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Abstract

For many years, the orchestration of network resources and services has been addressed by considering homogeneous communica-
tion infrastructures and simple Service Level Agreements (SLAs), generally defined through a list of traditional Key Performance
Indicators (KPIs). Unfortunately, state-of-the-art solutions risk being quite ineffective for future telecommunication systems. Be-
yond 5G networks, for instance, are emerging as complex and heterogeneous ecosystems where resources belonging to diverse
network domains with evolving capabilities can be dynamically exposed to support much more complex and cross-domain services
and applications. At the same time, SLAs will be defined by also considering novel performance demands, including security,
economic, and environmental needs. Based on these premises, this work proposes a novel orchestration strategy designed to fulfill
service requirements expressed through Key Value Indicators (KVIs), while combining the potentials of both Network Digital Twins
and Intent-Based Networking. Leveraging insights from Network Digital Twins, multiple service orchestration options are explored
to optimize resource utilization. Simultaneously, Intent-Based Networking is adopted to streamline network management via in-
tents, specifying Beyond 5G requirements through KPIs and KVIs. An optimal orchestration scheme has been conceived through a
multi-criteria decision-making algorithm and a many-to-many matching game between domains and service requests mapped into
intents, aiming to minimize SLA violations over time. The performance of the conceived solution has been investigated through
computer simulations in realistic scenarios. The obtained results clearly highlight its effectiveness and demonstrate that it is able
to reduce SLA violations (related to latency, throughput, costs, and cyber risk requirements) by up to 22.44% compared to other
baseline techniques.
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1. Introduction

As the evolution of Beyond 5G (B5G) networks pro-
gresses, complex infrastructures are increasingly integrated
with cutting-edge technologies, services, and stakeholders,
thereby imposing a wide range of diverse and rigorous perfor-
mance requirements [1]. Considering this aspect, the orchestra-
tion of services, denoting the coordination and administration
of network resources to deliver tailored services to end-users or
clients, necessitates the adoption of prospective methodologies.
Such methodologies are essential for judiciously allocating re-
sources and fulfilling specified demands efficiently.

By leveraging insights derived from Network Digital Twins
(NDTs), service orchestration platforms can dynamically en-
hance the efficiency of network resources and service delivery
processes. Serving as digital representations of physical net-
works, NDTs have the capability to incorporate real-time data
to faithfully replicate their behavior and attributes [2]. This
functionality enables the analysis, prediction, and optimization
of network performance, while also facilitating experimentation
with diverse scenarios and configurations [3].

A plethora of solutions addressing service orchestration in
next-generation networks are extensively documented in the
scientific literature. Specifically, existing methodologies en-

deavor to allocate tasks to appropriate network domains, each
characterized by stringent performance requirements [4–9].
Furthermore, significant contributions capitalize on the oppor-
tunities afforded by NDTs to discern effective strategies for or-
chestrating services and identifying network resources suitable
for service provisioning [10–19].

On the other hand, beyond performance requirements tradi-
tionally expressed through Key Performance Indicators (KPIs)
and readily managed via NDT, the complexity of service or-
chestration in B5G networks also encompasses a focus on se-
curity, economic, and environmental considerations articulated
through Key Value Indicators (KVIs) [20, 21]. These are value
metrics aimed at quantifying significant ethical principles such
as sustainability and trust, aligning with the United Nations
(UN) Sustainable Development Goals (SDGs) [22, 23]. In this
context, while the evaluation of KPIs focuses on short-term,
tangible outcomes, KVIs are designed to capture the overall
value and long-term impact of desired outcomes. This ap-
proach ensures alignment with stakeholder objectives and de-
livers sustained value over time. To concurrently address these
diverse requirements within a resource-constrained ecosystem,
consumers and service providers establish Service Level Agree-
ments (SLAs) as an explicit declaration of the expected service,
its associated performance metrics, and penalties in the event of
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non-compliance [24, 25].
However, formulating a service orchestration strategy to ef-

fectively fulfill demanding services while adhering to SLAs
poses several challenges. Network resources exhibit hetero-
geneity, and their capabilities evolve over time, leading to di-
vergent satisfaction levels for identical services depending on
the employed resources and deployment locations. Further-
more, exclusive reliance on representation via NDT may not
consistently offer a comprehensive understanding of the expec-
tations, security considerations, and economic responsibilities
of all stakeholders involved.

