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Abstract—1 Image-based Radio Frequency Fingerprinting
(RFF) is a promising variant of traditional RFF systems. As
a distinctive feature, such systems convert Physical-layer signals
into matrices resembling 2-D or 3-D images and consider the
latter as the input for state-of-the-art image classifiers. Compared
to traditional ones, image-based RFF systems have recently
shown enhanced flexibility for device identification, as they can
better mitigate channel conditions, devices movement, and power
cycle. However, previous works have yet to investigate their
performance when subject to Adversarial Machine Learning
(AML) attacks using state-of-the-art techniques such as Genera-
tive Adversarial Networks and the Fast Gradient Sign Method.
Similarly, there are no studies about their capability to integrate
adversarial learning strategies for enhancing their robustness to
such attacks. In this paper, we fill the gap by conducting an
experimental analysis of the effectiveness of AML attacks and
adversarial training techniques for image-based RFF systems.
Using a state-of-the-art image-based RFF system and actual
measurements, we show that adversarial samples can effectively
degrade classification performance. At the same time, training
the image-based RFF system with adversarial samples increases
the reliability and robustness of such methods at the cost of a
lower classification accuracy.

Index Terms—Physical-Layer Security; Wireless Security; Ar-
tificial Intelligence for Security.

I. INTRODUCTION

Radio Frequency Fingerprinting (RFF) solutions enable
physical device authentication by analyzing the transmitted
signal from the radio spectrum. The main idea behind RFF
is that two perfectly identical devices do not exist, and even
the smallest differences, such as imperfections at the hardware
level, can bias the over-the-air signal (potentially) allowing a
receiver to identify them uniquely. Traditional RFF systems
acquire N raw samples of the signals at the Physical (PHY)-
layer, namely I-Q samples, and feed them directly into a Deep
Learning (DL) classifier, using a complex vector of size 1×2N
as in [1], or a real matrix of size 2×N as in [2]. Although
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this strategy has shown remarkable performance, the consid-
ered DL models are sensitive to external factors and cannot
generalize to different channel conditions, movement of the
transmitters, and power cycling of RF devices [3]. Conversely,
image-based RFF systems are based on the intuition that DL
classifiers are particularly successful in classifying images.
Thus, they involve pre-processing the I-Q samples into data
structures resembling either 2-D or 3-D images, thus trans-
lating the RFF problem into an image classification problem.
In the scenarios described above, image-based RFF systems
exhibit much more flexibility, being successful in identifying
RF devices even under challenging channel conditions [4] and
across various power cycles of devices [3].
At the same time, due to the relevance of cybersecurity attacks
to Artificial Intelligence (AI)-based systems, we also need
to investigate the robustness of such systems to adversarial
attacks [5]. Since RFF leverages Neural Networks (NN) clas-
sifiers, RFF systems are vulnerable to Adversarial Machine
Learning (AML) attacks, such as the ones performed through
the use of the Fast Gradient Signed Method (FGSM) and Gen-
erative Adversarial Networks (GAN). In fact, by using such
techniques, an attacker can generate adversarial samples that
mislead NN classifiers, compromising the accuracy of such
systems. At the same time, training NNs to recognize such
adversarial samples can improve the reliability and robustness
of the classification.
A few contributions already investigated AML-inspired attacks
and mitigation strategies for RFF systems. For example, the
authors in [6] launched several AML attacks against RFF sys-
tems based on the analysis of raw I-Q samples, demonstrating
the theoretical vulnerability of such systems when the attacker
can bias with outstanding accuracy the value of I-Q samples at
the receiver side. The authors in [7] reported similar findings
analyzing synthetic data, while the authors in [8] validated
such results on an actual deployment using GANs. However, to
our knowledge, none of the available contributions investigated
AML attacks and mitigation strategies for image-based RFF
systems. As such systems are particularly promising, evaluat-
ing their robustness to AML attacks in various configurations
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is critical to further pushing their adoption into real application
scenarios.

