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Abstract—In the era of pervasive connectivity, the effective
provisioning of multimedia services surely represents a cornerstone
challenge for both infrastructure and service providers. Given the
recent evolution of Beyond 5G/6G networks, it is conventionally
accepted that a Network Operator (infrastructure provider)
shares its resources with tenants (service providers) by giving
them the possibility to autonomously and efficiently configure
the application services they provide to end users. To this
end, this contribution proposes a cutting-edge framework for
multimedia service provisioning, that harnesses the power of
Artificial Intelligence (AI) in conjunction with Digital Twin
Networks (DTNs). Specifically, it considers the real network
features collected from the physical real network through Software-
Defined Networking Controllers to build the DTN, whose purpose
is to provide present and future physical, network, and application
statistics through AI for efficient and proactive resource allocation.
The DTN exposes to the tenant a concise set of monitoring
parameters related to actual network-specific statistics and Quality
of Service metrics and also future ones thanks to Deep Learning,
without sharing in-depth details of the underlying network through
Machine Learning (clustering). This information will be exploited
by the service orchestrator for optimal resource allocation and
redistribution, which will be deeply investigated in future works.

Index Terms—6G, DTN, AI, QoE, QoS, Clustering

I. INTRODUCTION

The new generation of mobile communications introduces
the Digital Twin Network (DTN) as a 6th Generation (6G)-
oriented service, which can take advantage of the integration
of Artificial Intelligence (AI) [1]. Specifically, the integration
of DTNs and AI offers a very powerful approach for modeling,
simulating, and optimizing Beyond 5th Generation (5G) and
6G communication systems also in the context of multimedia
services, where Quality of Experience (QoE) prediction and
effective planning and usage of network resources are needed
because of the explosive growth of multimedia traffic [2].

The current scientific literature generally performs Quality
of Service (QoS) optimization and QoE estimation. To this
end, various scheduling approaches for multimedia services
are proposed. They generally adopt QoS metrics to estimate
QoE through Mean Opinion Score (MOS) values [3], [4] or
they collect MOS values or subjective evaluations directly
from users [2], [5]. Moreover, also AI can be adopted for
these purposes. To obtain the same MOS value for each user,
the transmission power and channels of Access Points (APs)
can be dynamically changed for each user thanks to Deep
Reinforcement Learning (DRL) [3]. Other works such as [6],

[7] calculate Inter-Mean Opinion Score (iMOS) that is the
MOS values at the intermediate network nodes, e.g., 5G Voice
over Long Term Evolution and Voice over New Radio or in
Software-Defined Networking (SDN) with Voice over Internet
Protocol flows.

Differently from the current state of the art, this contribution
proposes an innovative framework that integrates DTN, the
SDN paradigm, and AI for multimedia service provisioning.
The adoption of the DTN is of utmost importance in the
proposed framework because it represents a revolutionary
approach to managing networks. Its significance lies in the
capacity to replicate diverse network configurations in real-
time, providing a virtual mirror image of the physical network
(i.e., Network Operator Infrastructure) [8], [9]. Thanks to SDN
facilities and network slicing, network data and statistics are
collected for each slice dedicated to users. This information
is shared with the DTN, which knows network dynamics,
including QoS metrics, of the real physical network [1], [10],
[11]. Thus, the DTN simulates and analyzes various setups and
pinpoints potential vulnerabilities without impacting the real
physical network. The AI integration can boost and enhance
the DTN capability for troubleshooting, experimenting with
new resource configurations, forecasting the consequences
of changes before the actual implementation, and enhancing
the overall efficiency of network operations and the network
resilience through proactive measures [8], [12]. Specifically,
Deep Learning (DL) and Machine Learning (ML) are employed
for QoE/QoS prediction and clustering, respectively. The tenant
can, then, exploit the outcomes of QoE/QoS prediction based
on Long Short-Term Memory (LSTM) and user clustering
through the service orchestrator. It enables the redistribution
of physical, network, and application resources thanks to AI,
and in particular by implementing a DRL approach, in order
to guarantee high levels of QoE for all the network users.
It is important to note that at the time of writing, and to
the best of our knowledge, a first attempt in this direction is
presented in [13], where QoS prediction and spatial clustering
algorithms have been designed and evaluated. However, it refers
to Vehicular-to-Everything services and it does not address QoE
estimation and QoE/QoS prediction based on LSTM, which is
the state-of-the-art model for online predictions, as stated also
there. In addition, it does not sketch a complete framework
with new 6G technologies (DTN) and does not deal with the
optimal resource allocation and redistribution. To summarize,



