN link by βBG = c2s
16π2f2

i
and αBG =

4. Besides, it is assumed κMIN = κMIN,BG
g = κMIN,RG

k,g,u = κMIN,BR
k,u

and κMAX = κMAX,BG
g = κMAX,RG

k,g,u = κMAX,BR
k,u , for all k, g, u. The

main considered parameters, unless otherwise specified, are
summarized in Table II.

A. Channel Model Analysis

Without loss of generality, the first scenario considers
G = 1 GN, located at qG

1 = [50 0 0]T, served by a BS at
qBS = [−50 0 0]T. The communication is assisted by a drone,
positioned at q1,1 = [0 0 50]T, equipped with just P = 1
patch, i.e., the whole IRS. To provide a comprehensive analy-
sis, four cases are considered: (i) absence of the direct BS-GN
link (λg = 0), (ii) scattered (Rayleigh) BS-GN link (κBG

g = 0),
(iii) worst possible UAV-BS alignment (Worst case), and (iv)
best possible UAV-BS alignment (Best case). Moreover, to
assess the performance of the investigated scenarios, define
the normalized SNR ∀k, i, g, as

SNRk,i,g =
N0δF

ρk,i,g
SNRk,i,g.

It is worth noting that the data rate derived in equation (26) is
directly proportional to the normalized SNR when the latter is
expressed in decibels (due to the presence of the logarithm),
as in the graphs shown in this Section. Figure 2 represents
the comparison between the proposed model and a Monte
Carlo simulation for 5 · 106 realizations. As a matter of fact,
the proposed model provides an accurate approximation in
terms of PDF and SNR curves. Moreover, it can be observed
that, even if the BS-GN link exists, the UAV-BS alignment
is crucial: in the worst case scenario the channel quality
results to be deteriorated with respect to the pure reflection
case (λg = 0). Figure 3 corroborates the theoretical results
obtained in Corollary 2. Indeed, a large number of PRUs
implies a quadratic scale of the SNR. Clearly, in the four
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Fig. 4: SNR for Pu = 2 patches divided horizontally (left) and
vertically (right).

considered cases, the convergence depends on the involved
system setup and environmental surrounding conditions. It
is worth noting that a reduced path loss exponent αBG = 3
produces, in the Best case and for a low number of elements,
an higher gain with respect to the pure reflection case (λg = 0).
When a higher path loss coefficient is considered, i.e, αBG = 4,

this gap significantly reduces since the direct link brings a
minor contribution to the SNR.

The second scenario involves the same UAV and IRS, but
considers G = 2 GNs located at qG

1 = [−120 0 0]T and
qG
2 = [70 0 0]T, connected to a BS at qBS = [−50 0 0]T

with λg = 0. Two cases are investigated. In the first one,
the IRS surface is divided horizontally, while in the second
one, vertically. Then, the phase shift matrices are set so
that each user has its own patch assigned. From Figure 4 it
clearly emerges that the produced radiation patterns yield a
different SNR perceived in the environment in the two cases.
Indeed, the side of the patch characterized by more elements
leads to a narrower beam in the orthogonal direction and
viceversa. This phenomenon, which can be observed especially
in horizontally-divided case, is also influenced by the UAV-GN
distance. Therefore, the shape design is particularly important
since remarkably modifies the irradiated area, and has different
implications based on the use case considered. For instance,
if the objective is to maximize channel quality perceived by
multiple GNs, the neighborhood of a illuminated user benefits
from configurations that produces a larger fingerprint. At the
same time, if the aim is to establish secure communications,
patches must be designed on the opposite criteria, thus hinder
eavesdropping. An agnostic option is to split the IRS into
square-shaped patches that can be directed towards specific
GNs, thus implying a customizable radiation pattern which
guarantees, however, a computation complexity much lower
than solution proposed in [18].

B. Results on trajectory and phase shift optimization

It is considered a scenario in which U = 3 drones, starting
from q1,u = [0 −150 50]T,∀u, are in charge of fairly serving
G = 20 nodes randomly deployed on the ground. The BS is
located at qBS = [0 0 0]T. The Actor and Critic neural networks
of the PPO algorithm are characterized by four hidden layers
of 1024 neurons each, trained for 3 · 105 epochs.

