
1

A Probability-Based Optimization Approach for
Entanglement Distribution and Source Position in

Quantum Networks
Giovanni Iacovelli , Member, IEEE, Francesco Vista , Graduate Student Member, IEEE,
Nicola Cordeschi , Member, IEEE, and Luigi Alfredo Grieco , Senior Member, IEEE

Abstract—Quantum Internet (QI) is a system of interconnected
quantum computers able to exchange information encoded in
the so called quantum bits (qubits). Differently from the clas-
sical counterpart, qubits benefit from a manifold properties
guaranteed by quantum mechanics, such as superposition and
entanglement. Despite the fact that quantum networks bring
significant advantages, several phenomena can negatively impact
the overall system, potentially hindering communication. In
order to evaluate the network performance, a comprehensive
probability expression is derived in this work to ultimately
determine how many qubits are expected to be successfully
received by nodes. On this basis, a Mixed-Integer Non-Linear
Programming (MINLP) problem is formulated to fairly maximize
the qubits exchanged between node pairs and jointly optimize
(i) the position of the quantum source, and (ii) the entanglement
distribution plan. To cope with the non-convexity of the problem,
an iterative optimization algorithm, leveraging Block Coordinate
Descendent (BCD) and Successive Convex Approximation (SCA)
techniques, is proposed. A thorough simulation campaign is
conducted to corroborate the theoretical findings. Numerical
results demonstrates, under different parameter setups, that the
proposed algorithm provides superior performance with respect
to a baseline approach.

Index Terms—Quantum Networks, Probabilistic Modeling,
Optimization, Teleportation Protocol.

I. INTRODUCTION

Quantum computing [1] is widely considered an emerging
paradigm that holds the potential to solve specific challenging
problems more efficiently than classical computers [2]. The
basic unit of quantum information is the quantum bit (qubit),
which is a two-level quantum system, representing the foun-
dation of quantum devices and hence of quantum computing.
Qubits can be physically represented as single atoms, photons
or a cold superconducting circuits with moving electrons
[3]. Unlike classical bits, a qubit has the unique ability to
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simultaneously exist in two states until a measurement is
performed. This property, namely superposition, is granted
by quantum mechanics and allows quantum computers to
exponentially increase their computational power with the
number of qubits [4].

Despite the significant advantages introduced by qubits,
they are highly susceptible to environmental noise, which can
lead to decoherence, resulting in an undesired transition to
classical states. In addition, quantum gates [5] applied to qubits
may introduce further errors and are restricted by coherence
time. Thus, to effectively harness the benefits of quantum
computing, a large number of high-quality qubits with long
decoherence times is required [6]. However, current devices
lack the necessary capabilities to control a significant number
of qubits and hence to effectively perform practical tasks.

To address these and other important issues, Quantum
Internet (QI) has been introduced [7]–[9] as a cutting-edge
technology and communication paradigm. Among the vast
plethora of possible applications, quantum networks can be
employed to overcome the current computational power lim-
itations. For instance, the scientific community envisions the
integration of quantum computing devices at the edge of 6G
networks as a mean to enhance service provisioning [10].
Indeed, thanks to QI, in the near future multiple qubit-limited
devices will be interconnected to share quantum states among
each other [11] through a quantum channel, i.e., fiber or free
space optical links. However, even if the state of a qubit can
be directly encoded by using the polarization of a photon, it
may be lost due to attenuation or noise. In such cases, the
quantum information is irretrievably destroyed, and it cannot
be recovered through measurement or copying, as stated by
the postulate of quantum measurement and the no-cloning
theorem. Thus, a common employed approach is to generate
and distribute a particular two-qubit state to remote nodes,
leveraging the entanglement phenomenon [12]. Indeed, when
two particles are entangled, the quantum state of one particle
becomes correlated with the state of the other, regardless of
the distance between them. This unique property, along with
the transmission of classical information, is at the basis of
the quantum teleportation protocol [13]. Nevertheless, due
to attenuation in the medium, the entanglement distribution
exponentially decreases over distance. Additionally, the pres-
ence of noise during the generation process or entanglement
decoherence can produce an imperfect entangled state or cause
the transition to an undesired one, making it unusable for a
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reliable teleportation operation [14].
For these reasons, the scientific community has investigated

the maximization of the entanglement distribution while con-
sidering different aspects. One of them is the adoption of
purification techniques [15]–[19], which enhance the goodness
of an entangled state and hence of the communication as a
whole. Another important considered facet is quantum mem-
ory [20]–[24], which represents one of the most constrained
resources and plays a crucial role in preserving and retrieving
on-demand entangled states to improve the robustness and
reliability of entanglement distribution. However, these works
assume that a dedicated quantum source is placed in the middle
between each node. In practice, this assumption overlooks the
fact that such hardware is expensive and often limited, thus
potentially constraining the number of nodes in the network
[25]. Moreover, the rate at which entangled particles can be
generated also impacts the number of entanglement links that
can be established.

