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Abstract—Non-Terrestrial Networks represent a valuable solu-
tion for providing connectivity to Internet of Things (IoT) devices
in remote areas, where classical infrastructure is unavailable. Due
to the low-power nature of IoT devices, an Unmanned Aerial
Vehicle (UAV) can prevent the energy depletion of these Ground
Nodes (GNs) by employing Wireless Power Transfer through
an array antenna. Starting from the mathematical modeling of
such a scenario, two Mixed-Integer Non-Linear Programming
problems are formulated to fairly maximize (i) the energy
distribution and (ii) the total amount of data transmitted to a
Low Earth Orbit CubeSat. Therefore, it is necessary to optimize
the drone kinematics, the transmission scheduling plan, and the
beamforming vectors of the array antenna. To cope with their
non-convexity, both problems are mathematically manipulated to
reach a tractable form, for which two optimization algorithms
are proposed and their complexity analyzed. To prove the
effectiveness of the overall solution, a comprehensive simulation
campaign is conducted under several parameter settings, such
as number of GNs and UAV antenna elements with different
transmission power levels. Finally, the proposal is compared with
a baseline, which confirms the superiority of the proposal up to
7 times in terms of total transmitted data.

Index Terms—Unmanned Aerial Vehicle, Internet of Things,
Wireless Power Transfer, Satellite, Optimization.

I. INTRODUCTION

The growth of the number of users, as well as the diversity
of services, has been enabled primarily by the expansion
of traditional terrestrial wireless communication systems [1].
At the same time, emerging applications impose challenging
requirements that must be addressed through the technological
advancement of innovative telecommunication facilities [2].
In this context, sixth generation (6G) mobile system [3]
promises an ubiquitous coverage across Earth that leverages
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an integrated access backhaul that unifies space, aerial, and
ground infrastructures [4].

In this regard, Space-Air-Ground Integrated Networks
(SAGINs) [5] represent a flexible solution to provide wireless
access services with high data rate and reliability, which
are key enablers for a variety of both civil and military
applications, including Earth observation and mapping, in-
telligent transportation systems, and disaster rescue. Further-
more, recent 3GPP standardization efforts [6]–[9] identified
Non-Terrestrial Networks (NTNs) [10], [11] as a solution to
grant connectivity where traditional terrestrial infrastructure is
not practical or cost-effective. On the one hand, Low Earth
Orbit (LEO) satellite constellations are important to provide
full-coverage broadband services for ground users through
space-ground interconnection. Manufacturing and launching
processes for these constellations have matured, enabling the
implementation and deployment of these systems at scale [12],
[13]. On the other hand, Unmanned Aerial Vehicles (UAVs)
[14], also known as drones, have received significant attention
due to their flexibility and applicability in manifold scenarios.
In particular, network architectures can benefit from their high
mobility, easy deployment, and reusability [15]. Specifically,
drones play a pivotal role in the realm of the Internet of Things
(IoT) [16], representing an enabling technology to provide
pervasive connectivity even where the classical communication
infrastructure is not available. The IoT allows interconnec-
tion between the physical and digital realms, revolutionizing
industries by offering disruptive prospects for automation,
efficiency, and data-driven decision-making.

Therefore, the integration of satellite and UAV commu-
nications in the IoT domain enables real-time monitoring,
autonomous operations, and novel solutions across industries
such as agriculture, transportation, and surveillance. This com-
bination results in a full ecosystem, propelling progress toward
a smarter and more connected society.

Despite the great advantages in terms of seamless and reli-
able connectivity, the energy lifetime of IoT devices represents
a challenging aspect that is usually not taken into account,
especially in harsh environments. To this end, Wireless Power
Transfer (WPT) [17] has been recognized as an effective
solution to cope with this issue. In traditional WPT systems,
specialized energy transmitters are installed at fixed locations
to send Radiofrequency (RF) signals to charge IoT nodes, es-
pecially low-power ones. However, the range of these systems
is limited by the low efficiency of end-to-end power trans-
mission over long distances. Therefore, fixed-location energy
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transmitters must be densely deployed to wirelessly recharge a
large number of low-power devices, which would significantly
increase the cost and hinder large scale implementation.

To tackle this issue, the majority of the scientific literature
focuses on the combination of WPT and UAVs as a solution
to support an IoT network in terms of power delivery and
information transmission. In particular, they focus on the
optimization of different aspects, such as the movements of
the UAV [18]–[25], power allocation [19], [21]–[23], [25],
[26], energy harvesting time [20]–[23], [26], [27], and the
beamforming vectors of the antenna [24], [25].

To the best of the authors’ knowledge, however, the state of
the art does not consider the potential of satellites, and their
integration with drones and WPT, as a comprehensive solution
for IoT networks in harsh conditions.

Starting from the discussion above, this work combines
together the advantages of these technologies by investigating
a UAV-powered IoT-satellite integrated network, where a
drone wirelessly recharges a set of Ground Nodes (GNs),
while a LEO CubeSat provides connectivity for data exchange.
Specifically, the objective is to achieve a fair maximization in
terms of harvested energy and transmitted data.

The main contributions of this work are as follows:

• An integrated NTN is designed to enable the uplink
data transmission of GNs to a LEO CubeSat, within
its visibility window. These IoT nodes are deployed in
a specific area and are recharged by a UAV, equipped
with an array antenna, that employs WPT. Accordingly,
a mathematical model is developed to characterize the
UAV-GN channel and CubeSat-GN communication link.

• Two Mixed-Integer Non-Linear Programming (MINLP)
problems are formulated to fairly maximize (i) the har-
vested energy of the GNs by jointly optimizing the
UAV kinematics and the array antenna beamforming
vectors, and (ii) the total transmitted data by fine-tuning
the transmission plan of the nodes communicating with
a LEO CubeSat. Both problems are non-convex and
hence intractable. Therefore, the first is divided into
two sub-problems, which are alternatively solved by
leveraging also the Successive Convex Approximation
(SCA) technique, until convergence to a quasi-optimal
solution is achieved. Following a similar strategy, also
the second problem is solved by adopting the two afore-
mentioned techniques.

• A lower-bound mathematical expression for the harvested
energy is derived. The stochastic nature of the UAV-GN
channel model represents a challenge, which is addressed
by imposing a maximum out-of-service probability. This
leads to a non-linear energy-harvesting model that can be
employed also for system design and assessment.

