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ABSTRACT: Wireless Powered Communication Networks play a crucial role in Internet of 
Things scenarios which operate with low energy sensors. In this regard, simultaneous wireless 
energy transmission (WET) and wireless information transmission (WIT) are proposed for 
continuous data transmission with low energy sensors. These sensors can be deployed on 
bridges that are hit by disasters. However, these low-energy networks demand a random data 
transmission and hence require access points to decode the packets accordingly. Hence it is 
challenging to design a slot selection algorithm that provides a better throughput. On this sub
ject, we present a Q-Learning-based algorithm that harnesses the qualities of deep reinforce
ment learning and enhances the throughput. In our algorithm, we enhance the slot allocation 
of each user with the influence of a few physical layer properties. Results show an improved 
slot allocation mechanism leads to better throughpu

1 INTRODUCTION

Wireless-powered sensor networks are a future technology which enables future smart cities 
and other industrial systems. When discussing smart cities, it’s essential to consider smart 
buildings and infrastructures, such as bridges and roads, alongside intelligent autonomous 
vehicles. This leads us to emphasize the importance of smart-bridges, which serve as critical 
infrastructure for urban areas. During an unfortunate event or flooding, gathering essential 
data about bridges is imperative. The information can be catagories in two ways; how much 
damage bridge have suffered?, and how much water/vehicle load bridge can still manage? It’s 
important to highlight that routine information gathering for bridges can also be accom
plished through these networks. This creates a need to create a portable or remote network 
that can collect this key information. However, these networks’ performance is limited by the 
amount of battery a sensor occupies which is deployed on the bridge. Our work is related to 
WP1 topic of Bridgsite; “Collect Bridge Information”. Our proposed work is related to low- 
cost sensors with edge computing capacity to optimize the volume of information to transmit 
for Bridgesite project. Low-cost communication systems require minimum amount of data 
transfers between a Hybrid Access Point (HAP) and deployed sensors subject to lower utiliza
tion of energy and other resources. HAP are responsible for both wireless energy and informa
tion transmission. That is why to acquire optimised and up to data low-cost bridge wireless 
networks require a random access protocol such as Irregular repeated slotted ALOHA 
(IRSA) or it’s variants to achieve these goals. Later on, our paper is focused on efficient data 
acquisition from low-cost bridge sensor networks.

That is why recharging (WET) and acquiring information (WIT) are very important. Port
able communication scenarios such as disaster-hit areas, industrial Internet of things, or Mis
sion-critical communications rely on the sensors deployed in the field with the ability to 
harvest energy. Healthcare, smart cities, and transportation are other systems that require 
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energy harvesting. Hence the idea of Wireless Power Communication (WPCN) has widely 
spread to maximize throughput using simultaneous WET and WIT. In WPCN a dedicated 
HAP is responsible for simultaneous energy and information transmission. HAP also ensures 
that there are no collisions and success full data transmission of each user is possible without 
any error. literature suggests that the network layer has not enjoyed tremendous improvement 
during the past while the physical layer has taken a huge leap in catering to such scenarios. 
The physical layer benefits 5G in indoor scenarios or UWB frequency. Similarly, beamform
ing also plays a critical role in low-energy networks with its directional signal capabilities. 
Hence, there needs an improvement on the resource allocation part to rep the fruit of much 
more efficient sensors and access points. For the scenarios mentioned above, IRSA has played 
a crucial role. IRSA randomly selects slots for replicas of each user providing no control over 
access points. Recently, a study has been done to improve random access performance.

This includes the introduction of machine learning algorithms for random access, the intro
duction of mini-slots, and time-offset. Time Offset (TO) increases the probability of successful 
full packet transmission by allowing users to send their data with a random offset of 
a constant length Hu, Y. 2022. Similarly, another method is to introduce the mini-slots before 
the transmission Ayoub, I 2021, Dumas, C. 2021. Mini-slots are small jamming signals from 
the users to inform HAP and other users about the slots where they will send replicas. Deep 
reinforcement learning-based methods also use a Q-learning algorithm to select the slots for 
each user Li, Y 2022, Choi, H 2019. These slot selection decisions are based on the battery 
level of each user and hence require an access point to interfere in the decision.