this paper significantly advances the current state of the art
because: i) it designs the overall framework for multimedia
service provisioning within the Internet Engineering Task Force
(IETF) model for DTN [8]; ii) it integrates DTN and AI as
envisioned by the upcoming 6G network architecture; iii) it
proposes an innovative AI-based methodology for QoE/QoS
prediction and users’ clustering, by performing an objective and
standardized estimation of QoE and extracting the information
of all the users through the simplified and privacy-preserving
(without in-depth details of the network) management of
clusters for the anticipatory and optimal resource allocation
and redistribution; iv) it provides a preliminary discussion on
the usage of prediction and clustering outcomes in a realistic
scenario.

The remainder of the paper is as follows. Section II describes
the proposal and provides some technical details on the adopted
AI approaches. Section III presents the preliminary investigation
and the early results. Section IV draws future research activities
and highlights related optimization opportunities and, finally,
Section V concludes the paper.

II. PROPOSAL

The cutting-edge framework presented herein aims to provide
multimedia services by exploiting AI-based DTN. Specifically,
the tenant, i.e., the service provider, provides multimedia
services through the physical network of the Network Operator,
i.e., the infrastructure provider. As shown in Fig. 1, the
Network Operator Infrastructure, which includes the various
5G/6G network elements (e.g., mobile users, base stations,
routers, switches, computers, servers, satellites) manages and
accepts resource requests issued by tenants [1]. Through
the Southbound Interface of SDN Controllers, the Network
Operator Infrastructure is connected to them, which collects
information and enables network control (e.g., OpenFlow,
OpFlex, NetConf) [10], [11]. Thus, through the Northbound
Interfaces of SDN Controllers, the instance of the DTN knows
the network infrastructure state and what resources are available.
At this point, through its Southbound Interface, the DTN
requests information on the Network Operator Infrastructure
and stores it in its Data Repository. The DTN generates network
models and, through the Functional Models, can calculate key
network parameters. In the first phase, the QoE Estimator
module receives from the Data Repository the QoS metrics of
the network and estimates the QoE of the users (i.e., MOS).
Then, QoS parameters and MOS values are given to the
QoE/QoS Predictor, which is a module that contains the DL
Model responsible for predicting users’ future QoS and QoE
values (i.e., QoS metrics and QoE values). The Clustering
module through a ML model gets the clusters of users for the
instant of execution t and subsequent ones (i.e., t+ 1, t+ 2,
and so on) because the tenant can use this information for any
requests of resource reallocation to increase user satisfaction.
Note that the number of clusters can change over time. For
this reason, in Fig. 1 the DTN shares with the tenant predicted
information on different numbers of clusters (i.e., N , M , P ).
The tenant receives this information and, thanks to the service

orchestrator and the help of AI, computes the bandwidth
needed for optimal resource allocation and the increase of QoE,
avoiding over-provisioning and, if necessary, by sending to the
DTN the requests for more bandwidth and resources. These
requests arrive at the Configuration Planner, which creates
various possible configurations to test via the Network Emulator
in a parallel manner. The Network Emulator, after testing all
possible configurations, chooses the best one and sends it to
the Configuration Deployer, whose function is to send the
configuration to the interested SDN Controllers.