To the best of the authors’ knowledge, the existing scientific
literature has not investigated the optimization of the quantum
source position by taking into account the non-negligible
failure probability associated with the photon transmission and
teleport operations. These facets are of pivotal importance to
ultimately improve the efficiency of the whole communication
system. In this regard, this work provides several significant
contributions, which are outlined below.

• A comprehensive probability expression is derived to
determine how many qubits are expected to successfully
arrive at the receiver. The proposed model takes into ac-
count the attenuation of the fiber, as well as the depolaraz-
ing and dephasing noise introduced during the execution
of the operations related to the teleportation protocol.

• Based on the above derivation, a Mixed-Integer Non-
Linear Programming (MINLP) problem is formulated to
fairly maximize the number of qubits exchanged among
the nodes and jointly optimize (i) the position of the
quantum source, assuming to have a priori knowledge of
the quantum node location, and (ii) the scheduling plan,
describing how many entangled pairs should be allocated
at each node couple.

• To cope with the non-convexity of the original formula-
tion, a dedicated optimization strategy is designed. First,
the Block Coordinate Descendent (BCD) technique is
employed to split the problem into two sub-problems.
The first is initially relaxed and then exactly solved
leveraging the Karush-Kuhn-Tucker (KKT) conditions
[26]. Capitalizing on the first solution, the second one
is addressed by adopting the Successive Convex Approx-
imation (SCA) method.

• A simulation campaign is carried out to assess the effec-
tiveness of this work. In particular, the derived probability
expression and the proposed optimization algorithm are
evaluated under different parameters, such as node topol-
ogy, depolarizing and dephasing rate, fiber attenuation,
and generation chance. Moreover, the algorithm is com-
pared with a baseline approach which adopts the centroid
of the nodes as the source location, while exploiting the
already derived optimal scheduling plan.

The theoretical findings indicate that in case of quantum
networks deployed in relatively small areas, i.e., a few square
kilometers, the proposal and the baseline approach have sim-
ilar performance. However, when wider areas are considered,
the derived optimal solution provides a significant advantage
in terms of number of qubits successfully received by the
nodes. This demonstrates that the proposed algorithm is able
to capture the non-linearity of the derived probability and can
be employed as tool for optimal design and assessment of
large-scale quantum networks.

The remainder of this work is organized as follows. Section
II discusses the related works. Section III provides an intro-
duction to quantum entaglement and teleportation protocol.
Section IV describes the system model and derives the overall
communication probability. Starting from the model, Section
V presents the problem formulation. Hence, Section VI pro-
poses an optimization algorithm to solve the problem. Section
VII corroborates the theoretical findings and compares the
obtained results against a baseline approach, under different
parameter setups. Finally, Section VIII concludes the work
and draws future research perspectives.

Notation: Boldface lower case letters refer to vectors; xT is
the transpose of a generic vector x; |x⟩ is the column vector of
a generic quantum state x; O (x) denotes the time-complexity
of an algorithm of input size x, i.e, big O notation; U(·, ·),
Beta(·, ·), and T (·, ·, ·) define the uniform, beta, and triangular
distributions. The main adopted symbols of this paper are
summarized in Table I.

II. RELATED WORKS

In the literature there is a growing interest regarding sev-
eral aspects of quantum communications, with the goal of
maximizing the entanglement photon distribution, and hence
the throughput, by considering factors such as fidelity and
quantum memory.

In particular, fidelity represents the probability that a pair
of entangled qubits are in the desired state, i.e., maximally
entangled, which in turn affects the communication efficiency.
In this context, authors in [15] investigate entanglement link
fidelity by shortening the amount of time links are main-
tained, before swapping operations are performed. In [16], to
maximize the rates in a quantum network while ensuring a
minimum end-to-end fidelity requirement, the entanglement
distribution problem is presented as a linear programming
problem. An upper bound on the path’s length is imposed
to fulfill the fidelity, which lowers with each entanglement
swapping operation along the path. Purification methods can
be considered in cases where an entanglement link is char-
acterized by low fidelity. Specifically, purification techniques
consist in entangling multiple pairs of qubits with low fidelity
and then merging them into a single one with high fidelity
[27]. In this regard, [17] proposes an adaptive routing scheme
to manage multiple communication requests. The approach in-
volves a preliminary step of purifying the links, so that only the
links whose fidelity is above a given threshold are used in the
routing process. Similarly, authors in [18] design an algorithm
to select a path which satisfies a end-to-end fidelity constraint.
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[19] presents an algorithm to maximize network throughput
by preparing multiple candidate entanglement paths and de-
termining optimal purification schemes. Then, the final set of
entanglement paths that maximize network throughput under
the given quantum resource constraints are selected.