Nonetheless, all the methods lack incorporating the physical qualities of the system such as 
channel quality, and distance between UE and Access point. Despite the introduction of mini 
slots, time offset, and ML on the network layer for random access, there is a dire need to 
make the network layer more aware of the environmental effects. To the best of the authors’ 
knowledge, this type of analysis is not done before. Hence, we present a better and improved 
decision process based on Q-Learning which incorporates channel quality, battery level, and 
distance between UE and HAP.

In this paper, we consider a nonlinear energy harvesting scenario with simultaneous cap
abilities of WET and WIT. It is uncommon to incorporate the effect of efficiency of energy 
harvesting in the WPCN environment at the network layer. In this regard, most of the deci
sions involved on the network layer are related to slot selection. Therefore, not only an 

Figure 1.  System model.
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intelligent slot selection mechanism is required but it should also consider the efficiency of 
energy harvesting. For this purpose, we introduce a nonlinear energy harvesting model and 
calculate the harvested energy. By the end of each frame, the network layer has realistic infor
mation about the battery level of sensors. Finally, we can exploit this information or intelli
gent decision-making of slot selection for not only WET but also for WIT.

The rest of the paper is as follows. Section 2 describes the system model of a wireless-powered 
IoT network. Section 3. presents Q-learning algorithms which can manage the number of rep
licas along with energy harvesting slots. In section 4, we discuss the results obtained from these 
algorithms while section 5 concludes the work and provides future suggestions.

2 SYSTEM MODEL

We consider an IoT scenario with energy harvesting capabilities as shown in Figure 1. The 
system consists of sensors deployed in the field. We name them as u1; u2; . . . :; uN . As per the 
requirement of IoT systems, sensors are always in saturation mode, which means they always 
have data to transmit. However, sensors’ ability to send data is limited by various factors. 
These factors depend on the physical conditions of the environment such as distance, channel 
quality, available power, and line of sight. Packet transmission consists of different frames as 
shown in Figure 1. To send these packets, a sensor needs to select slots for their multiple 
copies of packets called replicas. Therefore, a sensor needs to decide intelligently for the 
number of replicas and placement of these replicas in slots of each frame. In our model, sen
sors are directed intelligently to choose the number of replicas. Available battery and channel 
are major parameters that influence this decision. It is worth mentioning here that these deci
sions are collectively made for each user at HAP using a machine learning algorithm called 
Q-Learning. Details of this algorithm will be provided in the next section.

After providing an overview of the system model, we explain each parameter that is 
involved in our system. First, we consider a nonlinear energy harvesting (NLEH) model for 
our system as it is closer to real scenarios. Before defining our non-linear model for energy 
harvesting, we need to define the following parameters. We define distance dn as the distance 
between HAP and nth user equipment. During the operation of Wireless Energy Transmission 
(WET), the power of HAP is denoted by P. Each user’s equipment has a battery with limited 
capacity and energy harvesting capabilities. We define μ as the amount of energy required by 
UE to transmit one data packet. Hence, we can assume that if a user has a battery level avail
able of μ = 2 then this user can send a maximum of two packets in one frame. It is also safe to 
assume that if a user does not have enough energy, then it has to wait for the WET phase and 
harvest enough energy to be able to again send data packets. WET capabilities of the system 
depend on multiple factors such as distance, channel quality, and power of HAP. Therefore, 
in our system channel quality is as important as battery level. We model our channel as 
a Rician channel. We assume an IoT scenario in which HAP enjoys a LOS with UE. There
fore, we consider the Rician channel which provides us with a LOS component along with 
NLOS components (multi-path). Considering this, the Rician channel hn between nth UE and 
HAP with K-factor κ, can be modeled as:

ℂ

where �hn is the LOS component, which represents the large-scale fading and ~hn 2ℂ (0,1) repre
sents NLOS small scale fading due to multi-path propagation. After modeling the channel 
and given the distance between HAP and UE, we evaluate the nth gain as:
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where wH
n is the beam-forming vector. Whereas β represents channel power gain at a reference 

distance of 1m which we define as follows:

here the carrier frequency is denoted by fc. In our system, we consider Ultra-Wide Band 
(UWB) frequency for harvesting which ranges from 5.98 GHz to 8.80 GHz and c represents 
the speed of light.