Contribution. In this manuscript, we investigate the effec-
tiveness of AML techniques to attack and improve the robust-
ness of image-based RFF systems. We set up an experimental
testbed comprising seven Software-Defined Radios (SDRs)
USRP X310, we used it to gather actual Radio Frequency
(RF) data (I-Q samples) emitted by such devices, and we
also implemented a reference image-based RFF system using
Matlab R2022b. Then, we carried out various experiments to
test the robustness of such a system against adversarial attacks.
We show that, when not trained to reject adversarial attacks,
such systems can hardly reject adversarial examples generated
through the FGSM and GANs. We also applied adversarial
training techniques to enhance the robustness of image-based
RFF systems. Our results demonstrate that, when training on
adversarial images, image-based RFF systems can reject such
AML-inspired attacks at the cost of a slight decrease in the
achieved classification accuracy.

Roadmap. The rest of this paper is organized as follows.
Sect. II introduces preliminaries, Sect. III illustrates our sce-
nario and attacker model, Sect. IV outlines our measurements
and methodology, Sect. V reports experimental results and,
finally, Sect. VI concludes the paper and outlines future work.

II. BACKGROUND

A. Radio Frequency Fingerprinting

RFF systems uniquely identify RF devices using their
emitted radio signals, avoiding using cryptography. RF signals
emitted by these devices are characterized by patterns due to
hardware imperfections at the micrometric scale connected to
industrial manufacturing processes [9]. The differences among
the I-Q samples transmitted by various devices are hard to
detect, thus requiring the usage of DL-based techniques.

State-of-the-art RFF systems require training a NN model
with chunks of I-Q samples and then testing a sequence
(of I-Q samples) from the wild to identify the transmitter.
Among the several options, Residual NNs (RNNs) are often
preferred, being a good trade-off between training speed and
classification performance. To fit the use-case of RFF systems,
the input layer of the RNN is usually adapted to match the
structure of the I-Q samples, while the output layer is typically
matched to the number of transmitters; then, the network is
re-trained on a large set of I-Q samples. Current RFF systems
comprise two main families, i.e., the ones considering raw I-Q
samples and the image-based ones. The first ones consider an
input of interleaved raw I-Q samples consisting of a vector
of dimensions either 1×2N as in [1], or 2×N as in [2].
The latter ones, instead, consider images where the input is a
matrix, e.g., X×Y×3, where X×Y is the size of the image,
as in [4] and [3]. Although several contributions focus on the
former, recent research has shown the enhanced robustness and
reliability of the second when considering mobile devices [4],
channel unpredictability, and devices’ power cycle [3]. In this
manuscript, we consider a DL-based image-based RFF system
inspired by the one in [4]. We consider as input the regular
representation of raw digital wireless signals into I and Q

components, and a reference chunk of 100, 000 I-Q samples.
For each symbol, considering minimum and maximum values
IMax = QMax and IMin = QMin, the RFF system divides
the I-Q plane into a fixed number of tiles N × N , each tile
being a square with side l = IMax−Imin

N . In line with [4],
we consider the resnet18 network. Thus, we divide the I-Q
plane of each symbol into 224×224 tiles. The RFF system
evaluates how many of the received I-Q samples per symbol
fall into each tile (bi-variate histogram); then, it truncates such
values to 255, according to the maximum value of a pixel.
According to [3], we consider three layers, i.e., one layer for
each primary color component (red, green, and blue). Thus, the
generated structure has size 224×224×3, consistently with a
3-D color image. The images generated from the I-Q samples
of each device, including only valid wireless messages at the
receiver (100, 000 samples per image), are used to train the
classifier and generate the corresponding profile. At runtime,
the RFF system acquires the same set of I-Q samples from
an RF device, generates the images as described above, and
finally, it tests if such an image aligns with the known profiles
of the legitimate RF devices.

B. Generative Adversarial Networks

GANs have recently gained momentum as a powerful tool
for testing the robustness of classification systems based on
NNs [10]. In summary, GANs can generate synthetic data that
closely resemble some input samples and can be used to test
the reliability of NN classifiers. To do so, GANs leverage two
Deep NN (DNN). The first network, namely, the generator,
captures the distribution of the data. It is fed with random
noise and trained to produce data with a distribution that
mimics the statistical properties of the original samples. The
second network, the discriminator, estimates the probability
that samples belong to the train set or to generator-made data.
The two networks compete in a minimax two-player game,
where the generator is trained to maximize the probability
of the discriminator making classification mistakes. Interested
readers can find more details on GANs’ rationale in [11].