The other major aspect considered in the literature is quan-
tum memory, which can store the quantum state of a photon to
be used when needed. Quantum memory is a key component
of quantum routers, also known as quantum repeaters, that
are essential for the distribution of entangled states over
long distances in large-scale quantum networks. However, the
performance of quantum repeaters is far from ideal, owing
to the limited quantum memory in quantum repeaters, which
impairs the rate and efficiency of entanglement distribution.
To overcome this challenge, in [20] it is proposed a quantum
queuing model, based on dynamic programming, in order to
track the delay. In particular, a policy is developed to exponen-
tially reduce the average queuing delay with respect to memory
size. The same authors, in [21], present a first entanglement
distribution protocol that can achieve a high distribution rate
by considering imperfect entanglement swapping operations at
quantum repeaters. However, it is assumed that the quantum
repeater node has unbounded memory, and the stored qubit
are not affected by the decoherence phenomena, resulting
in ideal fidelity. In [22], an entanglement rate optimization
problem is investigated considering a system able to process
a set of requests at the same time. In particular, the quantum
routing problem is decoupled in i) scheduling, in which an
end-to-end entanglement path is assigned to a pair of quantum
nodes, and ii) path selection, where the best path is found.
A novel approach for maximizing entanglement distribution
rate while considering quantum repeaters with a limited mem-
ory is proposed in [23], which is subsequently decomposed
into entanglement generation and swapping sub-problems. A
greedy algorithm for short-distance entanglement generation is
proposed, such that the quantum memories can be employed
in an efficient manner. The swapping sub-problem, modeled
through an entanglement graph, is solved with a heuristic
technique which divides the original problem into several
sub-problems, each of which can be solved in polynomial
time using dynamic programming. Instead, [24] introduces
a framework for optimizing the entanglement generation and
distribution among quantum users having different resources
and application requirements. This approach aims to optimally
distribute entangled pairs among quantum users while satisfy-
ing a minimum entanglement rate requirement for each user.

Although interesting, these works consider the quantum
source placed in a fixed position, e.g., the middle point
among quantum nodes. Moreover, most of them, neglect the
limited rate at which Bell pairs can be generated. Further, no
investigations have taken into account the failure probability
associated with photon transmission and teleport operations.

III. QUANTUM ENTANGLEMENT AND TELEPORTATION

Entanglement is a fundamental property of quantum me-
chanics in which a pair of particles are generated in such
a manner that they share a quantum state, even if they are
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Fig. 1: Quantum teleportation circuit.

spatially separated. In this case, any quantum measurement
performed on one entangled particle irreversibly affects the
entire entangled state. When maximally entangled, two quan-
tum states, also known as Bell states or EPR pairs, can be
expressed [5] as:

|Φ±⟩ = 1√
2
(|00⟩ ± |11⟩),

|Ψ±⟩ = 1√
2
(|01⟩ ± |10⟩).

Entanglement is a key element in quantum networks as it
enables quantum teleportation [13], whose circuit is repre-
sented in Fig. 1. This protocol allows nodes to communicate
without the transmission of physical particles, i.e, matter
qubits, which would be irremediably lost due to attenuation
or environment interaction.

For this reason, to teleport an unknown quantum state |φ⟩,
a quantum source distributes through a quantum channel two
entangled photons, i.e., flying qubits, characterized by one of
the Bell states, e.g., |Φ+⟩, to sender and receiver [28]. These
flying qubits are converted into communication qubits through
a matter-flying transducer [11] and then moved to data qubits
leveraging the SWAP instruction [29] to execute operations*.

This set of operations, known as the Bell State Measurement
(BSM), consist of a CNOT gate, followed by an H gate and
two quantum measurements. The CNOT gate flips the target
qubit |Φ+⟩, when the control one, e.g., |φ⟩, is in the one state
|1⟩. Otherwise, the target qubit remains unchanged. The H
gate is applied on the first qubit and creates a superposition
state. Then, the quantum measurements are performed and the
results, i.e., c1 and c2, are transmitted to the receiver through
a classical channel. Finally, the receiver retrieves the original
state by applying an X or Z gate (or both), according to the
correction bits received. It is worth noting that, due to the Bell
state measurement, the teleportation destroys the qubits state
held by the sender.

IV. SYSTEM MODEL

This work envisions a quantum network composed of a
quantum source, located at q ∈ R2, and a group of N quantum
nodes, each one placed in un ∈ R2 with n = 1, . . . , N .

