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Abstract—Wireless Powered Communication Networks
(WPCNs) play a crucial role in critical operations and disaster
management due to their ability to operate efficiently with
minimal energy requirements. Additionally, in WPCN the
sensors can harvest energy from a hybrid access point (HAP).
However, designing efficient and robust scheduling for WPCNs
is challenging due to limited energy sources and constrained
nature of devices. Due to sporadic and generally event-driven
nature of traffic of such networks and limited-size packets,
random algorithms such as repetitive ALOHA or it’s upgraded
versions such as Deep Sensing Irregular Repetitive Slotted
ALOHA (DS-IRSA) are particularly effective in WPCN. In
this paper, our goals are to design a harvest or access protocol
that uses mini-slots to sense the channel and control the
number of repeated packets desired to be sent by each sensor
in each frame. Specifically, differently from DS-IRSA, that
uses mini-slots for traditional carrier sense before allowing
actual data transmission, we utilize these minis-lots not only
at the MAC layer to sense the number of packets but also,
at the physical layer to sense the channel between the sensor
and HAP and leverage this information to boost performance.
Channel information plays a vital role in identifying sensors
with unfavourable channel conditions, enabling the algorithm
to make optimized decisions. Building upon the advantages of
DS-IRSA, we propose a deep reinforcement learning algorithm
that determines the optimal number of replicas for each sensor,
as well as the optimized number of slots for energy harvesting.

Index Terms—DS-IRSA, WPCN, HAP, IoT Sensors, Energy
Harvesting

I. INTRODUCTION

WPCN are the networks that play a critical role in areas
hit by disaster. The importance of WPCNs lies in their
ability to minimize logistical resource requirements and
harness energy from various sources. Literature suggests
that designing a perfect scheduling algorithm for packet
transmission is almost impossible. Therefore, there is an

opportunity for improvement in scheduling packets in a more
robust and efficient manner. With hundreds of sensors ready
to connect and send data to the access point, it is important
to schedule their packets while simultaneously performing
energy transmission. A resource allocation solution such
as available for mobile communication is more time and
resource-consuming due to sporadic nature of these systems.
DS-IRSA [3] uses mini-slots to sense the environment before
allowing actual data transmission. This paper aims to design
a harvest or access protocol that uses mini-slots to sense the
channel and number of repeated packets each sensor desires
to send over each frame. These mini-slots are bursts of energy
called jamming signals or beacon signals.
We provide a brief description of the literature that is our
focus. Starting with two energy harvesting papers [1], [2],
papers focus on simultaneously scheduling the data packets
and energy harvesting. In this context, [2] focuses on the
probabilistic analysis of available slots in a frame. The
main objective of this paper is to utilize the Idle slots for
harvesting along with reducing the probability of collision.
On the other hand, [1], deploys a Q-learning approach to find
the best possible scheduling of all users. Similarly, another
method is to introduce the mini-slots before the transmission
[3]. Mini-slots are small jamming signals from the users
to inform HAP and other users about the slots where they
will send replicas. In this way, users and HAP have prior
knowledge of slots availability, which enables them to plan
their replicas accordingly. Exploiting the mini-slot concept,
[3] uses the DRL to learn number and pattern of replicas of
users for better throughput. It adopts the Markov properties
of the system and uses an optimization policy called Proximal
Policy Optimization (PPO). Implementing PPO helps the
HAP to solve an optimization problem that provides the base



for decoding the packets.

In this paper, we consider an energy harvesting scenario
with sensors transmitting their packets to a HAP which
is capable of simultaneously decoding the packets and
transmitting energy to the sensors. Our concept involves
utilizing these mini-slots at the network layer to not only
sense the number of packets but also perform channel sensing
(between a sensor and HAP) at the physical layer. Channel
information is of key importance here. It can help the
algorithm to recognize the sensors that do not enjoy favorable
channels with HAP. Using the qualities of DS-IRSA, our deep
reinforcement learning algorithm achieves its two objectives;
one deciding the number of replicas for each sensor and
finding the optimal slots for energy harvesting. In this way,
we achieve our objectives of lower the computational cost of
the sensors and being more aware of the environment . That
eventually leads to better decisions.

The rest of the paper is as follow. Section II describes the
system model of wireless powered IoT network. Section III
and IV present the two different algorithms which are able to
manage the number of replicas for better throughput. In section
V, we discuss the results obtained from these algorithms while
section VI concludes the work and provides future suggestions.