To address this issue, exploring Intent-Based Networking
(IBN) can prove beneficial in streamlining network manage-
ment and operation by prioritizing the desired outcomes [24].
Through the adoption of this networking paradigm, users can
articulate technology-agnostic demands via intents, specifying
performance requirements through KPIs. Moreover, going one
step further, they can also communicate emerging B5G de-
mands through KVIs, thereby enabling the configuration of
novel network policies to foster collaboration across diverse en-
vironments for efficient service delivery [26]. An intent-based
network then transparently translates these high-level objec-
tives into measurable metrics and actions, bridging the gap be-
tween user intentions and technical execution [27].

To the best of the authors’ knowledge, current literature does
not fully explore the potential offered by the combination of
NDTs and IBN in service orchestration frameworks. By ab-
stracting service deployments using NDT, multiple service or-
chestration options can be explored with the aim of meeting es-
tablished SLAs, while also fostering collaborations among net-
works to handle service requests mapped through intents. Ad-
ditionally, current contributions in this direction address only
a limited number of KPIs and fail to comprehensively model
important KVIs such as network security and cyber risks, thus
restricting the effectiveness and reliability of service orchestra-
tion. Facing these open issues and aiming to extend and en-
hance the existing scientific literature, the main contributions
of this work are summarized as follows:

• A model for orchestrating B5G services is proposed with
the goal of adhering to established SLAs. It investigates
and determines the appropriate resources of network do-
mains to handle service requests. Specifically, by leverag-
ing the IBN structure, it enables informed decision-making
considering both KPIs and KVIs. This approach jointly
minimizes the violations characterized by the number of
requests not aligned with latency, throughput, costs, and
security requirements.

• The service provisioning orchestration problem is mod-
eled as a many-to-many matching game between ser-
vice requests, which are mapped into intents, and net-
work domains, whose resources and capabilities are avail-
able through their NDTs representation. Players’ prefer-
ences are generated using the TOPSIS decision-making
algorithm, which utilizes the Entropy-Weighting Method
(EWM) to compute weights.

• To evaluate the efficiency of the proposed model, a simula-
tion campaign is conducted, comparing it against three dif-
ferent baseline approaches. The obtained results demon-
strate reductions in SLA violations related to latency,
throughput, costs, and security requirements, by up to
22.44% compared to baseline techniques.

The remainder of this paper is organized as follows: Section
2 discusses related works. Section 3 illustrates the reference
scenario and formulates the system model. Section 4 presents
the formulated optimization problem. The proposed service or-
chestration solution is described in Section 5, and the evalua-
tions, including comparisons against baseline schemes, are pre-
sented in Section 6. Finally, conclusions are drawn in Section
7.

2. Related Works

Network orchestration and service provisioning in B5G net-
works involve the coordinated management and deployment
of network resources and services. This process necessitates
a sophisticated orchestration framework capable of integrating
advanced technologies, diverse services, and a broad range of
stakeholders. The framework must efficiently manage the com-
plexities associated with discovering, allocating, and control-
ling disaggregated and distributed resources to ensure the de-
livery of customized, high-quality services to end users. Addi-
tionally, it must meet stringent performance requirements, typi-
cally quantified by KPIs, while also addressing broader consid-
erations such as security, economic impact, and environmen-
tal sustainability, which are evaluated through KVIs. Current
scientific research is actively exploring solutions for service or-
chestration and network management in next-generation net-
works to achieve these objectives.
Initially, researchers concentrated on investigating KPIs in ser-
vice orchestration solutions by formulating complex optimiza-
tion problems related to deployment costs [4–7] or reducing
delays [8]. Other recent advancements in service orchestra-
tion frameworks have been driven by the integration of NDTs,
which enable flexible testing of configurations prior to deploy-
ment, as explored in [10–19].

In [11], the authors propose a mechanism that leverages
NDTs to simulate the aggregation of network resources that
fulfill specific service requirements. This problem is modeled
as a Boolean satisfiability problem, which is addressed using
a heuristic algorithm due to its inherent complexity. In con-
trast, the authors of [12] formulate two optimization problems
for deploying Virtual Network Functions (VNFs), with their re-
liability predicted through NDTs. The objective is to minimize
service costs while maximizing the number of admitted service
requests. To solve these problems, they propose an approxima-
tion strategy and implement an online algorithm.