*It is worth specifying that both communication and data qubits are
physical particles, i.e., matter qubits, but reserved for different purposes.
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Symbol Description Symbol Description
N Number of quantum nodes. p̂, p̌m Probability that dephasing does not occur at TX/RX.
M Number of quantum node pairs. ṗm Dephasing due to different distances from the source.
q Location of the quantum source. Pm Overall probability of successfully receive a qubit.
un Location of the quantum node n. R1 Depolarizing rate.
γ Photon distribution plan. R2 Dephasing rate.
γ Maximum photon pairs generated by the source. η Attenuation factor of the fiber.
c Propagation speed in the fiber. τ Operation time per quantum instruction.
dn Distance between a node n and the quantum source. ρ Number of qubits successfully received by the nodes.
d̄m Distance between the nodes of couple m. ℓ Sides’ length of the square-shaped reference area.
pn Probability of successfully receiving a photon. tn Propagation delay of the quantum channel.
pI Probability of losing a photon after generation. t̄m Propagation delay of the classical channel.
p̄m Probability of successfully sending classical information. t̂, ť Time of operations at sender and receiver.
p̃ Probability that qubit depolarization does not occur. ∆m Difference dephasing time.

TABLE I: Main notation adopted in this work.

Sender Quantum
Source Receiver

BSM

Correction

Matter qubit Flying qubitClassical channel Quantum channel

Fig. 2: Sequence diagram of quantum teleportation.

All nodes are connected, via optical fiber, to the quantum
source and among themselves [30]. For the sake of notation,
each couple of nodes (n, n′), with n ̸= n′, is denoted by
m = 1, . . . ,M , where M = N(N−1)

2 . Each node is equipped
with the necessary devices to perform quantum measurements,
thus allowing the exchange of quantum states by means of
teleportation protocol, whose sequence diagram is depicted in
Fig. 2. In this work, it is assumed that (i) the quantum memory
is large enough to store the received qubits, for all nodes,
and (ii) the quantum source runs for a fixed time window
large enough to successfully generate a maximum number of
entangled pairs γ. For the sake of generality, γ is left as a free
parameter which however must take into account the success
probability related to the generation process, which in turn
depends on the specific hardware implementation. Moreover,
for each couple of nodes m, the quantum source allocates
γm ∈ N entangled photon pairs, with γ = {γm}. Clearly,
the total number of entangled photon pairs cannot exceed the
upper bound γ.

A. Overall teleportation probability

A wide range of factors may affect the probability of
successfully retrieving the quantum state of a transmitted qubit
when the teleportation protocol is adopted.

In particular, the distance between the source and the
receiver introduces a propagation delay tn = dn

c , where

dn = ∥q− un∥ is the length of the source-node link and c
is the propagation speed in optical fiber.

In addition to the delay, the fiber introduces also attenuation,
which can cause the loss of the travelling photon along each
path. As a result, the probability of successfully receiving it
[22], for each node n, is:

pn = (1− pI)10
− ηdn

10 , (1)

where pI is the probability of losing the flying qubit im-
mediately after generation due to hardware imperfections,
and η is the attenuation factor. Similarly, on the sender
side, once the BSM is performed, the information employed
for reconstruction is delivered through the classical channel,
which introduces a propagation delay t̄m = d̄m

c , where
d̄m = ∥un − un′∥ is the distance associated to node pair m.
The probability of successfully sending classical information
[31], for each couples of nodes m, can be modelled as:

p̄m = 10−
ηd̄m
10 . (2)

Qubits stored in quantum memory are subject to different
sources of noise, each one depending on different aspects,
such as hardware imperfections and the system-environment
interaction. Specifically, errors in the gate operations can lead
to bit-flip, phase-flip, or both errors with equal probabilities.
All of these have the same probability to occur and can be
simulated by the Pauli X, Z, or Y operation, respectively [32].
As a result, gate infidelities can be modelled according to
the depolarizing noise and, thus, the probability that qubit
depolarization does not occur can be written as follow [22]:

p̃ = e−τR1 , (3)

where τ is the time spent for the execution of a single
operation and R1 is the depolarizing rate.

Another type of noise is the dephasing one, which arises
from the interaction between qubits and their environment,
leading to qubit decoherence. The probability of dephasing
depends on the amount of time that the qubit stays in memory
and can be simulated by stochastically applying the Pauli Z
gate [32]. From a sender side, assuming that the qubit encoding
the information to be transmitted is generated at the same time
as both entangled photons arrive, the probability that qubits do
not suffer from dephasing noise [22] is given by:

p̂ = e−t̂R2 , (4)
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where R2 is the dephasing rate and t̂ depends only on the
amount of time that the sender requires to perform the Bell
state measurement, i.e. t̂ = 4τ . From a receiver side, instead,
the probability can be written as:

p̌m = e−ťmR2 , (5)

where ťm denotes the amount of time needed to receive the
measurement outcome and perform the correction operations,
i.e. ťm = t̄m + 6τ . Besides, since the two communicating
nodes can be located at different distances from the source, it
is necessary to consider a further time contribution related to
the qubit dephasing probability:

ṗm = e−∆mR2 , (6)

where ∆m = |t̄n − tn′ |. Note that the above term affects
only the node closer to the source. Indeed, when the source is
equidistant from both nodes, (6) is zero.