In this way, the DTN aims to proactively optimize network
resources thanks to AI. It performs QoE estimation through
the perfect knowledge of monitoring parameters and QoS
metrics and consequently performs QoE/QoS prediction and
user clustering thanks to DL and ML. Then, only the processed
network statistics are exposed to the tenant, without sharing all
the in-depth details of the underlying network, by safeguarding
the privacy of the Network Operator [14]. Finally, the tenant has
a service orchestrator, which is able to ask for the redistribution
of physical, network, and application resources to guarantee
high levels of QoE (i.e., MOS values) for all the network
users. To this end, it is supported by AI and specifically it can
implement a DRL algorithm. The main functionalities covered
by the proposal, with a focus on the DTN, are introduced below.
Only a high-level description is provided in this position paper,
specifically for the resource allocation and redistribution, and
the complete design and analysis are delayed for future research
activities.

A. Physical network monitoring

The Network Operator Infrastructure manages resource re-
quests issued by tenants and interacts with the SDN Controller,
which implements monitoring functionalities and retrieves
network dynamics, including QoS metrics. Network data and
statistics are collected for each slice dedicated to users and
are exposed to the DTN through Northbound Interfaces (e.g.,
by using RESTful API [10]). This information is transmitted
from the SDN Controllers to the DTN [1]. The interaction
between the SDN Controller and the Network Operator Infras-
tructure/DTN is implemented through conventional protocols
(i.e., OpenFlow, RestConf, etc.) and interfaces [10], [11], [14].

B. QoE/QoS estimation, prediction, and clustering

The Network Operator can generate instances of the DTN,
making precise copies either of specific network segments or
related to relevant features for the tenants. In the proposed
framework, the Network Operator utilizes the DTN to replicate
and instantiate specific features. Going into detail, the usage of
physical resources and QoS metrics like bandwidth, latency, and
Packet Loss Rate (PLR) are collected and exposed to the DTN
for QoE estimation. In particular, MOS can be adopted [3]–[5].
It is a standard subjective metric that measures the level of
user satisfaction on a scale of 1 (bad) to 5 (excellent). Through
the International Telecommunication Union (ITU) standardized
E-model [15], the DTN estimates the MOS value of users.
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Fig. 1. General architecture with the proposed AI-based DTN.

Below there are the details on the focus of the proposal, i.e.,
DTN and AI.

1) DTN: Standard Development Organizations, such as IETF
or ITU, have initiated efforts to formulate a definition for a DTN
[8]. IETF also shared a reference architecture of DTN that is
divided into physical network, instance of DTN, and application.
According to the reference architecture, the instance of DTN
collects network data and control messages from the real
physical network (i.e., raw JSON data) and stores them in the
Data Repository. Thus, the collected information is temporally
stored in the Data Repository (e.g., in JSON files) so that it is
available to the Functional and Basic Models.

2) AI: Functional Models are used for network analysis,
emulation, prediction, etc., while Basic Models are the models
referring to the network element models, topology, and all other
information to fully characterize in real-time the real physical
network [8]. By focusing the attention on the Functional
Models, the integration of AI in the DTN is crucial: the QoS
metrics are adopted not only to calculate the MOS values for
each user (i.e., QoE Estimator module) but also for QoE/QoS
prediction and user clustering. The QoE/QoS Predictor module
implements a LSTM network to predict the next QoS metrics
and MOS values for each user by analyzing them in the
previous time instants. This kind of DL solution can extract
temporal correlations of data through LSTM memory cells
[13], [16]. Then, the Clustering module thanks to ML groups
the users based on QoS metrics and allows reducing the size
of exchanged data with the tenant.

C. Towards an optimal multimedia service provisioning

The DTN exposes to the tenant, through its interfaces
[11], bandwidth and the average, the minimum, and the
maximum MOS values for each cluster and shares their
predicted future values. Thus, thanks to AI, the DTN can

provide in advance high-level indicators on QoE for all the
users. They enable simplified network management, without
sharing QoS metrics by reducing the amount of exchanged data
and energy consumption and masking in-depth details of the
Network Operator. By knowing the future predicted values of
MOS, i.e., future QoE, the tenant through AI, and specifically
DRL, can decide if more resources from the Network Operator
are needed to guarantee high levels of QoE for all the users,
minimizing the bandwidth to be allocated in order to avoid
resource over-provisioning and deliver a reliable streaming
service meeting Service Level Agreement (SLA).