• A simulation campaign is conducted to prove the effec-
tiveness of the proposed solution. In particular, multi-
ple scenarios are analyzed and discussed under differ-
ent parameter configurations, which include transmission
power, number of GNs, and array antenna size. The
performance of the conceived algorithm is then compared
with a baseline approach, where the drone follows a

snake-like trajectory and periodically recharges the near-
est node by adopting an optimal transmission scheduling.

Numerical results demonstrate that the proposed strategy out-
performs the baseline in terms of total transmitted data.

The rest of the work is organized as follows: Section III
describes the adopted system model. Sections VI and VII
discuss the conceived problems’ formulations and the pro-
posed solutions. Section VIII presents the obtained numerical
results. Finally, Section IX concludes the work and draws
future research perspectives.

Notations: boldface lower case letters refer to vectors;
j =

√
−1 is the imaginary unit; xT is the transpose of a

generic vector x; xH is the Hermitian of a generic vector x;
x ⊗ y denotes the Kronecker product between two generic
vectors; x ∼ CN (µ, σ2) define a circularly symmetric com-
plex Gaussian distribution x with mean µ and variance σ2; Ix
represents the identity matrix of dimension x; Jx(·) denotes
Bessel function of the first kind of order x; O (x) denotes the
time-complexity of an algorithm of input size x, i.e, big O
notation. The most significant parameters used in this work
are summarized in Table I.

II. RELATED WORK

The scientific literature is currently focusing on enhancing
traditional IoT networks by (i) expanding their coverage and
(ii) improving the battery life of the devices.

Regarding the former, some intriguing contributions include
the design of (i) communication and protocol schemes by
adapting terrestrial technology to the space segment [28], (ii)
resource allocation schemes able to improve energy efficiency
[29], and (iii) more reliable LEO satellite-terrestrial commu-
nication techniques [30].

In this context, UAVs employed as mobile base station
represent a valuable methodology to achieve ubiquitous con-
nectivity. For instance, the authors in [31] aim at improving
the perceived network quality by the user and minimizing the
communication outages, while enhancing the data rate and
the fairness of the transmission. Most noteworthy scientific
efforts placed a great emphasis on the pairing of these two
technologies by defining a hybrid network that leverages
UAVs as relays to support satellite communications. In this
context, the spectral efficiency and the outage probability
are optimized in [32] by proposing a UAV relay selection
and power allocation scheme. Other contributions design the
transmission scheduling and the UAV trajectory to increase
the system capacity [33] and energy efficiency through Non-
Orthogonal Multiple Access (NOMA) [34].

For what concerns the battery life of the devices, WPT
emerged as a disruptive technology for energy harvesting [35].
For instance, the authors in [36] propose a method that allows
a node to first gather energy and then use it to transmit.
Specifically, they investigate the optimal duration of a times-
lot in a Time Division Multiple Access (TDMA) protocol,
which maximizes the spectrum efficiency. Other approaches
also consider the presence of a Intelligent Reflecting Surface
(IRS) [37] to maximize the transferred power [38] and the
throughput [39] of the users.
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Moreover, cutting-edge approaches integrated the potential
of WPT technology with the high mobility of the UAVs. A first
setup is envisioned in [40] and [41], where energy-constrained
nodes are optimally served by a UAV which acts as a base
station, powered by WPT.

Recent works are also exploring the employment of UAV
as a standalone WPT source. Clearly, one of the most critical
aspects to be optimized is the UAV trajectory, which affects
many facets of the mission, such as (i) the total amount of
collected data [23], (ii) the age of information [27], (iii) the
energy harvested by the GNs [18], [19], [22], [24], [25], (iv)
the out-of-service probability [20], and (v) the UAV power
consumption [21]. In particular, a novel scheme aided by an
IRS, which simultaneously addresses WPT and information
transmission for IoT sensors, is proposed in [23]. The protocol
is divided into two phases: in the first one the drone recharges
the devices while in the second one gathers the data. The
objective is to maximize the total network sum-rate by opti-
mally deriving the trajectory, the power allocation, the energy
harvesting scheduling of the nodes, and the phase-shift matrix
of the surface. Furthermore, the authors in [27] investigate a
scenario in which a UAV recharges the GNs, collects data, and
then transfers them to a data center. The aim is to minimize
the average age of information by jointly optimizing the UAV
trajectory and the time allocated for WPT. Moreover, the ap-
proach proposed in [18] intervenes by supplying power at GNs
with limited battery capacities deployed at remote areas. Given
that UAV is employed as a wireless power supplier and data
collector, its overall energy consumption must be optimized
subject to task collection and resource budget requirements. In
[20], it is discussed the minimization of the energy depletion of
GNs, and hence their outage probability. The latter is subject to
the UAV elevation angle and the time slot allocation between
the energy harvesting and the information transmission of each
GN. Finally, the authors in [21] study a scenario in which
a UAV is in charge of sustaining the devices of a network
by periodically flying back and forth from a fixed position.
Two approaches are proposed to minimize the average UAV
power consumption by determining the trajectory, the duration
of working periods, and the charging phase. The works above,
however, consider a single antenna to perform WPT. To fill
the gap, the approaches proposed in [24] and [25] investigate
the impact of an antenna array to increase energy efficiency
by taking advantage of beamforming.

To the best of the authors’ knowledge, there is a lack of
contributions that design and evaluate the performance of a
UAV-powered IoT network that relies on a LEO CubeSat for
information transmission. In this regard, this work proposes
an optimization strategy to fairly distribute energy via WPT
operation across GNs, while maximizing the transmitted data.

III. SYSTEM MODEL

The entire mission, depicted in Figure 1, is divided into
two phases. The first one considers a UAV wirelessly charging
a set of G low-power GNs, while the second comprises the
transmission of sensed data from the nodes to a LEO CubeSat.

The first phase is uniformly split into K timeslots of
duration δ seconds each. The UAV flies at a fixed height zU and

Fig. 1: Reference scenario.

follows a discretized trajectory, denoted by qU
k = [xU

k, y
U
k]

T ∈
R2, at a velocity of vU

k ∈ R2, with k = 1, . . . ,K. The GNs are
uniformly deployed over an area of interest with a diameter
equal to dA and can be in either one of these three states:
energy harvesting, data upload, and idle. Moreover, each one is
placed at known coordinates denoted by qG

g =
[
xG
g, y

G
g

]T ∈ R2,
with g = 1, . . . , G. Therefore, it is possible to define the
inclination and azimuth angles, i.e, θUG

k,g and φUG
k,g , between

the g-th GN and the UAV as

θUG
k,g = arccos

zU

dUG
k,g

, φUG
k,g = arctan2

yU
k − yG

g

xU
k − xG

g

, (1)

and corresponding distance as:

dUG
k,g =

√
∥qU

k − qG
g∥2 + (zU)2. (2)

Similarly to the former, also the second phase is split into
N equal timeslots of duration δ seconds. The LEO CubeSat
is assumed to be at constant altitude zS, following a sun-
synchronous circular orbit, denoted by qS

n = [xS
n, y

S
n]

T ∈ R2,
with n = 1, . . . , N , at steady speed vS ∈ R2.