C. Fast Gradient Sign Method

The FGSM is a popular method for deploying evasion
attacks against DL models. Specifically, the FGSM is a one-
step gradient-based technique developed to find the scaled
sign of the gradient of a cost function via perturbations of
such a function, to minimize the strength of the applied
perturbation [12]. Through the FGSM, it is possible to generate
an adversarial input sample x′ starting from a legitimate
sample x by adding a perturbation to such input sample in
the direction of the gradient of the loss function to the input,
as formalized in [6]. The objective is achieved iteratively by
tuning a parameter ϵ, which, in turn, controls the intensity
of the applied perturbation. Interested readers can find more
details on FGSMs’ rationale in [12].

D. Adversarial Training

AML techniques can also be used to enhance the robustness
of a classifier based on NNs. Indeed, by exposing the classifier
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Fig. 1. Reference Scenario.

to the adversarial samples, we can make the system aware of
the existence of such samples, e.g., by denoting them through
a specific label and submitting them at the training time, to let
the model identify such samples correctly. Such a technique,
known in the literature as adversarial training, allows the
system to mitigate and possibly reject evasion attacks. More
details on adversarial training techniques can be found in [13].

III. REFERENCE SCENARIO AND ADVERSARY MODEL

System Model. Fig. 1 shows our reference scenario. We
consider a wireless network where K devices transmit RF
signals. The devices communicate via a n-Phase Shift Keying
(PSK) modulation scheme, being n = 2 the number of
adopted symbols [14]. We assume the network uses RFF
techniques to authenticate transmitting devices. Thus, in line
with typical RFF systems, a dedicated receiver detects all
RF data exchange, stores the related raw I-Q samples, and
performs techniques based on DL to authenticate transmitting
devices. The RFF system features an image-based approach,
as discussed above. We do not make assumptions about the
devices’ movement and noise profile affecting the wireless
channel, since such factors are orthogonal to our problem.

In line with the literature, we assume a closed set sce-
nario, i.e., the RFF system knows in advance which devices
can communicate over the network. Thus, the RF profiles
of the transmissions from such devices are acquired offline
and deployed into the RFF system before deployment. At
runtime, the receiver acquires the RF data and associates the
current transmission with the (known) device whose RF profile
matches its features.

Attacker Model. We assume an adversary A able to
receive and transmit radio signals. A is an omnidirectional
eavesdropper, capable of detecting and decoding all RF trans-
missions in the network. Also, A can inject RF signals into
the channel, replaying previously eavesdropped messages or
transmitting forged ones, pretending to be a legitimate RF
device. To increase the effectiveness of the impersonation
attack, we assume A can use channel equalization techniques
to compensate for random fluctuations in the wireless channel
due to its specific location [15]. Although this is hardly
achievable in practice, this technique allows us to model the
worst-case scenario, where the attacker has complete control of

the channel. Moreover, A features a SDR, being able to control
(with a given maximum accuracy) the displacement of the I-
Q samples. Combined with previous channel compensations
capabilities, this feature allows A to generate I-Q samples
potentially appearing at the receiver very close to the values
of legitimate RF devices. Since the considered RFF system
leverages an image-based approach, to be successful, A has
to place the I-Q samples at the center value of the tile,
with a maximum error equal to half of the size of the tile
used to compute the bi-variate histogram, i.e., l