It is important to specify that the time spent for execution
of local operations at the sender and the receiver might affect
gate infidelity due to depolarizing noise, resulting in higher
infidelities. It is also worth mentioning that the depolarizing
and dephasing rates can vary depending on the specific quan-
tum hardware used for quantum nodes. Nonetheless, the above
modeling can account for these phenomena by considering a
larger operation time per instruction τ .

Finally, considering (1)-(5), the overall probability of cor-
rectly receiving a qubit in the worst case scenario, i.e., in
which both X and Z gates are applied at the receiver, is:

Pm = pnpn′ p̂2p̌mp̃7p̄mṗm, (7)

where p̂2 is the dephasing probability of sender’s qubits, p̃7

are the probabilities that the depolarization does not occur at
both sender and receiver†. The exponents of these probabil-
ities correspond to the number of operations performed, as
discussed in Section III.

Therefore, after some algebric manipulation, Eq. (7) can be
written as:

Pm = a10−
η
10 (dn+dn′+d̄m)e−(15τ+t̄m+∆m)R2−6τR1 . (8)

where a = (1 − pI)
2. The above expression, which accounts

for all the discussed phenomena, can be used to design and
assess a quantum network architecture.

V. PROBLEM FORMULATION

To enable fair teleportation among quantum nodes, a ded-
icated strategy for the distribution of entanglement has to be
employed. To this aim, it is necessary to optimally derive (i) a
photon distribution plan γ and (ii) the position of the quantum
source q, defined at the beginning of Section IV. Therefore,

†In this work, it is assumed the probability of depolarization for one
qubit does not depend on the state of others [5]. Therefore, the depolarization
related to the CNOT gate must be counted twice, as it affects both control
and target qubit.

to derive the optimal entanglement distribution, the following
optimization problem is formulated:

max
ρ,γ,q

ρ s.t. (9)

ρ ≤ Pmγm, ∀m = 1, . . . ,M, (10)
M∑

m=1

γm ≤ γ, (11)

γ ∈ NM (12)

Problem (9) aims to fairly maximize the minimum number
of qubits ρ successfully received by each couple of quantum
nodes m through the joint optimization of the scheduling dis-
tribution plan γ and the position of the source q. In particular,
constraint (10) states that ρ cannot be higher than the average
number of photons received by each couple. Equivalently, ρ
guarantees to have a minimum common number of success-
fully teleported qubits in the quantum network. Moreover,
constraint (11) limits the number of entangled photon pairs
generated by a maximum value γ. Finally, (12) imposes that
the number of assigned photon couples is always a positive
integer.

VI. PROPOSED SOLUTION

As immediate results from its formulation, (9) is a non-
convex programming problem, which is challenging to solve.
Specifically, constraint (10) couples the scheduling plan γ with
the source position q, which is encompassed in the distance
dn within probability Pm. To cope with these issues, problem
(9) is split into two sub-problems which are separately solved
to derive an optimal solution.

A. Sub-problem 1: Photon pair distribution

Given the optimal quantum source location, ρ is employed
to fairly maximize the photon distribution with respect to the
scheduling plan. Therefore, the first sub-problem reads

max
ρ,γ

ρ s.t. (10), (11), (12). (13)

which is non-convex, due to constraint (12). Nonetheless, (13)
can be relaxed by neglecting such a constraint, thus becoming
a convex optimization problem whose solution can be then
rounded with a floor operation. Hence, a generic solver can
be employed at the cost of computational complexity in the
order of O

(
(M + 1)3.5

)
. To reduce such complexity, the KKT

conditions [26] can be applied to derive a closed-form solution.

Theorem 1. The optimal photon distribution plan, for each
couple of nodes m, and the maximum number of qubits per
node are

γm = γ

(
Pm

M∑
m′=1

1

Pm′

)−1

, ρ = γ

(
M∑

m=1

1

Pm

)−1

, (14)

which only depend on the position of the quantum source
embedded in the probabilities Pm.
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Proof. The Langrangian function corresponding to the relaxed
problem (13) is

L = ρ−
M∑

m=1

λm (ρ− Pmγm)− µ

(
M∑

m=1

γm − γ

)
,

where λm ≥ 0 and µ ≥ 0 are the multipliers related to the
constraints (10) and (11), respectively. Therefore, the KKT
conditions read

∂L
∂ρ

= 1−
M∑

m=1

λm = 0, (15)

∂L
∂γm

= λmPm − µ = 0, ∀m, (16)

λm(ρ− Pmγm) = 0, ∀m, (17)

µ

(
M∑

m=1

γm − γ

)
= 0. (18)

The first two equations are sufficient to demonstrate that the
multipliers are strictly positive:

µ

Pm
=λm⇒µ

M∑
m=1

1

Pm
=

M∑
m=1

λm⇒µ=

(
M∑

m=1

1

Pm

)−1

,

where the third equality is due to (15). Therefore, the last two
conditions leads to

γ =

M∑
m=1

γm, (19)