Thus, the inclination θSG
n,g and azimuth φSG

n,g angles, between
the g-th GN and the LEO CubeSat read:

θSG
n,g = arccos

zS

dSG
n,g

, φSG
n,g = arctan2

yS
n − yG

g

xS
n − xG

g

, (3)

where the CubeSat-GN distance dSG
n,g , also known as slant

range [42], can be expressed as

dSG
n,g =

√
r2 sin2 ϑSG

n,g + (zS)
2
+ 2zSr − r sinϑSG

n,g, (4)

with r representing the Earth’s radius and ϑSG
n,g = π

2 − θSG
n,g

being the elevation angle. Note that, 0 ≤ ϑSG
n,g ≤ π/2 and

specifically ϑSG
n,g = 0 at the sunrise and the sunset, while

ϑSG
n,g = π/2 when the CubeSat is over the GNs. Since the
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Symbol Description Symbol Description
N Number of discrete timeslots for the transmission phase. χSG

n,g Link budget for the link between the CubeSat and the GN.
K Number of discrete timeslots for the charging phase. ΥSG

n,g Link noise power for the link between the CubeSat and the GN.
G Number of GN. ΓSG

n,g SNR of the link between the CubeSat and the GN.
δ Duration of each timeslot, in seconds. RSG

n Maximum achievable data rate of the CubeSat-GN link.
qU
k Position of the UAV in cartesian coordinates. B GN-CubeSat channel bandwidth.

vU
k Velocity of the UAV in meters per second. MCL Maximum Coupling Loss.

qS
n Position of the CubeSat in cartesian coordinates. ∆SG

n,g Uplink coupling loss between the CubeSat and the g-th GN.
dUG
k,g Distance between the UAV and the g-th GN. vS Orbital speed of the CubeSat over Earth.

dSG
n,g Distance between the CubeSat and the g-th GN. GE Earth’s gravitational constant.

θSG
n,g Inclination angle between the CubeSat and the g-th GN. ME Mass of the Earth, expressed in kilograms.

φSG
n,g Azimuth angle between the CubeSat and the g-th GN. vF CubeSat speed footprint over Earth in meters per second.

ϑSG
n,g Elevation angle between the CubeSat and the g-th GN. F S CubeSat footprint diameter, expressed in meters.
r Earth radius, expressed in meters. T V CubeSat visibility time, expressed in seconds.
Λ Transmission scheduling plan. θUG

k,g Inclination angle between the UAV and the g-th GN.
Ω Recharge scheduling plan. φUG

k,g Azimuth angle between the UAV and the g-th GN.
LI
n,g Communication loss between the CubeSat and the g-th GN. hk,g Channel vector of the UAV-GN WPT link with Rician fading.

GS
n,g , G

G
n,g Antenna gain of LEO CubeSat and GN. κ Rician K-factor.

ζ Free space phase constant. γk,g Channel gain of the UAV-GN WPT link.
ϱ Effective radius of the CubeSat antenna. Ek,g Energy harvested by the g-th GN, expressed in Joules.

f SG, fUG Carrier frequencies in Hertz. P, P Transmission power of the UAV and the GNs in Watts.

TABLE I: Main notations used in this work.

altitude of the CubeSat is fixed, dSG
n,g depends only on the

elevation angle. Finally, according to the scheduling plan
Λ = (λn,g) ∈ {0, 1}N×G, if the energy harvested in the first
phase is sufficient, then a GN can transmit the sensed data in
the second one.

IV. DRONE MODEL

The UAV is equipped with an Uniform Planar Array (UPA),
with S = L × W antenna elements, which works in one
of the resonant frequencies of the GNs’ monopole antenna.
Beamforming is adopted in order to maximize the power
transfer to the GN of interest. Typically, the air-to-ground links
are characterized by a strong Line-of-Sight (LoS) component.
However, the multi-path fading caused by reflections on the
ground is not negligible. Therefore, the Rician distribution is
adopted to capture both LoS and Non-Line-of-Sight (NLoS)
components [43], thus granting a realistic representation of the
UAV-GN channel. Consequently, following Rician fading, the
channel vector for the Multiple-Input-Single-Output (MISO)
link between the UAV and the g-th GN, characterized by the
Rician K-factor κ, can be modeled as:

hk,g =

√
κ

κ+ 1
h̄k,g +

√
1

κ+ 1
h̃k,g ∈ CS×1, (5)

where

h̄k,g=
[
1, e−jℓd sin θUG

k,g cosφUG
k,g , . . . , e−j(W−1)ℓd sin θUG

k,g cosφUG
k,g

]T
⊗
[
1, e−jℓd sin θUG

k,g sinφUG
k,g , . . . , e−j(L−1)ℓd sin θUG

k,g sinφUG
k,g

]T
,

is the LoS deterministic component, which describes the large-
scale fading phenomena, and h̃k,g ∼ CN (0, IS) is the NLoS
stochastic fluctuation due to multi-path propagation. Moreover,
d is the distance between each element of the UAV’s UPA, ℓ =
2π
c fUG, c is the speed of light, and fUG the carrier frequency.

Given the channel model description, the gain between the
UAV and each GN can be expressed as:

γk,g =

∣∣∣∣∣
√
β
(
dUG
k,g

)−2

wH
khk,g

∣∣∣∣∣
2

, (6)

where β denotes the channel power gain at the reference
distance of 1 m, and wk ∈ CS×1 is the beam-forming vector.

The energy harvested by each g-th GN from the UAV can
be non-linearly modeled [38], [41] as:

Ek,g =
α0Pδγk,g

α1Pγk,g + α2
1

, (7)

where P is the transmission power of the UAV, and α0 =
0.399, α1 = 0.826 are positive constants determined in [38],
[44]. Note that the adopted non-linear model is preferred with
respect to a linear one, since it improves the overall accuracy
and better estimates the time required to recharge each GN.