II. SYSTEM MODEL

We consider set of sensors deployed in the field that are
named as u1, u2, ..., uN . These sensors are always in saturated
mode i.e. they always have data to sent. The access point has
the dual role of not only receiving packets from sensors but
also provide them power through energy harvesting. We call
our access point HAP. It has to schedule not only receiving
of the packets but also needs to consider available battery as
well. Each sensor has battery unit denoted by β. In our case,
each sensor needs one battery unit β to send one packet and
can store maximum of three units. Hence users are limited
to send three replicas at max in each frame. Each sensor
has a channel between itself and HAP denoted by hn. We
categories our channel at MAC layer based on physical layer
analysis ranging from worst to best.

Considering the above scenarios we start with the following
objectives:

• Energy harvesting is an important ingredient of WPCN
• We need to optimize the system and find a balance

between energy harvesting and scheduling the packet
transmission

There are multiple methods available in the literature. We
explore two of these methods in our system model.

A. Scheduling of Packets with JAL Influenced by Channel and
Power for WPCN

Energy harvesting is an essential component of WPCN.
However, with thousand of sensor attempting to compute
with a HAP as in massive Machine Type Communication

(mMTC), it becomes difficult to accommodate every sensors.
For this purpose, we propose a Q-Learning algorithm which
optimizes the the number of replicas in IRSA environment.
The decision depends on three parameters; number of available
slots, available energy of the sensor and channel quality. In this
context, we design JAL based on the work represented in [1].
Section III describes this algorithm with more details.

B. Scheduling of Packets with DS-IRSA Influenced by Channel
for WPCN

Key Points of DS-IRSA with channel information are as
follows.

• With thousands of sensors ready to connect and send data
to the access point, the important point is to schedule their
packets along with energy transmission.

• With thousands of sensors ready to connect and send data
to the access point, the crucial aspect is to schedule their
packets while considering energy transmission.

• That is why a random and repetitive nature algorithm
such as repetitive ALOHA or upgraded versions such as
DS-IRSA uses mini-slots to sense the environment before
allowing actual data transmission.

III. JOINT ACTION LEARNER (JAL) WITH POWER AND
CHANNEL CONSTRAINTS

Before providing the details of JAL, we provide a summary
of the Q-Learning. Q-Learning takes the approach of rein-
forced learning and works with reward and action methods.
We define state St = {st1, st2, ...stM} as the combination of
power available and channel capacity at each user such that
st1 = (pt1, c

t
1). Where pt1 is the power available at the sensor

and ct1 is the channel quality of the sensor. It can be noted
that even though channel quality between HAP and sensor
remains best, the sensor’s capability of sending replicas can
be limited by available power. Similarly, the energy harvesting
capability of sensors can be a limiting factor in deciding
the number of replicas. Keeping all this in the loop, our
algorithm decides a joint action for the users who intend
to send their data in a specific frame. The computational
overhead of the algorithm is performed at HAP since it is
not affected by the limited amount of energy as compared to
sensors. The algorithm decides the number of replicas for each
user and decides the specific actions for each user defined as
At = {at1, at2, ...atM}. Q-Learning updates and optimizes the
Q-values using Bellman’s equation defined as

Q(st, at) = (1−α)Q(st, at)+α(r(st, at)+γmaxQ(st+1, a)).
(1)

where r(st, at) is the reward collected after taking a specific
action.

JAL is a Q-Learning-based algorithm that uses the data
provided by the sensors to decide the number of replicas
such that the throughput is maximized. HAP is responsible
for running the JAL, which leads to a lower computational



cost of running a learning algorithm for sensors whose power
is scarce. After learning through JAL, HAP provides the
guidelines to the sensors for the next transmission. A summary
of our JAL algorithm is provided below in the Algo. 1.

Algorithm 1 JAL with Power and Channel Constraints
Initialize Parameters α, γ
Initialize Q(S,A) randomly
for For each frame t do

HAP collects sti
Obtain the joint state St = {st1, st2, ...stM}
Generate random number x
if x < ϵ then

Select a joint action randomly
else

Select a joint action by solving
At(St) = argmaxA∈AQ(St, At)

end if
end for
for device i ∈ M do

Randomly select data slots for action ati ∈ At

Collect the reward rti
Observe the next state St+1

i

end for
Calculate the joint reward: Rt =

∑M
i=1 r

t
i

Obtain the next joint state: St+1 = {st+1
1 , st+1

2 , ..., st+1
M }

Find maxA∈AQ(St+1, A)
Update the Q-value using Bellman’s equation

IV. DEEP SENSING IRSA WITH CHANNEL CONSTRAINTS

As mentioned in the literature related to DRL, we can
observe that Q-Learning works fine as long as the system
does not need re-scaling. This is not the case when we are
dealing with WPCN since there is always a possibility of
new sensors joining the network. With this limitation, JAL
also inherits the issue of re-scaling. To fulfill this need, we
propose DS-IRSA which is probabilistic in nature and do not
need a tabular form of data. We not only take into account
the fact that we need to accommodate energy harvesting slots
but also the decision or learning of algorithm dependents on
channel quality between sensor and HAP. These code-words
are dealt with as pilot signals and hence it is convenient for the
physical layer to sense the channel. Meanwhile, the MAC layer
senses the number of replicas a sensor is intending to send.
We implement DS-IRSA using the following environment.