III. PRELIMINARY INVESTIGATION

The preliminary results discussed in this paper refer to some
AI functionalities presented in Section II-B. The Web Real-
Time Communications (WebRTC) use case is considered as
an example to preliminarily test the proposed framework and
network statistics, including QoS metrics. Realistic tests are
conducted in the time domain.

A. Dataset

This paper considers the dataset presented in [17], which
reports various tests conducted in various countries around
the world using WebRTC technology in the context of the
Measuring Mobile Broadband Networks in Europe (MONROE)
project. The analyzed scenario includes a group of 150 nodes,
consisting of both mobile devices (e.g., within delivery trucks,
trains, or buses) and stationary ones (e.g., volunteers who host
nodes in their residences). Among the captured features, latency
and PLR per user are used. Specifically, the PLR is obtained
through the received packets and lost packets per user. In the
proposed framework (Fig. 1), the SDN Controller exposes these
QoS metrics to the instance of DTN, which calculates the MOS
values (i.e., QoE estimation).



TABLE I
CONFIGURATION PARAMETERS AND PERFORMANCE OF THE LSTM

NETWORKS.

hidden
size

number
of

layers

number of
trainable

parameters [#]

MSEtrain

[·10−3]

MSEval

[·10−3]

MAEtrain

[·10−3]

MAEval

[·10−3]

5 1 166 1 2.8 16.2 17.5
40 2 20041 0.6 2.8 17.7 19.7
100 2 122101 0.4 2.7 10.7 16.9
150 2 273151 0.5 2.7 14.3 16.8
200 2 484201 0.4 2.7 10.2 13.5
200 1 162601 0.5 2.7 15.5 17.2
200 3 805801 0.4 2.7 15.8 18.5
300 2 1086301 0.4 2.8 15.8 15.9

B. Evaluation setup for QoE prediction and clustering

The adopted AI algorithms for QoE prediction and clustering,
i.e., DL and ML algorithms, have been implemented in Python,
as detailed below.

1) QoE prediction: The prediction architecture is imple-
mented using torch.nn, a Python-based API for neural networks
built on PyTorch [18]. It utilizes an observation window T
of 20s. Adam optimization with a learning rate of 0.001 is
employed for weight updates, with 100 epochs and a batch
size of 64. Training hyperparameters include an input size of
1 (representing the MOS value per user), various hidden sizes
(number of features/units in the hidden state), and different
numbers of LSTM layers. The output size is set to 1 for
predicting the next MOS value. Preliminary evaluation of QoE
prediction covers time instants τ ranging from 0s to 150s.

2) Clustering: The proposed clustering solutions have been
implemented with PyClustering and Scikit-learn libraries, using
the K-Means, X-Means, and Clustering Using REpresentatives
(CURE) algorithm [19], [20]. The users are grouped over time
according to QoS metrics. In order to evaluate the performance
of clustering for each time instant τ , the dataset has been
properly pre-processed. Firstly, the Min-Max Scaler has been
applied to normalize the data. To select the number of clusters,
the silhouette method has been adopted in K-Means and CURE,
while X-Means is the extended version of K-means with
efficient estimation of the number of clusters [21].

C. QoE prediction analysis

Different configurations of the LSTM network are evaluated
for QoE prediction. Table I reports the configuration parameters
and the prediction performance obtained with different values
of hidden size and number of layers, as anticipated in Section
III-B. Also, the number of trainable parameters is reported for
the complexity analysis: the higher the number of parameters,
the higher the complexity level. By making a trade-off between
complexity and prediction performance, the best configuration
is highlighted in bold. It achieves the lowest value of Mean
Square Error (MSE) and Mean Absolute Error (MAE) for
training and validation (30% of data) phases. Fig. 2 shows
the prediction loss (i.e., MSE) as a function of the number of
epochs considered during the training phase in order to analyze
the convergence: stable loss values are reached in a short time.