The above equations show that our system model considers the channel, power gain, and 
energy transmission limitations of HAP more realistically. Hence, next, we define our NLEH 
model as:

where αo ¼ 0:399, αo ¼ 0:826 are positive constant obtained from Lacovelli, G. 2023. Consid
ering that each slot is dedicated to either WET or WIT, we can say that each WET is exactly 
the time dedicated to one slot. We define this time with δ. It is worth noting with the above 
definitions that UE will need several slots to charge its battery. Hence it is more evident that 
intelligent use of battery is necessary in such scenarios.

3 JOINT ACTION LEARNER (JAL) WITH NON-LINEAR ENERGY HARVESTING 
(NLEH)

Joint Action Learner (JAL) was first introduced in ref. It takes advantage of the learning cap
abilities of a deep reinforcement learning-based algorithm called Q-Learning. In this regard, 
we take another step forward and make the decision process of Q-learning more efficient. We 
introduce the channel quality parameter along with an enhanced battery charging model. 
Starting with the state of the algorithm, we define it as St ¼ st1; st2; . . . :; stNf g. The state is 
the combination of available power and channel quality of each user such that stn ¼ ptn; ctnð Þ. 
Where pt n is the power available at the sensor and ct n is the channel quality of the sensor. 
The algorithm decides the number of replicas for each user and decides the specific actions for 
each defined as At ¼ at1; . . . :; atNf g. With each user, we also relate a reward matrix defined as 
Rt. The reward is based on the action taken by each user. Considering these basic parameters 
of JAL, we provide the following points to better understand the workings of JAL.

• Each UE is equipped with a battery capable of storing 3μ units of battery, where μ = 0.5Wh.
• Users need a minimum of a μ amount of battery to send one packet. Hence, a user can send 

a maximum of three packets with a fully charged battery.
• With each energy harvesting slot, UE will collect power from HAP and update its battery 

accordingly.
• We assume perfect CSI at HAP. Hence, it is safe to assume HAP can send a perfect beam 

of energy towards the users.
• User to HAP distance and channel condition limits harvesting capability of each user. 

A user experiences low battery recharge during WET when it does not experience LOS with 
HAP and vice versa.

• In our simulation, we consider each user to be at a varying distance from HAP. Distance 
ranges from 0.8 meters to 2 meters. These values are obtained from experimental results in 
ref. We also assume that the distance between UE and HAP remains constant for the 
whole duration frame.

• Time for each slot is δ = 0.05Sec. While the parameters of JAL have values ρ = 0.5, ξ= 0.7.
• HAP also keeps track of battery level by calculating the harvested energy using Eq. 4.
• Each user also encodes its battery information along with the data. This helps the HAP in 

syncing the battery information.
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By considering all the above information, we now define our algorithm in Algo.1. We 
reduce the computational cost of each user by keeping track of channel and battery informa
tion at HAP. Hence HAP is responsible for scheduling the packets in slots based on the avail
able battery unit and channel quality. Q-Learning updates and optimizes the Q-values using 
Bellman’s equation defined as,

where r st; atð Þ is the reward collected after taking a specific action. After learning through 
JAL, HAP directs the sensors for the next transmission. A summary of our JAL algorithm is 
provided below in the Algo. 1.

Figure 2.  Algorithm 1.