ρ− Pmγm = 0⇒ ρ

M∑
m=1

1

Pm
=

M∑
m=1

γm = γ ⇒

ρ = γ

(
M∑

m=1

1

Pm

)−1

⇒ γm =
ρ

Pm
. (20)

Corollary 1. The entanglement distribution plan becomes uni-
form, i.e., γm = 2γ/ (N(N − 1)) ∀m, when the probabilities
Pm → P ∈ [0, 1] ∀m, leading to the maximum number of
qubits per link ρ = γP . This phenomenon takes place when
the impact of the distances among the nodes is negligible. It
occurs in two cases: (i) the inter-node distances are similar,
which is topologically challenging with a significant number
of quantum nodes, and (ii) the area in which the nodes are
deployed is small enough, i.e., in the order of a few kilometers.

Corollary 2. As a result of the above theorem, ρ can now be
defined as the average number of qubits successfully received
by each couple of nodes m.

The computational complexity of the procedure to calculate
the optimal solution is O (2M + 1) = O (M), since the single
complexities to compute ρ and γ are both linear with respect
to the number of node pairs.

B. Sub-problem 2: Quantum source position

The second sub-problem aims to derive the optimal source
location q, given a fixed scheduling plan γ and the definition
of ρ obtained in (20). Hence, (9) can be written as:

max
q

ρ s.t. (10). (21)

However, problem (21) is non-convex due to the presence of
q in the exponent of Pm. To tackle this issue, let equivalently
rearrange (8) as

Pm = αm10−
η
10 (dn+dn′ )−β|dn−dn′ |, (22)

with

αm = a10−
η
10 d̄me−(15τ+t̄m)R2−6τR1 , (23)

and β = R2

ln(10)c . Then, recalling the definition of ρ and γ
derived from Theorem 1, substituting (14) in (21) leads to

max
q

(
M∑

m=1

1

Pm

)−1

= min
q

M∑
m=1

α−1
m 10

η
10 (dn+dn′ )+β|dn−dn′ |, (24)

which is still intractable due to the presence of the module
term that depends on q through the difference of the nodes’
distances. To cope with the non-convexity of the above, a
vector composed by M slack variables r = [r1, . . . , rM ]T is
introduced as well as the following constraints∣∣ ∥q− un∥ − ∥q− un′∥

∣∣ ≤ rm, ∀m = 1, . . . ,M, (25)

which can be squared on both sides and manipulated as

∥q− un∥2 + ∥q− un′∥2 − 2 ∥q− un∥ ∥q− un′∥

= 2
(
∥q− un∥2 + ∥q− un′∥2

)
− (∥q− un∥+ ∥q− un′∥)2 ≤ r2m. (26)

Then, the SCA technique [33] is applied. Indeed, reminding
that the first-order Taylor expansion is a global underestimator
for convex functions, (26) can be approximated as

2
(
∥q− un∥2+∥q− un′∥2

)
−(∥q− un∥+∥q− un′∥)2

− 2

(
q− un

∥q− un∥
+

q− un′

∥q− un′∥

)T
(∥q− un∥+ ∥q− un′∥)

× (q− q) ≤ r2m + 2rm(rm − rm) (27)

where q and r = [r1, . . . , rM ]T are the local point of the
expansion. Finally, given the above convex set of constraints,
problem (24) can be reformulated as

min
q,r

ξ ≜
M∑

m=1

α−1
m 10

η
10 (dn+dn′ )+βrm s.t. (27), (28)

which can be iteratively solved until convergence to a pre-
scribed tolerance ϵ is achieved [33], since its convexity is
proved in the following Theorem.

Theorem 2. Problem (28) is convex and can be solved with
a generic optimization tool, such as CVX.

Proof. The convexity of the objective function is guaranteed as
(i) the euclidean norm is convex, (ii) the sum of convex func-
tions is convex, and (iii) the composition g(f(x)) of a convex
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Algorithm 1 Proposed algorithm

1: Initialize the quantum node positions un;
2: Compute the probabilities Pm derived in (8);
3: Randomly initialize local points q and r;
4: repeat
5: Solve (28) to obtain the optimal q and r;
6: q← q;
7: r← r;
8: until convergence is achieved
9: According to Theorem 1, compute the photon distribution

plan γ and the maximum number of qubits per quantum
node ρ;

non-decreasing function g(y) and a convex function f(x) is
convex as well. Moreover, constraints (27) are quadratic in the
source position and linear in the slack variables, and hence
convex by definition.

Remark 1. It is worth noting that, even if the source position
has a non-linear effect over the objective function in (28), the
optimal solution is intuitively the centroid computed over the
quantum nodes’ positions, when these are uniformly deployed
over the area. Indeed, it minimizes all dn at the same time.

The computational complexity of the optimization proce-
dure, due to the summation of the inverse probabilities in (28),
is O

(
K(M + (M + 2)3.5

)
= O

(
KM3.5

)
with K being the

number of iterations of the SCA procedure.