To provide further insight, Fig. 3 shows the trend and the
related prediction over time of MOS values for a generic
test and unknown user: they almost overlap. Specifically,
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Fig. 2. MSE vs number of epochs for the best LSTM configuration.
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Fig. 3. MOS prediction for a generic unknown user.

the black line represents the trend of the true MOS value
observed in the sliding window T=20s and the red dots are
the predicted MOS values in the next time instant. Obtained
results confirm the ability of LSTM to suitably process time
series. The effectiveness of the proposed prediction approach
is also demonstrated for a different number of users NU , i.e.
10 and 20, over time, as shown in Fig. 4 for 10 example time
instants. The figures highlight the median value (i.e., the red
line), the 25th and the 75th percentile (i.e., the bottom line and
the top line of the blue rectangle), as well as the minimum and
the maximum MAE value (i.e., the edges of the vertical black
line) of MOS predictions. It can be noted that the median error
value for NU=10 and NU=20 does not exceed 0.02 and 0.05,
respectively.

D. Clustering analysis

The clustering algorithms K-Means, X-Means, and CURE
are applied to users at different time observation instants τ to
analyze the time trend. The clustering performance for two
representative time instants (τ=60s and τ=70s) is illustrated in
scatter-plots (Fig. 5). These plots show how considering delay
and PLR, crucial QoS metrics for MOS calculation, aids in
user clustering. User mobility is evident: for instance, the user
with ID 568 (a train user in Norway) exhibits varying delay
and PLR values between τ=60s and τ=70s. At τ=60s, all
algorithms produce two clusters (Fig. 5a). However, at τ=70s,
K-Means and CURE generate three clusters, while X-Means
two (Fig. 5b). Table II summarizes the clustering results with
the average MOS values for each cluster (MOSx). Notably, at
τ=60s, K-Means and X-Means have identical average MOS
values, whereas CURE discerns differences among users in
clusters 1 and 2. At τ =70s, K-Means and CURE exhibit
similar behaviors, while X-Means fails to distinguish users
with low MOS values in cluster 2, as observed through the
other algorithms.

By analyzing the clustering performance at the different
time instants, the results of K-Means, X-Means, and CURE
algorithms are quite similar, especially for K-Means and CURE
that adopt the silhouette method for the number of clusters.
Since CURE has higher complexity with respect to K-Means
[22], K-Means can be selected as the most suitable clustering
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Fig. 5. K-Means, X-Means, and CURE at (a) τ=60s and (b) τ=70s.

algorithm in the analyzed scenario for its high implementation
efficiency.

As an example of the data (and therefore also storage and
energy) reduction, the amount of information to be exchanged
between the instance of DTN and the tenant with and without
clustering (by using K-means) is shown below in the case of
different numbers of users NU and clusters NC . For example,
with NU=20, the total number of the values of latency and
PLR per user is 40, whose size is 2880 bytes for the baseline
approach without clustering as shown in Fig. 6. In the same
case but with the clustering approach, there are NC=2 with 4
and 17 users in cluster 1 and cluster 2, respectively, and only
6 values, i.e., three values (average, minimum, and maximum
MOS) per cluster, whose size is 160 bytes, are transmitted.
Therefore, in this example case, the data saving between the
clustering and baseline approach corresponds to 94.44%. To
conclude, the proposed approach leads to a saving of exchanged
data, becoming more prevalent with the increase in the number
of users NU , which will be grouped in a small number of
clusters NC<NU .

IV. OPTIMIZATION OPPORTUNITIES AND FUTURE
DIRECTIONS

A preliminary investigation on resource management and
redistribution has been conducted, neglecting mobility impair-
ments, by assuming that the maximum allocation permitted by

TABLE II
AVERAGE MOS VALUES FOR EACH CLUSTER OBTAINED BY DIFFERENT

CLUSTERING ALGORITHMS.