First, it is considered the case in which each drone is
equipped with a IRS split into Pu = 9 ∀u patches, by adopting
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Fig. 5: Drones’ trajectories and normalized SNR for G = 20, U = 3, Pu = 9, and ϖ = 1.25 · 10−4.
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Fig. 7: Total amount of data received by nodes, with Pu = 4.

a low fairness factor ϖ = 1.25 · 10−4. Figure 5 shows the
trajectories of the drones during the mission, with heatmap
representing the values of the normalized SNR considering
only the BS-UAV-GN channel. It is visible that, during the
mission, the drones serve different regions at each instant,
with the aim of maximizing the sum-rate while providing a ϖ-
dependent allocation to the users. The swarm flies, as result of
the optimization, from the starting location towards the center
of the area, where the BS is located. Consequently, the patches
of the different UAVs are allocated to provide an optimal
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Fig. 8: Total amount of data received by nodes, with Pu = 9.

coverage to all users, thus improving their SNRs. Moreover,
in Figure 6, the speed and acceleration profiles, i.e., ∥vk,u∥
and ∥ak,u∥, are shown for each drone over time. According to
(32b) and (32c), the drones accelerate yielding an increase in
the speed, without violating the bound constraints (32d) and
(32e). This proves that the strategy adopted and discussed in
Section IV-C allows the PPO-based algorithm to learn from
tuples that satisfy the imposed limits.

To give more insights about the exchanged data volume and
to validate the effectiveness of the proposed algorithm in other
configurations, the IRS are split into Pu = 4 and Pu = 9
patches. Moreover, two values for the fairness parameter ϖ
are considered, i.e., 1.25 · 10−4 and 5 · 10−4. The first value
penalizes the objective function more, thus obtaining a lower
fairness with respect to the second one, which implies a higher
balance in the resource distribution.

In Figure 7, it is depicted the cumulative amount of data
transmitted from each GNs to the BS through the direct link
plus the reflected one, for Pu = 4. In case of higher fairness
factor, i.e., ϖ = 1.25 ·10−4, the total amount of received data
is 5.37 Mbits with a coefficient of variation (ratio between
standard deviation and mean) of 0.41. On the contrary, in the
second case, i.e, ϖ = 5 · 10−4, a lower amount of data is
received by the BS, i.e, 4.21 Mbits, but with a coefficient of
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Fig. 10: Comparison among total data transmitted amounts
with optimized trajectories for random (Rnd) and optimized
(Opt) scheduling. The black squares represent the mean value.

variation equal to 0.2. This implies that a trade-off between
fairness and data transmission exists: it is due to the fact that
in case of lower fairness the drones can focus on reflecting
the signals from the GN closer to the current position, which
in turns implies that farther nodes are less served.

For the same scenario parameters, a simulation with Pu = 9
patches (for each drone) is carried out. As expected, Figure 8
confirms the same trade-off behavior highlighted in the pre-
vious case. As a matter of fact, with Pu = 9 patches, in the
first case a total of 5.12 Mbits have been transmitted with a
coefficient of variation equal to 0.42, while in second case the
values are 4.58 Mbits and 0.27, respectively.

Moreover, in Figure 9 it can be seen the convergence of
the neural network training process in all the configurations
discussed above. Finally, Figure 10 summarizes the results
and the discussion above by comparing the obtained values
with the case in which the swarm is absent and only the
BS serves the GNs, i.e, {ηk,g,u} = 0 ∀k, g, u. Moreover, to
provide a benchmark, the proposed solution is also compared
with a baseline approach, in which the optimized trajectories
are maintained but a random patch scheduling is implemented
(5 · 105 trials have been performed). As expected, in all cases,

the drones provide a substantial enhancement of the channel
capacity, especially when an optimized solution is employed.
Indeed, the scheduling plan obtained from the PPO performs
better than that related to the baseline approach. In particular,
this is always true in terms of average data rate. Nonetheless,
when a higher number of patches is employed a higher fairness
factor is required to guarantee a uniform resource distribution.

VI. CONCLUSIONS

In this work, a comprehensive channel model for UAV-
aided IRS-assisted OFDMA communications has been derived.
Differently from other contributions, it considers the presence
of a swarm of drones equipped with IRSs, which are split
into an arbitrary number of patches to simultaneously serve
multiple GNs. The proposed model inherently captures the
constructive/destructive interference among users which can
also experience different propagation conditions, due to the
adoption of Rice fading. Relying on this channel model, a
realistic communication scenario has been investigated, which
led to the formulation of a Multi-Objective MINLP problem,
aiming to fairly distribute the resources among nodes, i.e,
to maximize the sum-rate of GNs and, at the same time, to
minimize the differences among rates. This required the joint
optimization of the phase shift matrices of the IRSs and the
trajectories of the drones. To overcome the intractability of
the non-convex cosine patterns related to wave interference,
the problem has been rearranged as a MDP and solved via a
DRL method, namely PPO. The validity of this work has been
corroborated by extensive simulations, for different parameter
settings, including the comparison with a baseline approach.
Results demonstrated that (i) channel capacity benefits from
IRS employment and that (ii) the proposed solution outper-
forms the baseline in terms of total and average transmitted
data. Future work includes adding subcarrier scheduling in
the joint optimization and considering the presence of mul-
tiple BSs. Moreover, models that capture the dependency of
amplitude and phase of the IRS elements will be considered.
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