C. Overall algorithm and complexity

The overall optimization procedure, summarized in Algo-
rithm 1, derives the optimal location of the quantum source
by leveraging the optimal closed-form expression of the max-
imum number of qubits per node. The total computational
complexity, obtained as the sum of the single complexities,
is O

(
KM3.5

)
+O (M) = O

(
KM3.5

)
.

VII. PERFORMANCE EVALUATION AND RESULTS

A simulation campaign is carried out to analyze and validate
the findings of this work.

The first part investigates the impact of different parameter
settings, such as (i) dephasing rate R2, (ii) initial probability
of losing a photon once it enters a channel pI , (iii) the
attenuation factor η, and (iv) inter-node distance d̄m, on the
overall probability derived in (8).

In the second part, the results obtained from the proposed
optimization algorithm are discussed and compared with a
baseline approach. The latter exploits the optimal solution
derived in sub-problem 1 for what concerns the scheduling
plan, while for the position of the quantum source it adopts
the centroid computed over the quantum nodes’ locations. The
analysis focuses on the impact that system conditions, which
are made varying, have on the network performance.

According to [22] and [24], the considered configuration
parameters in all simulations, unless otherwise specified, are
pI = 0.1, η = 0.1 dB/km, R1 = 10 kHz, R2 = 0.1 MHz,
ϵ = 10−6, τ = 10 ns, γ = 1.2 · 109, and c = 2 · 105
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Fig. 3: Overall probability of correctly receiving a qubit.

km/s. The quantum nodes are deployed in square-shaped areas
with all sides having a length of ℓ. In all the simulation
two different methodologies are employed to generate the
nodes’ coordinates: the first consists in sampling the positions
of all nodes from circumference, i.e., U1 ∼ C(0, ℓ); the
second one generates the locations according to a uniform
distribution U2 ∼ U(0, ℓ); the third samples from a beta
distribution U3 ∼ Beta(0.5, 0.5); the fourth generates the
positions following a triangular distribution U4 ∼ T (0, 0.5, 1);
the fifth U5 distributes half of the nodes from U2 and the
second one from a scaled version of it, i.e., U(0, ℓ/3).

A. Analysis on the overall teleportation probability

In the first scenario, a quantum network composed of N = 2
quantum nodes, i.e, M = 1, is considered. Specifically, the
nodes are aligned along an axes and the quantum source is
placed exactly in the middle. Thus, the inter-node distance d̄1
is varied from 0 km to 2 km. This initial analysis highlights
the significant challenges in transmitting quantum information
over long distances due to the loss and noise in the transmis-
sion channel.

The results, as shown in Fig. 3, confirm that the probability
of correctly receiving a qubit exponentially decreases as the
inter-node distance grow. This effect is highly influenced by
the dephasing rate, which affects the decoherence probability
of qubits, especially at the receiver node. Notably, when the
dephasing rate is set to 1 MHz, the probability drops close to
zero once the inter-node distance reaches 1 km. For R2 = 0.1
MHz, instead, it almost zeros out around 10 km. Another
parameter that significantly affects the overall probability is
pI , which, regardless of other parameters, causes the curves
in Fig. 3 to start at a higher value and decline more gradually
to zero. Therefore, the dephasing rate and the generation
probability, which are associated with the technology on which
the system is based on, represent fundamental aspects to
potentially expand the network area and hence to assess the
feasibility of quantum teleportation.

B. Impact of the topology

In this simulation, a quantum network consisting of N = 10
nodes, distributed in an area characterized by ℓ = 5 km, is
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Fig. 5: Convergence curves of the proposed algorithm.

considered. Four different topologies, generated according to
U1, U2, U3, and U4, are examined.

Fig. 4 illustrates the comparison between the baseline and
the proposed approach for the optimal positioning of the
quantum source. In the first considered topology, all nodes
are equidistant from the same point, i.e, the center of the cir-
cumference, which is the optimal position to deploy the quan-
tum source, thus proving Remark 1. Indeed, both algorithms
achieve the same solution in terms of source location and
minimum number of successfully received qubits ρ = 3.8·105.
However, in the case of a random distribution, the optimal
position of the source is not the centroid. As a matter of
fact, the optimal source location cannot be simply derived
by averaging the nodes positions, which would lead to worse
performance. Indeed, considering the last three topologies, the
baseline approach achieves a minimum number of transmitted
qubit ρ of 2.6·106, 1.6·106, and 2.7·106, respectively, whereas
the proposed approach reaches a remarkable 3.3 · 106, 2 · 106,
and 3.7 · 106, which corresponds to a minimum increase of
25%. Finally, Fig. 5 shows the convergence of the proposed
algorithm in both topologies in terms of the objective function
ξ defined in Eq. (28), which represents a local approximation
of ρ in the iterative optimization process. Clearly, the number
of iterations required to converge in the first case is smaller
with respect to the other configurations, due to the regular
shape of the network graph.