K-Means X-Means CURE

τ = 60s
MOS1 = 2.971 MOS1 = 2.971 MOS1 = 1
MOS2 = 3.999 MOS2 = 3.999 MOS2 = 3.938

τ = 70s
MOS1 = 4.031 MOS1 = 3.807 MOS1 = 4.031
MOS2 = 1.132

MOS2 = 3.222
MOS2 = 1.132

MOS3 = 3.919 MOS3 = 3.919
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Fig. 6. Exchanged data size for Clustering and Baseline approaches in the
case of different numbers of users NU and clusters NC .

the Network Operator is 5 Mbps [23]. As part of this analysis, a
specific time observation instance as an example wherein users
exhibit low and high MOS values has been examined. The
idea is to reduce bandwidth for clusters with high MOS values,
allocating more bandwidth to clusters with low MOS values
to improve their QoE. For example, at τ=110s, there are two
clusters with average MOS values MOS1=1.518 (poor quality)
and MOS2=4.105 (good quality), respectively, as shown in Fig.
7. Subsequently, at τ=140s, increasing available bandwidth by
4.76% with respect to the maximum allocable for Cluster 1 and
reducing it by 1.80% for Cluster 2, the average MOS value of
Cluster 1 improved to MOS1=3.802, while the average MOS
value of Cluster 2 is only reduced to MOS2=4.021, obtaining
similar values per cluster.

Future research directions include the usage of physical
resource blocks and their correlation with application-level
statistics in order to formulate a DRL algorithm, which jointly
exploits the QoE/QoS prediction and MOS-based clustering
for resource optimization and redistribution. In this way, high
levels of QoE will be achieved and energy efficiency will be
improved. Specifically, the DRL module of the tenant’s service
orchestrator will facilitate resource redistribution in cases where
the average MOS value of clusters indicates low QoE. This will
lead to requests for an additional percentage of bandwidth from
the DTN instance operated by the Network Operator. Such
proactive adjustments will be driven by predicted statistics
and cluster behaviors. The specific percentage increase in
bandwidth allocation will be determined on a case-by-case
basis by considering network constraints to avoid resource over-
provisioning while optimizing the network configuration. After
the complete design and evaluation of the AI (DL, ML, DRL)
modules, the approach can be extended for multiple tenants.
Moreover, the development of the remaining components will
characterize future research activities to fully implement the
designed framework. Also, in the context of Zero-touch network
and Service Management (ZSM), DTN is a key enabler for
proactive network management according to user needs and
demands. Specifically, ZSM includes AI techniques to achieve
higher levels of automation and efficiency. Thus, the proposed
AI-based DTN could be investigated as a reference solution
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for the creation of Zero-Touch Networks (ZTNs). Lastly, the
whole framework could be also placed in the 6G-oriented
scenario with integrated Terrestrial/Non-Terrestrial Networks,
according to the latest 3rd Generation Partnership Project
(3GPP) specifications.

V. CONCLUSIONS

This paper preliminarily designed a novel framework to
effectively manage multimedia service provisioning in Beyond
5G and 6G communication systems through the integration of
Artificial Intelligence and Digital Twin Networks, aligning with
ongoing Internet-Draft efforts by the IETF. Its components and
functionalities have been sketched, with a focus on Quality
of Experience (QoE) estimation through the standardized
Mean Opinion Score (MOS), QoE/Quality of Service (QoS)
prediction, and user clustering. Different configurations of Long
Short-Term Memory (LSTM) schemes have been efficiently
employed to predict the temporal dynamics of MOS values.
Moreover, three different clustering algorithms (i.e., K-Means,
X-Means, and CURE) have been analyzed by considering real
QoS metrics. The MOS values allow for effective representation
of user clusters, reducing exchanged data size. Future research
activities include the implementation of a Deep Reinforce-
ment Learning approach for optimal resource allocation and
redistribution.
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