2 . Such a
requirement makes the described attack to image-based RFF
systems much more realistic than the ones usually considered
for RFF systems leveraging raw I-Q samples [6], and thus, par-
ticularly worthy of investigation. A successful attack against
RFF systems leveraging raw I-Q samples should adopt a SDR
capable of placing the I-Q samples with very high precision,
and such hardware is currently not available. Conversely, when
image-based systems are adopted, the precision the attacker
requires to execute the attack successfully is much smaller.
Moreover, A knows the PHY-layer model (algorithm and
corresponding hyper-parameters) used for RFF. The receivers
use this information to identify RF transmissions; thus, this is
publicly available or generated by the adversary after training.
A can carry out two different attacks through the capabilities

and tools described above. First, A can perform a targeted
spoofing attack to appear as a legitimate RF device to the RFF
system. To do so, through objective function minimization, A
can use GANs to generate images that mislead the RFF system
and, in turn, obtain the distribution of the I-Q samples to be
generated to deliver a successful attack.
Moreover, A can carry out untargeted Denial of Service
(DoS) attacks, appearing as a random legitimate device to
the RFF system. To do so, through gradient minimization,
A can use FGSMs to generate I-Q samples and thus images
to mislead the RFF system. Compared to jamming attacks,
FGSM-based DoS attacks are smarter, as they generate noise
specifically to deceive the RFF system. As discussed in [6],
generating adversarial samples through GANs and FGSM
requires determining statistical distributions used to extract
random power values to inject in the channel to achieve the
mentioned attacks.

IV. MEASUREMENTS AND METHODOLOGY

Measurements. We acquired measurements matching the
scenario described in Sec. III. Our dataset comprises real-
world data acquired through seven SDRs USRP X310, fea-
turing the UBX160 daughterboard and the VERT900 antenna.
The SDRs were connected to two laptops, HP EliteBook
I7, featuring 32GB of RAM. We considered the radio 1 as
the receiver, while the other ones (2, 3, 4, 5, 6, 7) as the
transmitters (only one being active for each experiment). To
match the adversary model, the transmitter and the receiver
have been connected via a wired link using a coaxial cable
type RG58A/U. Such a setup allowed us to avoid the random
fluctuations of the wireless channel and, thus, to model the
worst-case adversary model capable of controlling the channel.
We set the transmission power of the radios at 1 mW and
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the normalized receiver gain to 0.8, where the normalized
receiver gain is defined according to the logic in the USRP
Source block provided by GNURadio (see below). Our dataset
includes 78 different measurements, organized in 13 runs. For
each run, we kept the same receiver while we swapped the
6 transmitters. We used the carrier frequency 900 MHz, with
a sample rate of 1 Msa/s at both the transmitter and at the
receiver.

As for the software, we adopted GNURadio v3.8 for con-
trolling the SDRs. For the transmitters, we set up a stan-
dard transmission chain implementing the modulation Binary
Phase Shift Keying (BPSK). At the receiver, we deployed
the receiving chain of the BPSK, and we saved the received
I-Q samples immediately after their reception for further
processing. Note that the BPSK is currently used in many
real-life communication scenarios, e.g., IEEE 802.11 a/b/g/n,
LEO satellites, and WiMax, to name a few.

Methodology. We specifically focus on the image-based
RFF system introduced by the authors in [3], which is derived,
in turn, from the one used by the authors in [4]. As a first
step, we verified the results reported in the cited papers using
the exact configuration of the RFF system to have a reliable
baseline. Then, we set up the attacks described in Sec. III. We
first deployed multiple spoofing attacks targeted to specific
RF transmitters, using GANs. To this end, we used an ad-
hoc Wasserstein GAN with Gradient Penalty (WGAN-GP).
Specifically, the GAN generator takes random noise as input
and applies the following operations: (i) it inputs the noise
to a dense layer; (ii) it reshapes the output to have three
dimensions, representing the length, the width, and the number
of filters, respectively; (iii) it adopts a Conv2DTranspose layer
to perform deconvolution, reducing the number of filters by
half and using a stride of 2; and (iv) in the final layer, it up-
samples the features to the size of the training images, which in
our case is 224×224×3. We also perform batch normalization,
except for the final deconvolution layer. The discriminator uses
stridden convolutions to reduce the dimensionality of the input
images, activated, as best practice, by LeakyRELU. The output
features are flattened and fed to a 1-unit dense layer without
activation. We trained the GAN to generate adversarial images
by training six distinct generators, each with a model of the
specific legitimate RF transmitter. Then, we used each of the
six generators to create 350 images, used to challenge the RFF
system described in Sec. III.