C. Impact of the system parameters

To assess the impact of the inter-node distance on the en-
tanglement distribution, N = 20 quantum nodes are sampled
from U5 and deployed within various areas characterized by
ℓ ∈ [0, 20] km.

In particular, Fig. 6 shows the quantum source location
for both the considered algorithm, when ℓ = {1, 5, 10, 20}.
As can be seen, the source position provided by the baseline
approach remains the same, i.e., the centroid, except for the
scale. On the contrary, the proposed solution changes with ℓ,
thus demonstrating to be able to capture the non-linearity of
the probability expression derived in Section IV. It is worth
noting that, in case of ℓ = 1 km, the area is small enough
to adopt the baseline as quasi-optimal solution. Indeed, the
impact of the inter-node distances is negligible in small areas,
as predicted by Corollary 1. To further corroborate the above
findings and to give more insights about the performance gain
provided by the optimal algorithm, Fig. 7 depicts the trend
of ρ as a function of ℓ ∈ [0, 20]. As a matter of fact, for a
limited area the solutions are comparable but as ℓ increases, a
major gap in terms of successfully received qubits arises. This
demonstrates the crucial importance of the proposed optimal
design in case of quantum networks deployed, especially, in
wide areas. Specifically for R2 = 0.1 MHz and ℓ = 20 km,
the optimal algorithm allows the transmission of 124 qubits
for η = 0.1 and 52 qubits for η = 0.2, while the baseline
approach just 6 and 2 qubits. As a consequence, the proposed
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algorithm provides, in terms of received qubits, ∼20 and ∼25
times better solutions, respectively. In case of higher dephasing
rate R2 = 1 MHz, the resulting loss constrains the maximum
possible area, thus producing no difference between the two
algorithms, which again confirms Corollary 1.

D. Analysis on network scalability

In this last analysis, the impact of the number of nodes in
a quantum network having ℓ = 10 km is investigated. In this
regard, a Monte Carlo simulation is carried out by generating
the nodes’ positions according to both U2 and U5, for a total of
103 samples. This procedure is iterated by making the number
of nodes vary, i.e., N = {10, 20, 30, 40, 50}.

Figure 8 and Figure 9 illustrate the relationship between
ρ and the number of nodes for U2 and U5, respectively.
As expected, in both cases, the proposed and the baseline
approaches exhibit a decreasing trend as the number of nodes
increases. This is due to the reduction in the number of entan-
gled pairs available for each pair of nodes as the network size
grows. Notably, the proposed algorithm performs better than
the baseline approach, in terms of number of transmitted qubits
with a much smaller variance, in both cases. Nonetheless, this
difference becomes more evident when the nodes are generated
according to U5. Vice versa, as already stated in Remark 1
and proved in Section VII-B, when U2 is chosen, i.e., the

{ { { { {

Fig. 8: Comparison between proposed (Opt) and baseline (Bsl)
approaches with respect to ρ as a function of quantum nodes
N with U2. The black stars represent the mean value.

uniform distribution, the optimal source position becomes the
centroid of the network. Therefore, the proposed and baseline
approaches perform similarly, even if the former still provides
better results. Specifically, when considering U2 with N = 50,
the proposed algorithm and the baseline approach achieve a
mean value of ρ = 8 · 103 and ρ = 7 · 103, whereas for U5,
they attain a ρ = 9 · 103 and ρ = 3 · 103, respectively.

VIII. CONCLUSIONS

This work investigates the achievable performance of a
quantum network through the mathematical modeling of the
probability that a qubit successfully reaches the receiver node.
Differently from other contributions, the derived expression
considers multiple sources of impairment affecting the telepor-
tation protocol. Starting from this model, a MINLP problem,
aiming at fairly maximizing the number of qubits received
by nodes, is formulated. Therefore, the optimal entanglement
distribution and quantum source position are compared with
a baseline approach. The latter considers the same method-
ology to derive the optimal photon distribution plan but
employs the centroid, computed over the nodes’ positions,
as quantum source location. The obtained results show the
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Fig. 9: Comparison between proposed (Opt) and baseline (Bsl)
approaches with respect to ρ as a function of quantum nodes
N with U5. The black stars represent the mean value.

significant performance gap between the two algorithms, in
terms of number of qubits exchanged per node pair. Overall,
the conducted study highlights the significant challenges in
transmitting quantum information over long distances due
to the loss and noise in the transmission channel. At the
same time, the derived theoretical findings become crucial for
designing and optimizing quantum communication networks,
which have immense potential to revolutionize communica-
tion and computation. Future research efforts will focus on
investigating the teleportation of high-dimensional quantum
states, comparing the performance of different quantum source
models, and precisely computing and optimizing fidelity in the
presence of multiple repeaters.
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