V. SATELLITE MODEL

This Section discusses the model adopted to describe the
uplink communication between the GNs and the LEO Cube-
Sat, to derive an expression of the link budget, which is then
employed to obtain the reciprocal visibility time, and hence
the mission duration. Among the possible channel models
available in the scientific literature [45], the proposed one
aligns with the specifications outlined in 3GPP TR 38.811
[6]. It is worth mentioning that, since the locations of GNs and
the trajectory of the satellite are known, a compensation of the
frequency shift introduced by the Doppler effect can be always
performed, and hence it is not taken into account. Moreover,
the considered uplink channel is typically characterized by
a large elevation angle of the LEO CubeSat with respect to
GNs [46], thus leading to a communication link dominated by
a strong LoS component and hence a negligible slow fading.
Besides, the satellite is distant several hundred kilometers from
the nodes, and hence the channel is subject to a significant
pathloss which makes the multi-path effect negligible [47].

To avoid interference among different nodes, the commu-
nication system has been designed in a TDMA fashion, such
that at most one node per timeslot can communicate with the
LEO CubeSat. This comes with the advantage, differently from
Frequency Division Multiple Access (FDMA), that the GNs
can effectively exploit all the available bandwidth. Each GN
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employs a Commercial Off-the-Shelf (COTS) horizontally-
oriented monopole antenna, assumed to be lossless, with linear
polarization that operates at frequency f SG in the S-band [48].

In particular, the antenna gain [48] can be expressed solely
as function of the elevation angle ϑSG

n,g:

GG
n,g = 4

cos2(π2 cosϑSG
n,g)

sin2 ϑSG
n,g

∫ π

0

cos2(π
2 cosϑ)

sinϑ dϑ
. (8)

Likewise, the LEO CubeSat is equipped with a lossless circular
patch antenna, whose gain [48] can be expressed as:

GS
n,g = 4

cos2 φSG
n,gJ

′2
02 + cos2 θSG

n,g sin
2 φSG

n,gJ
2
02∫ π/2

0
(J ′2

02 + cos2 θJ2
02) sin θdθ

. (9)

Specifically, J ′
02 and J02 read:

J ′
02 = J0(ζϱ sin θ

SG
n,g)− J2(ζϱ sin θ

SG
n,g), (10)

J02 = J0(ζϱ sin θ
SG
n,g) + J2(ζϱ sin θ

SG
n,g), (11)

with ζ being the free space phase constant and ϱ the effective
radius. Furthermore, the channel is characterized by different
impairments [49] which can be modeled as follows:

LI
n,g = LA

n,g L
R
n,g L

Sc
n,g L

P. (12)

In particular, LI
n,g is estimated by taking into account the

air attenuation and the atmospheric gas absorption LA
n,g [50]–

[52], the rainfall droplet LR
n,g [53], [54], the scintillation

attenuation LSc
n,g [48], and the polarization attenuation LP [48].

The transmitted signal of each GN undergoes polarization
rotation during the propagation in the ionosphere. It means
that the signal may be polarized differently than intended on
the satellite side. This phenomenon can be mitigated by using
a circular-polarized signal, causing a maximum misalignment
of π/4, which leads to LP = 2. Therefore, the combination of
(8), (9), and (12) leads to the definition of the link budget [49]:

χSG
n,g =

P GS
n,g G

G
n,g

LFS
n,g L

I
n,g

, (13)

where P defines the transmission signal power of the GN.
Further, LFS

n,g [6] describes the free space propagation loss,
which depends on the carrier frequency* f SG and the GN-
CubeSat distance dSG

n,g .
Moreover, the receiver sensitivity [49] represents the noise

power of the link and is defined as

ΥSG
n,g = kB ηSG

n,g B, (14)

with kB being the Boltzmann constant, B the channel band-
width, and ηSG describing the equivalent system noise temper-
ature for both antenna and receiver noise.

Once the link budget and the receiver sensitivity are defined,
it is possible to obtain the Signal-to-Noise Ratio (SNR) as:

ΓSG
n,g =

χSG
n,g

ΥSG
n,g

. (15)

*It is assumed that fUG and f SG are different carriers defined in the S-
band, such that the GN can employ the same monopole antenna for both
information transmission and energy harvesting without interference.
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Fig. 2: Maximum Coupling Loss thresholds of the coverage
classes for different CubeSat’s altitudes [56].

To evaluate the coverage of a radio access technology, the
3GPP introduced the Maximum Coupling Loss (MCL) [55],
which expresses the maximum loss in conducted power level,
that a system may tolerate to properly establish a connection:

MCL =
P

P̂
, (16)

where P̂ is the minimum power required by the CubeSat to
correctly decode the received signal. Therefore, it is possible
to express the current uplink coupling loss for the g-th GN in
the n-th timeslot as:

∆SG
n,g =

P

χSG
n,g

. (17)

Specifically, the GN is able to communicate with the CubeSat
if and only if

∆SG
n,g ≤ MCL. (18)

It is worth noting that ∆SG
n,g is inversely proportional to

dSG
n,g , and hence to the elevation angle ϑSG

n,g . The minimum
elevation angle able to satisfy (18) is denoted as ϑSG

MIN and the
period during ϑSG

MIN ≤ ϑSG
n,g is called reciprocal visibility time.

Although the function of the coupling loss is dependent on
non-invertible components [50]–[54], ϑSG

MIN can be obtained by
intersecting the coupling loss curve with the MCL thresholds
defined by the standard, also called coverage classes, shown
in Figure 2.

Proposition 1. Without loss of generality, if the diameter of
the area of interest is much smaller than the footprint of
the CubeSat, its distance from each GN, defined in (4), is
approximately the same and can be expressed as dSG

n .