Following, we set up DoS attacks against the target RFF
systems using the FGSM. To this aim, in line with the rationale
of FGSM (see Sect. II-C), we applied a perturbation ϵ with
increasing intensity, from 1 to 5, to the images used for
testing the RFF system. More in detail, for each element of a
given layer of the input image, we applied a random integer
perturbation in the range [−ϵ, ϵ], so that it changes the number
of samples falling in a given tile, possibly misleading the RFF
model. We also enforced a few constraints to make the attack
stealthy and hard to detect at the receiver. Specifically, we: (i)
ensured that the values of the elements in each of the layers
after perturbation always fall in the same interval [0, 255], (ii)
enforced that the sum of the pixel values for a given image is
consistent with the number of I-Q samples used to generate
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Fig. 2. Performance of the image-based RFF system in a benign scenario
and with spoofing attacks via images generated through the WGAN-GP.

the images by the RFF system, and finally (iii) verified that
the generated adversarial images are consistent with the ones
obtained as a result of the reception of a signal modulated
through the BPSK scheme, in line with the regular input to
the system. The enforcement of such requirements ensures that
the generated adversarial images fully adhere to the input that
the RFF system expects. Then we evaluated the accuracy of
the RFF system under investigation to identify the legitimate
transmitting device despite injection of the perturbation.

Finally, we set up experiments to investigate the effec-
tiveness of adversarial training techniques to mitigate the
described attacks. For GAN-based attacks, we used the images
generated by the WGAN-GP to train the classifier of the
RFF system. For every attack scenario, we created a new
class adversary and trained the RFF system on a subset of
the images. We also considered various batch size values.
Similarly, to mitigate DoS attacks, we trained the image-based
RFF system with adversarial images generated by applying
ϵ = 5, and we evaluated the accuracy of the classifier in
rejecting the FGSM-based DoS attack.

Finally, we implemented and launched all experiments using
Matlab R2022b, using a server featuring 64 cores, 512GB
RAM, and 4 GPUs Nvidia Tesla M40.

V. EXPERIMENTAL RESULTS

A. Adversarial Attacks to Image-based RFF

We first investigate the effectiveness of GAN-based spoofing
attacks against image-based RFF systems. We report in Fig. 2
the performance of the considered RFF system in a benign
scenario and under spoofing attacks using images generated
through the WGAN-GP, as described in Sec. IV.

The RFF system performs very well when tested on im-
ages generated from I-Q samples received from legitimate
RF devices, i.e., it reports an accuracy of 1 for all test
cases (Benign scenario). However, the performance reported
in Fig. 2 also highlights the vulnerability of the RFF system
to GAN-based spoofing attacks. Indeed, our tests indicate that
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Fig. 3. Performance of the image-based RFF system under a DoS attack
performed using the FGSM.

the adversary is successful when impersonating devices with
IDs 3, 5, and 7, degrading the classifier’s performance to
less than 0.32 in all cases. The accuracy of the RFF system
remains high for the other three devices, with an accuracy
drop of no more than 0.18. Such behavior is strictly related to
the distribution of the I-Q samples over time, leading to the
generation of images used for training. Consistent I-Q values
generate models that reject even small differences, enabling
attack detection. Devices characterized by I-Q samples whose
values change over time more significantly generate models
that tolerate more anomalies, thus preventing attack detection.
We also investigate the effectiveness of FGSM-based DoS
attacks against image-based RFF system. Fig. 3 summarizes
the results of our investigation.

For all the considered transmitters, increasing the intensity
of the perturbation ϵ leads to a higher attack success ratio.
In fact, the higher the intensity of the perturbation (noise),
the higher the chances that the RFF system does not success-
fully classify the generated image. At the same time, for a
given perturbation value, the classifier’s performance changes
significantly, given the considered legitimate RF device. For
example, a minimal perturbation value ϵ = 1 is enough to
prevent the identification of the legitimate RF device with
ID 5 (attack success ratio of 1), while the adversary achieves
minimal effects with the other legitimate transmitters. When
ϵ = 5, the attack is effective for transmitters with ID 5, 6, 7
(attack success ratios higher than 0.79), while it has limited
effectiveness for the remaining ones. Such results confirm
the intuition obtained from the previous results, i.e., some of
the models constructed by the image-based RFF system are
more robust than others to adversarial attacks, based on the
consistency over time of the I-Q samples profile.