4 RESULTS AND DISCUSSION

In this section, we first present a comparison of idle slots for IRSA and JAL-NLEH. While we 
prove that JAL-NLEH performs better in terms of creating more slots for energy harvesting, we 
focus our remaining results on the performance of JAL-NLEH in different scenarios. We see 
how varying the channel quality and available battery can affect the number of replicas. 

Before describing the results, we present the following scenario. First, the HAP initializes 
the Q-Table with random values from 0 to 6, then for each frame, collects the state for each 
user. The battery state is initialized at 0.05Wh and the quality of the channel is measured 
using envelop. The HAP decodes the packets according to Successive Interference Cancella
tion (SIC), and then each user receives a reward that is: 0 if none of its packets successfully 
decoded at HAP, 1 if any packet decoded HAP but collision occurs with another user, 2 if 
they were successfully decoded. This reward system ensures that HAP instructs users to send 
more replicas when channel quality is low. HAP looks for idle slots in each frame and uses 
them for WET. After performing WET, it obtains new channel quality and remaining power 
for each user and updates its joint state.

Figure 3 shows a comparison of idle slots for IRSA and JALNLEH. Here the number of 
users is 8 while the number of slots in a frame is also 8 while the Rician channel K-factor is 
κ ¼ 8. Hence, we can assume that competition between users for slots is high. As we can 
observe JAL-NLEH manages to create more idle slots which are crucial for energy harvesting 
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as compared to IRSA. This is because IRSA does not have the advantage of battery and chan
nel information while JAL-NLEH has many parameters such as channel, and battery infor
mation of users to work with. A comprehensive analysis of idle slots, decoded packets, and 
collided packets is shown in Figure 4. Here, we also consider the extreme scenario where com
petition for slots is very high. Our algorithm not only aims at reducing the number of colli
sions but also manages to create more idle slots for energy harvesting. It is worth mentioning 
that the probability of having more than 6 collisions is almost negligible while at the same 
time probability of idle slots has been also on the higher side.

In Figure 5, We keep our number of slots and users constant while varying the channel 
quality κ. We can observe two trends here, first is before idle slots are 5, and second, after the 
idle slots are more than 5. We explain this trend by explaining the battery reservation goal of 
JAL-NLEH. We can see an increasing trend in the probability of number of idle slots and 
after 6 number of idle slots, we see a decreasing trend. This shows that it is relatively easy for 
JAL-NLEH to create 6 number of slots as compared to a higher (more than 6) number of 
slots. We can also see how the channel affects the probability of idle slots. For example, for 
the worst channel i.e. κ = 4, probability is lesser than for κ ¼ 6 and 8. Another worth noting 
analysis from these results is that performance for κ = 6 and 8 is not much different than each 
other. It is because our algorithm is optimized to create more idle slots and it enhances its 
performance when the conditions get tough. Another observation one can make is that our 
algorithm is optimized for channels with moderate values κ ¼ 6 and 8 which are the condi
tions for outdoor channels.

Finally, in Figure 6, we present a collective result for different settings and κ ¼ 6. It is 
observable from the figure that our algorithm always performs much better in conditions that 
matter the most.

5 CONCLUSION AND FUTURE WORK

We have shown the key to achieving better performance in tougher scenarios for random slot 
selection of bridge sensor networks. We have also shown the importance of information 
related to physical layer characteristics at the mac level layer. This can help in improving the 
decision capability of the Mac layer. In this way, we can achieve more efficient with minimum 
age of information data for bridges which may be hit by disaster or flooding. We can also 
conclude that traditional IRSA needs improvements and these improvements can be made by 
enhancing the decision-making ability empowered by machine learning. For future work, we 
would like to extend this work with a continuous optimization/machine-learning algorithm 
such as proximity policy optimization (PPO) which does not require quantizing the battery 
and channel levels hence improving the results.

Figure 3.  Probability of idol slots with κ ¼ 8 
for IRSA and JAL NLEH.

Figure 4.  Comparison of Decoded packets, idol slots, 
and collided packets for κ ¼ 8 users=10, and slots=10.
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