As a consequence of Proposition 1, it is considered the same
reciprocal visibility period for each GN, which in turn defines
the total duration of the second phase δN , as derived hereby.
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The orbital period T S of the CubeSat is denoted by the
following equation:

T S = 2π

√
(r + zS)3

GE M E
, (19)

where M E and GE denote the mass and the gravitational
constant of the Earth, respectively. Furthermore, the orbital
speed vS of an Earth’s satellite is:

vS =

√
GE M E

(r + zS)
=

2π(r + zS)

T S
. (20)

Once defined the orbital speed vS, it is necessary to compute
the speed vF of the covered area at the Earth side, namely
footprint, as follows:

vF = vS − 2π
zS

T S
= 2π

r

T S
. (21)

Moreover, the footprint diameter FS can be expressed by:

F S = 2 zS tan(θSG
MIN). (22)

with θSG
MIN = π

2 − ϑSG
MIN. Therefore, the duration δN , which

corresponds to the visibility time T V can be obtained as:

T V ≜ δN =
F S

vF
=

2 zS tan(θSG
MIN)

r

√
(r + zS)3

GE M E
. (23)

Finally, as a further consequence of Proposition 1, it is also
possible to consider the same channel condition for each GN,
and hence approximate Equation 15 as follows:

ΓSG
n ≃ ΓSG

n,g∀g. (24)

Hence, recalling the well-known Shannon formula [57], the
maximum achievable data rate of a CubeSat-GN link is

RSG
n = B log2(1 + ΓSG

n ). (25)

VI. WIRELESS POWER TRANSFER OPTIMIZATION

Define Q = {qU
k}Kk=1, V = {vU

k}Kk=1, and W = {wk}Kk=1.
The first phase concerning the kinematics of the drone and
the node battery charging can be optimized by solving the
following problem:

max
η1,W,Q,V

η1 s.t. (26a)

η1 ≤
K∑

k=1

Ek,g, ∀g : 1, . . . , G, (26b)

qU
k+1 = qU

k + δvU
k, ∀k : 1, . . . , (K − 1), (26c)

qU
1 = qU

K = qU
0, (26d)

v1 = vK = 0, (26e)
∥vk∥ ≤ vMAX, ∀k : 1, . . . ,K, (26f)
∥vk+1 − vk∥ ≤ aMAXδ, ∀k : 1, . . . , (K − 1). (26g)

Problem (26) aims at fairly maximizing the battery charge
of all the nodes through constraint (26b). Equation (26c)
describes the kinematics of the drone, with the given initial
and final point of the trajectory qU

0 and the correspondent speed
imposed by (26d) and (26e), respectively. Moreover, (26f) and

(26g) limit the maximum speed and acceleration of the flight
by vMAX and aMAX, respectively. However, (26) is a MINLP
problem, and hence intractable in the present form. In partic-
ular, the stochastic formulation of the channel gain requires a
dedicated strategy to derive an optimal solution. Therefore, the
original problem is divided in two sub-problems, which are
then alternately solved until convergence to a quasi-optimal
solution is achieved.

A. Sub-Problem 1: Charge Plan Optimization

The first sub-problem aims at optimizing the beamforming
vectors W, such that the amount of energy harvested by the
GNs is maximized in a fairly manner, as follows:

max
η1,W

η1 s.t. (26b). (27)

Still, (27) is non-convex in W due to constraint (26b), which
is affected by the stochastic nature of the energy term Ek,g .
To tackle this issue, the Maximum Ratio Combining [57]
approach is adopted as beamforming strategy, which is indeed
the optimal solution to maximize the energy harvested by a
single GN:

wk =
hk,g

∥hk,g∥
. (28)

Therefore, it is necessary to define a charging plan Ω =
(ωk,g) ∈ {0, 1}K×G describing which node is charged in each
timeslot†. Hence, when a GN is selected, i.e., ωk,g = 1, the
energy term Ek,g can be rearranged combining (7) and (28) as

Ẽk,g =
α0Pδβ ∥hk,g∥2

α1Pβ ∥hk,g∥2 + α2
1

(
dUG
k,g

)2 , (29)

which, however, maintains a stochastic nature. Given an Out-
of-Service probability ε, the minimum guaranteed energy Ek,g

harvested by a GN, i.e, ωk,g = 1, can be obtained as follows:

P
(
Ẽk,g < Ek,g

)
= P

∥hk,g∥2 <
α2
1

(
dUG
k,g

)2

Ek,g

Pβ
(
α0δ − α1Ek,g

)


= F

 α2
1

(
dUG
k,g

)2

Ek,g

Pβ
(
α0δ − α1Ek,g

)
 ≤ ε, (30)

with F (·) describing the Cumulative Distribution Function
(CDF) of the stochastic energy expression Ẽk,g in (29). It is
worth noting that the latter follows a non-central chi-squared
distribution, and the correspondent CDF is

F (u) = 1−QS

(√
2Sκ,

√
2(κ+ 1)u

)
, (31)

where QS(·) is the Marcum Q-function of order S.

†In this work, the side lobes that can eventually point to/illuminate other
GNs are not considered, since their contribution is negligible.
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Considering the worst-case scenario, in which (30) holds
with equality, the final energy term Ek,g can be derived as

Ek,g =
α0PδβQ

2

S

α1PβQ
2

S + 2α2
1

(
dUG
k,g

)2

(κ+ 1)
, (32)

QS ≜ Q−1
S

(√
2Sκ, 1− ε

)
, (33)

where Q−1
S (·) is the inverse Marcum Q-function, which can

be computed numerically or via analytical approximation.
Figure 3 shows the CDF of Ẽk,g (left) defined in (31) and
the derived energy term of Ek,g (right) obtained in (32).
Therefore, problem (27) can be rearranged as

max
η1,Ω

η1 s.t. (34a)

Ω ∈ {0, 1}K×G, (34b)

η1 ≤
K∑

k=1

ωk,gEk,g, ∀g : 1, . . . , G, (34c)

G∑
g=1

ωk,g ≤ 1, ∀k : 1, . . . ,K, (34d)

where Ek,g in (26b) has been substituted with (32). Moreover,
constraints (34b) and (34d) impose that the drone can only
recharge one sensor per timeslot. Still, (34) is non-convex due
to the presence of the binary charging plan Ω. To cope with
this issue, several works in the scientific literature employ only
the relaxation of the integer constraint followed by a rounding
procedure of the obtained values, which often results to be
infeasible or far from optimal in the best case. To avoid such
a scenario and to derive a quasi-integer solution, it is jointly
employed (i) the relaxation of (34b), and (ii) an additional
term in the objective function which encourages the adoption
of a binary solution:

max
η1,Ω

η1 + ρ1

K∑
k=1

G∑
g=1

(
ωk,g −

1

2

)2

s.t. (35a)

0 ≤ ωk,g ≤ 1, ∀k : 1, . . . , (K − 1), ∀g : 1, . . . , G, (35b)
(34c), (34d).