Instead of leveraging NDTs for simulation and prediction of
parameters, the authors of [14, 15, 18] utilize the virtual coun-
terpart of the physical network to represent the estimated pro-
cessing rates and computational capacities of resources. They
formulate optimization problems aimed at minimizing average
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processing delay, reducing end-to-end offloading latency, and
maximizing utility across different computation modes, respec-
tively.

In alignment with the current state of the art, our previous re-
search work [19] employed NDTs to identify the most suitable
network segments for task processing, with a particular focus
on ensuring survivability during disaster events. We introduced
an orchestration algorithm designed to select domains capable
of providing services based on their reliability, storage avail-
ability, and computational capability. Notably, we associated
the reliability parameter with network segments to assess their
trustworthiness.
In addition to the use of NDT technology, service orchestration
has been significantly enhanced by adopting the IBN paradigm.
IBN enables the automatic translation of high-level objectives
into specific network configurations, as explored in [28–32].
On the one hand, IBN is utilized to automate network slicing
orchestration, as demonstrated in [28, 31], where reinforcement
learning and AI techniques are applied to prevent Quality of
Service (QoS) violations and proactively manage resources. On
the other hand, in [29, 30, 32], the IBN paradigm effectively
facilitates the translation of user intents into service function
chains and policy trees.
Nevertheless, while the current state of the art strategies of-
fer valuable orchestration solutions, they are predominantly fo-
cused on optimizing a narrow subset of KPIs. Although they
align with the requester’s goal of deploying services promptly
and economically, they may not guarantee the comprehensive
utilization of constrained resources and the achievement of
broader societal goals and security considerations. The for-
mulation of SLAs and the potential to incorporate KVIs, par-
ticularly security, into service orchestration strategies are often
overlooked. To address this gap, this study proposes a service
orchestration scheme that integrates NDTs and IBN. By lever-
aging intents, heterogeneous requests can be articulated to en-
compass both KPIs and KVIs, enabling accurate and efficient
service deployments that proactively minimize SLA violations.

3. The Reference Architecture and System Model Defini-
tion

This section introduces the reference architecture and delin-
eates the system model.

3.1. The reference system architecture

Fig. 1 illustrates the layered reference architecture inspired
by Network 2030 [24], which capitalizes on the IBN paradigm.
The depicted environment comprises consumers, who are users
or clients accessing services, and providers, which are net-
work domains delivering those services or content. In the up-
per layer, consumers articulate service requests through appli-
cations, encompassing demands for specific network services
or functionalities. The second layer, termed the intent layer,
assumes a pivotal role in enabling intent-driven network man-
agement within IBN, crucial in facilitating network automa-
tion. Instead of managing low-level configurations, users can
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Figure 1: The proposed architecture inspired by the framework of IBN for Net-
work 2030 [24].

articulate their desired outcomes as high-level objectives in a
language that the network can interpret, which is then seam-
lessly translated into specific configurations and policies. By
providing such a mechanism, it maps service requests into in-
tents, thereby enhancing agility and ensuring alignment with
specific objectives [33]. Through intent mapping, both the con-
sumer and the service provider can specify the level of service
expected from the network via SLAs, delineating the quality,
availability, and reliability of services provided by the network
to ensure they fulfill the needs and expectations of the users. In
particular, conventional performance requirements can be stip-
ulated through KPIs, while sustainability and security demands
can be articulated through KVIs. Once high-level service re-
quests are mapped into structured and quantifiable intents, they
are transmitted to the Orchestration layer. Within this layer,
the Network Orchestration module, in conjunction with the Ser-
vice Orchestration module, collaborates to determine how and
where to deploy these intent demands. Specifically, the former
generates NDTs of domains by exploring the characteristics and
data of the physical Network Infrastructure. Furthermore, they
are not just digital replicas, but as dynamic and aggregated data
from network domains, they engage with their physical coun-
terpart for predictive maintenance and operation. NDTs are
leveraged to simulate possible service implementations, from
which it is possible to identify resource configurations to be in-
stantiated on-demand based on the availability of the resources.
Conversely, the latter is tasked with identifying the appropri-
ate network domain resources capable of meeting SLA require-
ments. The collaboration between these modules thus enables
service providers to simulate various resource configurations,
leveraging the abstraction provided by NDT, and evaluate their
impact on network performance and behavior before actual de-
ployment in the network infrastructure. Finally, the suitable
resources of the selected domain, compliant with established
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SLAs, are allocated in the Infrastructure layer to fulfill the ser-
vice request. The details of the entire orchestration procedure
will be provided in the next sections.