A. The Actions
The set of action of users m ∈ M is defined as Am and it

has two parts:
• The action sequence in sensing phase Asens

m with L
number of mini-slots. The vector contains the binary
values 0 or 1 which represents the jamming signal. We
read 1 when a jamming signal is send and 0 otherwise.

• Atrans
m represents the action during the transmission

phase where users send their replicas at different slots
in one frame.

B. The States

The state of the user represents observed values of different
parameters, its components are provided below:

• The first component of the state is the observed code-
word sent by the user during the sensing phase.

• The second component is the index of the current mini-
slot

• The third component is the quality of the channel ob-
served during the sensing phase.

C. The Reward

We donate the reward as Rm for each user. It represents
the successful packet transmitted by that user during the
frame. HAP calculates the reward at the end of each frame.

Summary of our algorithm is provided below in Algo. 2.

Algorithm 2 DS-IRSA with Mini-slots
Training and Sensing Phase
Initialize the number of Users and mini-slots u,m
Generate random set of possible code-word for Each User S
for For each time step t do

HAP senses the jamming signal and collects the code-words
matrix S

Feed the received S to DRL NN
Train the DRL using PPO Baseline3

end for
Decision Phase
for Users u do

Assign new code-word to each user
Sense the number of collisions with new code-word
Repeat the code-word generation until optimized

end for

V. RESULTS AND DISCUSSION

In this section, we first demonstrate the results obtained
from JAL, whose base is Q-Learning. We see how varying the
channel quality and available battery can affect the number of
replicas. Then we proceed to our deep sensing-based IRSA
algorithm that uses a training phase to learn the behavior of
different users accompanying their channel quality as well.
After the learning phase, DS-IRSA based on the training and
available channel information directs the users to send their
replicas such that throughput is maximized.
Fig. 1 provides the probability of the total number of replicas
calculated by running 40,000 episodes in a Python script.
In the current scenario, we consider 4 users and 4 slots,
with random battery units available for each user. We grade
the channel calculations and assign the channel of each
user a value ranging from 0 to 4. The channel grade works
in following manner: 0=bad, 1=medium, 2=good, 3= best.
Similarly, we define our battery with unit β available for each
user which ranges from β = 1− 3. As a result, JAL acquires
a scenario, and it can make decisions based on the available
information regarding battery and channel. For example, if a



user intends to send two replicas and it experiences the best
channel with HAP, JAL can ask this user to send only one
replica. Another user can utilize it who is not experiencing
great channel quality and the risk of losing the packet is
great. After making such decisions, Fig. 1 provides that on
average 45% of the time, there will be a total of three number
replicas in the scenario which has 4 users and 4 slots. Thus,
applying successive interference cancellation is simple with
the optimized and perfectly slotted replicas.

Fig. 1. Number of Replicas for Each Slot with JAL

For DS-IRSA, we aim to select code-words for two users
which results in mazimum throughput. We run a Python script
with 100,000 episodes whereas every episode consists of two
phases that is sensing phase and transmission phase. During
the sensing phase, the algorithm learns the channel quality
and number of replicas each user intends to send from the
jamming signal. Fig. 2 and 3 provide the selection of code
word for 100,000 iterations after DS-IRSA has derived the
code-word for each user. We can see that for U1 DS-IRSA
selects 01 while it selects 10 for U2. There appears to be a
conflict for some episodes where each user intends to send
replicas at both slots. As the episodes progress and DS-IRSA
learns better, we experience a better throughput. Hence we can
observe an optimized code-word can enhance the throughput.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have addressed the challenge of slot
selection in an energy-harvesting IoT system, presenting two
distinct approaches. As a solution, we have introduced two
different Deep Reinforcement Learning (DRL) algorithms.
Our proposed DRL algorithms incorporate crucial parameters
such as available battery capacity and channel quality, allowing
the system to develop an awareness of the environment.
For future work, we can achieve more realistic results by
incorporating the energy harvesting models which use the well
established channel and energy models.

Fig. 2. Code-word Intention of User 1

Fig. 3. Code-word Intention of User 2
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