In the above formulation, ρ1 ∈ R+ acts as a weight that, if
too low makes the additional term ineffective, otherwise if
too high causes η1 to become irrelevant. In the next Section,
an empirical rule for the problem scaling, including ρ1, will
be discussed. Still, the objective function is non-convex with
respect to Ω. To cope with this issue, the SCA technique is
employed. Recalling that the first-order Taylor expansion is
a global understimator for convex functions, it is possible to
lower-bound the objective function for the local point ωk,g ,
thus leading to the final formulation:

max
η1,Ω

η1 + ρ1

K∑
k=1

G∑
g=1

ωk,g(2ωk,g − 1) s.t. (36)

(34c), (34d), (35b).

It can be verified that (36) is convex.

0 20 40 60 80
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1
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Fig. 3: The CDF of the stochastic harvested energy Ẽk,g (left)
and the minimum harvested energy Ek,g (right) with ε = 0.01
and P = 49dBm, for different number of antenna elements
S and K-factor κ.

The scheduling plan is obtained by updating the value of
the local point with the solution of the previous iteration, until
convergence to a prescribed accuracy ξ is achieved.

Finally, since Ω ∈ [0, 1]K×G, a round operation is per-
formed. In particular, for each timeslot k, only the ωk,g that
has the maximum value is set to 1, while the others to 0.
Therefore, constraints (34b) and (34d) are satisfied.

B. Sub-Problem 2: Drone Kinematics Optimization

Given the charging plan Ω and the other results derived
above, the trajectory-related parameters and the transmission
plan are hereby optimized. Note that η1 is re-optimized to
derive a fair solution from the energy-harvesting perspective.
The second sub-problem reads:

max
η1,Q,V

η1 s.t. (37)

(34c), (26c) − (26g),

which however is non-convex due to the presence of the
squared distance term dUG

k,g at the denominator of Ek,g in
constraints (34c). To tackle this issue, it is first necessary
to introduce a set of slack variables B = {bk,g ≥ 0}.
Then, recalling the definition of the distance in (2), the slack
variables are lower-bounded such that(

dUG
k,g

)2 ≤ bk,g. (38)

Similarly to the previous sub-problem, the SCA technique is
employed which leads to the following inequality chain

Ek,g =
α2

α3 + α4bk,g
− α2α4(

α3 + α4bk,g
)2 (bk,g − bk,g) (39)

(a)

≤ α2

α3 + α4bk,g

(b)

≤ Ek,g,
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Algorithm 1: WPT Optimization.
Set qG

g and qS
k;

Compute RSG
k and QS ;

Initialize bk,g , ωk,g;
for m : 1, . . . ,M do

for i : 1, . . . , I do
Solve (36) to obtain the objective function s1,i, η1,

and Ω;
ωk,g ← ωk,g ∀k, g;
if i > 1 and |s1,i − s1,i−1|/|s1,i| < ξ then

s∗1,m ← s1,i; break;
end
Round the optimized Ω;
for i : 1, . . . , I do

Solve (40) to obtain the objective function s2,i, η1,
Q, and V;

bk,g ← bk,g ∀k, g;
if i > 1 and |s2,i − s2,i−1|/|s2,i| < ξ then

s∗2,m ← s2,i; break;
end
if m > 1 and |s∗1,m − s∗1,m−1|/|s∗1,m| < ξ and
|s∗2,m − s∗2,m−1|/|s∗2,m| < ξ then

break;
Round and process the optimized Ω;

end

where (a) is due to the first order Taylor expansion, (b)
follows from (38), α2 ≜ α0PδβQ

2

S , α3 ≜ α1PβQ
2

S , and
α4 ≜ 2α2

1(κ+ 1). Hence, problem (37) is equivalent to

max
η1,Q,V,B

η1 s.t. (40a)

η1 ≤
K∑

k=1

ωk,gEk,g, ∀g : 1, . . . , G, (40b)

(26c) − (26g),

because in order to maximize the objective function it is
necessary to maximize the new energy term in (39) and
hence minimize bk,g , until (38) holds with equality. Therefore,
problem (40) is convex with respect to Q,V, and B and it is
iteratively solved until a prescribed accuracy ξ is achieved.

C. Overall Optimization Procedure

A quasi-optimal solution for the original problem (26) is
derived by iteratively solving the two discussed sub-problems.
It is worth specifying that, to avoid a waste of irradiated
power, at the end of the entire procedure, the recharging
plan Ω is further improved by setting to zero the entries
which do not satisfy a minimum harvested energy threshold
ν, which typically takes place when the drone is too far
from a specific node (as can be seen in Figure 3). For what
concern the time complexity, the first sub-problem is in the
order of O

(
I1(KG+ 1)3.5)

)
, where I1 is the number of

iterations required by SCA. Similarly, the second sub-problem
has a complexity of O

(
I2(4K +KG+ 1)3.5

)
. Therefore,

the joint complexity is given by O
(
M1(I1(KG+ 1)3.5+

I2(4K +KG+ 1)3.5)
)
, where M1 is denotes the number of

iterations required to converge. More details can be found in
Algorithm 1.

Algorithm 2: Transmission Optimization.
Set qG

g and qS
k;

Compute RSG
k and QS ;

Initialize λk,g;
for i : 1, . . . , I do

Solve (42) to obtain the objective function s3,i, η2, and
Λ;

λn,g ← λn,g ∀n, g;
if i > 1 and |s3,i − s3,i−1|/|s3,i| < ξ then

s∗3 ← s3,i; break;
end
Rectify the optimized Λ;

VII. GROUND NODES-SATELLITE TRANSMISSION
OPTIMIZATION

Leveraging the results obtained in the previous optimized
phase, i.e., the energy Ek,g harvested by the GNs, the second
phase encompassing the GNs’ transmission scheduling can be
optimized by deriving the optimal solution of the following
problem:

max
η2,Λ

η2 s.t. (41a)

Λ ∈ {0, 1}K×G, (41b)

η2 ≤
N∑

n=1

λn,gR
SG
n , ∀g : 1, . . . , G, (41c)

δP

N∑
n=1

λn,g ≤
K∑

k=1

Ek,g, ∀g : 1, . . . , G, (41d)

G∑
g=1

λn,g ≤ 1, ∀k : 1, . . . ,K. (41e)

Problem (41) focuses on fairly maximizing the sum-rate
of all CubeSat-GN links through constraint (41c). Moreover,
(41d) states that a GN can transmit only if enough energy
has been harvested. Constraints (41b) and (41e) impose that
only a GN can transmit in each timeslot. However, also (41)
is a MINLP problem and hence non-convex due to (41b),
which describes the binary nature of the transmission plan
Λ. Following the same rationale adopted to convexify problem
(34), the binary constraint (41b) is relaxed and a new constraint
is added to the formulation. Again, to encourage the adoption
of an integer solution, one more addendum is introduced in the
objective function employing the SCA method, thus leading to:

max
η2,Λ

η2 + ρ2

N∑
n=1

G∑
g=1

λn,g(2λn,g − 1) s.t. (42a)

0 ≤ λn,g ≤ 1, ∀n : 1, . . . , N, ∀g : 1, . . . , G, (42b)
(41c) − (41e).