We also notice that the RFF model built for a specific
device might be robust against a given adversarial attack, but
not against another one. For example, the RFF model of the
legitimate device with ID 6 is less robust to FGSM-based
DoS attacks (attack success rate of 0.79) than to GAN-based

spoofing attacks (success rate of ≈ 0.5). This result is also
reasonable, as each adversarial technique applies a specific
rationale to find an input that can mislead the classifier of the
RFF system.

To provide a comparison in such a setup, we report in
Fig. 4 the performance of the RFF system working on raw I-Q
samples proposed by Hamdaoui et al. in [2] against FGSM-
based DoS attacks, considering our same dataset. Similarly to
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Fig. 4. Performance of the RFF system based on raw I-Q samples analysis
in [2] under a DoS attack performed using the FGSM.

the results in Fig. 3, RFF systems’ performance on raw I-Q
samples decreases when subject to attacks using increasing
perturbation ϵ̃. Also, some models (e.g., the one for TX7)
are more vulnerable than others. Note that, for the system
proposed in [2], ϵ̃ is measured in mV, as the perturbation
applies to raw I-Q samples and not to pixel values. Thus,
both image-based RFF systems and RFF systems using raw
I-Q samples are vulnerable to AML-inspired attacks.

B. Defense Strategies for Image-based RFF

We applied adversarial training to evaluate the ability of the
image-based RFF system to mitigate AML attacks. We first
focus on the GAN-based spoofing attack. Fig. 5 reports the
results of our investigation, considering two reference batch
size values of 18 and 60, affecting the memory requirements
of the solution.

The results highlight that adversarial training is effective
in mitigating GAN-based spoofing attacks. Indeed, more than
99% of the attacks are successfully rejected. Comparing Fig. 5
with Fig. 2, adversarial training causes a slight degradation of
performance, as some images are incorrectly classified, leading
to an accuracy of 0.98. The result stays stable even with the
larger batch size. Although this is a minimal performance
drop, the result is consistent with the rationale of adversarial
training. Finally, we evaluate in Fig. 6 the effectiveness of
adversarial training against FGSM-based DoS attacks. Adver-
sarial training improves the system’s robustness to adversarial
attacks. The results stay stable for low values of ϵ. The RFF
system can reject all the attacks with an accuracy of 1, except
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Fig. 6. Performance of the image-based RFF system after adversarial training
with images generated through the FGSM with ϵ = 5.

the ones affecting the device with ID 5, reporting a lower
success rate. However, we observe a lower accuracy of about
0.81 with ϵ = 5, due to the low performance associated with
the device with ID 5 (0.52). The model built for TX5 is the
least robust, similarly to Fig. 5. This result highlights that,
besides randomness implicit in model construction, the I-Q
samples collected for TX5 require building less robust models,
more vulnerable to interference and channel fluctuations.

Overall, the results show that the effectiveness of adversarial
training, especially towards FGSM-based attacks, depends
significantly on the model built for the specific transmitter,
while still achieving a general improvement compared to
the baseline RFF system. Such improvements come at the
cost of a performance drop in the classification of legitimate
transmitters. Although this drop is very limited in our use case,
it could become problematic for massive deployments.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we carried out an experimental evaluation
of the effectiveness of AML attacks and mitigation strategies
for image-based RFF systems. We demonstrated that current
state-of-the-art image-based RFF systems are prone to attacks
based on FGSM and GANs. At the same time, such systems
can be enhanced to detect such attacks at the expense of a
slightly reduced classification accuracy. In the future, we plan
to investigate further the effectiveness of AML attacks on
RFF systems by evaluating the capability of modern SDRs
to mitigate wireless channel fluctuations and precisely control
I-Q samples at the receiver in various real-world scenarios.
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