The above formulation is convex and it is iteratively solved
until a prescribed accuracy ξ is achieved. Similarly to (36), Λ
needs to be rectified to satisfy (41b). However, in this case,
λk,g is rounded to 1 only if the value is ≥ 0.99, otherwise it
is set to zero. This operation guarantees that the transmission
takes place only if the scheduled GN has sufficient energy.
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Parameter Value Parameter Value
K {30, 60} [#] N 250 [#]
G {5, 10, 15} [#] B 180 [kHz]

L, W {15, 20} [#] δ 1 [s]
qU
0 [0, −15] [m] qS

0 [−795, 0] [km]
zU 1 [m] zS 1000 [km]
vMAX 15 [m/s] vS [6353, 0] [m/s]
aMAX 3 [m/s2] ϑSG

MIN 52 [deg]
fUG 2.4 [GHz] f SG 1995 [MHz]
ζ 0.42 [#] ϱ 3.05 [cm]
ηSG 615 [K] ν 0.005 [#]
ρ1 0.01[#] ρ2 2000 [#]

P {46, 49} [dBm] P 23 [dBm]
κ 10 [dB] MCL 154 [dB]
ξ 10−3 [#] ε 10−2 [#]

TABLE II: Parameter settings.
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Fig. 4: Analysis of the scenario with G = 5, S = 225, P =
49dBm, and δ = 1 s.

The time complexity associated with the reference problem
is in the order of O

(
I3(KG+ 1)3.5)

)
, where I3 is the number

of iterations required by SCA. More details of the overall
proposed algorithm can be found in Algorithm 2.

VIII. NUMERICAL RESULTS AND DISCUSSION

In this Section, a simulation campaign is carried out to as-
sess the effectiveness of the proposed solution, which consists
in sequentially executing Algorithm 1 and Algorithm 2.

The investigated scenarios involve different area sizes, i.e.,
30x30 m2, 60x60 m2, and 100x100 m2, in which {5, 10, 15}
GNs are uniformly deployed. The LEO CubeSat pursues a
trajectory that follows a uniform linear motion, starting from
position qS

0 at velocity vS. The parameters characterizing
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Fig. 6: Average harvested energy for different parameters with
δ = 1 s.

the CubeSat-GN link are set according to [28]. Furthermore,
considering a noise figure of 5 dB, the equivalent system noise
temperature ηSG ≃ 615K [48] is the sum of the antenna
noise temperature and the receiver noise temperature, which
correspond to 290K and 150K, respectively. Moreover, the
UAV is equipped with a squared UPA of {255, 400} elements
to wirelessly recharge each GN at {46, 49} dBm.

The transmission power is set in compliance with the ITU-
R M.2135-1 Report [58], [59] for a Long Term Evolution
(LTE) macro-cell deployed in urban and rural areas. All the
simulation parameters are summarized in Table II.

A detailed discussion of the results, obtained by varying
the aforementioned parameters, is followed by a comparison
between the proposed solution and a baseline approach.

A. Objective function scaling

The normalization of the objective functions of both prob-
lems is deemed necessary, since their components have differ-
ent orders of magnitude, which affect the optimization process,
and hence the final solution. The possible values of η1, given
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Fig. 7: Analysis of the scenarios with G = {10, 15}, S = 400,
P = 49dBm, K = 60, δ = 1 s.

the involved parameters of problem (26), range from ∼ 10−1

to ∼ 1, as can be verified by solving the relaxed problem
(36), with ρ1 = 0. Accordingly, to keep the fairness factor
slightly above the additional term introduced to encourage
integer solutions, the following ρ1 = 10−2 is adopted. The
same rationale is applied for problem (42), thus leading to
ρ2 = 2 · 103.

B. Analysis of the results

The first scenario considers G = 5 GNs recharged by a
drone equipped with a UPA of S = 225 elements, with
P = 49dBm and K = {30, 60}. Indeed, the goal is to
highlight how the duration of the first phase affects the second
one in terms of obtained GNs’ data rate. In this regard, Figures
4a and 4c jointly depict (i) the trajectory followed by the

-15 -10 -5 0 5 10 15
x [m]

-15

-10

-5

0

5

10

15

y
 [

m
]

1

2

3

4

U
A

V
 S

p
ee

d
 [

m
/s

]

UAV Trajectory GNs

Fig. 8: Example of the UAV trajectory and speed in the
baseline scenario with G = 15 with K = 60, δ = 1 s.

drone, and (ii) the GN recharged during the flight, and (iii)
the initial position of the UAV, which is coincident with its
final one. As it can be seen, in both scenarios, the trajectory
paths tend to be straight to save time, which is convenient to
reduce the distance between the UAV and the served GN, thus
maximizing the energy income. It is worth noting that, thanks
to the procedure performed at the end of the recharging phase,
the drone does not irradiate power when is too far from the
served GN, thus saving energy that would be not efficiently
harvested by the nodes.

Furthermore, Figures 4b and 4d represent the data rate
of nodes-satellite communications. It can be observed that
the data rates are subject to the pathloss which affects the
satellite link. Indeed, the satellite trajectory is designed to
firstly approach and then leave the reference area, thus leading
to increasing and then decreasing data rates, that visually re-
semble a parabola. In both configurations, the latter is centered
around the mid-point of the mission to maximize the overall
sum-rate. However, for higher K, the effective transmission
time of the second phase increases and, as a consequence, the
shape of the parabola changes. This phenomenon is due to
the fact that more energy is harvested in the recharging phase.
Therefore, the maximum data rate of ∼ 35 kbps is achieved
always at ∼ 125 s, which corresponds to the instant where the
distance is minimized, i.e., the satellite is almost orthogonal
to the area. Instead, the minimum data rates achieved are
∼ 34 kbps for K = 30 and ∼ 31 kbps for K = 60. Moreover,
according to the constraints (41b) and (41e) which model the
TDMA protocol, the peaks of the curves never overlap. For the
sake of completeness, Figure 5 shows the convergence curves
of the proposed optimization algorithms, specifically related
to the first and second phases. It is noteworthy that in the two
chosen configurations, Algorithm 1 achieves convergence after
7 iterations at most, while Algorithm 2 after 10 iterations, both
with a prescribed accuracy of ξ.

To further investigate the impact on the harvested energy
when the parameters involved in the scenario vary, Figure 6
shows the average amount collected by a GN. As expected,
most of the unfeasible, i.e., no harvested energy, configurations
involve a 100x100 m2 area. Indeed, the speed and acceleration
limits of the drone, together with the maximum duration of the
second phase, play the most important role in the mission fea-
sibility. Clearly, also the transmission power and the number



11

P =
 4

6

P =
 4

9

P =
 4

6

P =
 4

9

P =
 4

6

P =
 4

9

P =
 4

6

P =
 4

9

P =
 4

6

P =
 4

9

P =
 4

6

P =
 4

9
0

50

100

150

200

250

300

350

400

450
T

o
ta

l 
tr

a
n

sm
it

te
d

 d
a
ta

 [
k

b
it

]

S = 225 S = 400 S = 225 S = 400 S = 225 S = 400

G = 5 G = 10 G = 15

(a) Proposed algorithm.

P =
 4

6

P =
 4

9

P =
 4

6

P =
 4

9

P =
 4

6

P =
 4

9

P =
 4

6

P =
 4

9

P =
 4

6

P =
 4

9

P =
 4

6

P =
 4

9
0

50

100

150

200

250

300

350

400

450

T
o

ta
l 

tr
a
n

sm
it

te
d

 d
a
ta

 [
k

b
it

]

S = 225 S = 400 S = 225 S = 400 S = 225 S = 400

G = 5 G = 10 G = 15

(b) Baseline algorithm.

Fig. 9: Comparison of the total transmitted data between the proposed solution and the baseline with K = 60, δ = 1 s.

of antenna elements are aspects that can also zero out the
gathered energy, especially for a significant number of GNs.
This result is of fundamental importance for the following
analysis, since it provides a solid indication of which other
configurations can be studied. It is worth mentioning that,
across all the examined scenarios, the energy consumption of
the UAV, which can be calculated with [60, Eq. 12], is sig-
nificantly lower than the commonly used commercial drones.

To provide further insights, two more configurations are
investigated with G = {10, 15}, S = 400, and P = 49dBm.
Figures 7a and 7b illustrate the trajectory and the speed of
the drone. Clearly, in both setups, the UAV slows down and
approaches the GNs as close as possible to increase the amount
of harvestable energy. Indeed, the speed of the drone reaches
a maximum of ∼ 8m/s.

This behaviour is reflected in Figures 7c and 7d, where
the total harvested energy per GN in both configurations is
depicted. As a matter of fact, the proposed approach presents
satisfactory results in terms of fairness. Moreover, it can
be observed that the average amount of harvested energy
decreases from ∼ 1.4 J with G = 10 to ∼ 0.9 J with G = 15.
This in turn leads to a different amount of transmitted data
(Figures 7e and 7f) with a mean of ∼ 225 kbit and ∼ 100 kbit,
with a coefficient of variation of 0.037 and 0.031, respectively.

In conclusion, to prove its effectiveness, the proposed solu-
tion is compared to a baseline approach across all previously
investigated scenarios. Specifically, the baseline foresees the
drone covering the interest area by following a sampled snake-
like trajectory at the minimum possible speed which satisfies
the mission duration. The drone periodically recharges the
battery of the nearest node throughout the flight. Subsequently,
the final state of charge for each GN serves as input for
Algorithm 2, which will endeavor to fairly distribute the
available transmission resources. An instance of the UAV
trajectory and its speed is shown in Figure 8.

The results of the comparison between the proposed solution
and the baseline, with K = 60 and δ = 1 s, is illustrated

in Figure 9. Each bar reports the distribution of the total
transmitted data per each GN, for all the possible combinations
of transmission power P , number of antenna elements S and
number of GNs G. As it can be seen, the proposed solution
achieves great performance when the number of GNs is small
enough, i.e., G = 5, allowing the UAV to hover over each one
as much as possible. Indeed, more energy harvested by each
GN corresponds to a greater amount of data transmitted. The
same holds true when P and S increase. Finally, the baseline
does not always provide sufficient energy to the GNs for the
transmission. Instead, the proposed method demonstrates a
higher total transmitted data volume compared to the baseline
approach, ranging from a minimum of 1.5 to a maximum of
7 times higher, due to its fairly optimized energy distribution.

IX. CONCLUSIONS

In this work, a Satellite-IoT network powered by a UAV
via WPT has been investigated. Starting from the system
model, two MINLP problems have been formulated to fairly
maximize the harvested energy of the GNs and the total
transmitted data towards a LEO CubeSat. This requires a
joint optimization approach that encompasses recharge and
transmission scheduling plans while accounting for drone
kinematics. To handle the non-convexity of both problems, the
former has been decomposed into two sub-problems and then
reformulated by also applying SCA technique. Meanwhile, the
latter is tackled by employing the same two aforementioned
techniques. A simulation campaign has been conducted in
order to evaluate the algorithm performance over different (i)
number of GNs, (ii) number of antenna elements of the UAV,
(iii) WPT transmission power levels, (iv) area sizes, and (v)
mission duration. Finally, the proposed solution is compared
with a reference baseline approach, demonstrating a substantial
performance improvement, ranging from 1.5 to 7 times, in
terms of the total amount of transmitted data.

In the future, the research efforts will be focused on the
following directions:
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• Extend the algorithm to multiple drones for a thoroughly
integrated NTN cooperative network.

• Investigate inductive and capacitive WPT models to im-
prove the overall efficiency.

• Employ 3D antenna arrays for a more flexible beam-
steering and -forming strategies.

• Expand the trajectory optimization and GN placement
considering different heights to address different terrain
conditions.

• Consider the presence of a IRS that can enhance the
energy harvested by GNs.

• Investigate the adoption of other multiple access proto-
cols, such as random access scheme, FDMA, and NOMA.

Finally, the proposal will lay the groundwork for the realiza-
tion of a testbed that will be used for experimentation and
measurements in the context of 6G technologies.
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