3.2. System Model

As outlined in the previous section, consumers articulate ser-
vice requests that encompass specific demands for network ser-
vices. The explored IBN paradigm, facilitated by proper trans-
lation [33], enables the mapping of these service requests into
a category of intent, representing the definition of service re-
quirements. For the sake of clarity, let I denote the set of N
intent categories, such that I = {I1, I2, . . . , In, . . . , IN}. It is note-
worthy that several service requests can be mapped to the same
n-th intent category. With this in mind, we can formally define
R(n) as the set of all consumer requests mapped into the n-th
intent category, expressed as R(n) = R(n)

1 ,R
(n)
2 , . . . ,R

(n)
s , . . . ,R

(n)
S .

Consequently, the entire set of service requests in the system
can be defined as R =

⋃N
n=1 R(n). Overall, when a consumer

sends a service request R(n)
s ∈ R(n), it specifies the following set

of parameters:
〈
T (n), γ(n), τ(n),∆(n), θ(n), β(n), B(n)

〉
. Specifically,

• T(n) represents the set of K tasks into which the re-
quested service is decomposed. Specifically, T(n) ={
T (n)

1 ,T
(n)
2 , . . . ,T

(n)
k , . . . ,T

(n)
K

}
. This decomposition of the

service into simpler tasks facilitates a more systematic and
manageable approach to service delivery, enabling the net-
work domain to enhance efficiency, reliability, and perfor-
mance across the entire service delivery process.

• γ(n) indicates the deadline of the R(n)
s -th service request,

expressed in [s]. Thus, completing a service within its
requested timeframe is a traditional performance require-
ment.

• τ(n) represents the minimum throughput requested by the
consumer for the R(n)

s -th service request.

• ∆(n) is the impact of a security attack and reflects the ef-
fects or consequences caused by an attack resulting from
the provision of malicious service. It is a crucial value
closely related to the SDGs outlined by the UN, particu-
larly concerning privacy, confidentiality, and trustworthi-
ness [22].

• θ(n) represents the acceptable risk associated with the re-
quested service, often referred to as risk appetite. Essen-
tially, it signifies the consumer’s willingness to assume
risk.

• β(n) is the budget representing the available funds allo-
cated by the consumer for the utilization and storage of
providers’ resources. It embodies a key value linked to the
UN SDGs of economic growth and sustainability [23].

• B(n) represents the input size of the data to be processed by
a service provider, measured in [bits].

On the other hand, let D be the set of M network do-
mains, such that D = {D1,D2, . . . ,Dm, . . . ,DM}. Each do-
main Dm ∈ D exposes storage and computational resources
and is characterized by the following set of parameters:〈
Ω(m), q(m), L(m), σ(m), Bw(m)

〉
, detailed as follows:

• Ω(m) represents the processing capability of the m-th do-
main, measured in [cycles/s].

• q(m) represents the maximum quota of tasks that the m-
th domain can handle simultaneously. This parameter ac-
counts for the number of computational cores in a domain,
each with a capability denoted by Ω(m).

• L(m) symbolizes the likelihood of attacks against the secu-
rity of the m-th domain. It represents the probability that a
threat will exploit a vulnerability, thereby causing damage,
in the m-th domain.

• σ(m) is described by a tuple of values (C(m)
u ,C

(m)
l f ,C

(m)
sec ).

Specifically, C(m)
u represents the parameter for usage costs

that consumers must pay to utilize the resources provided
by the m-th network domain, measured in [$/s]. C(m)

l f and

C(m)
sec represent the life cycle costs and security costs, re-

spectively, measured in [$], that a domain must support
to maintain the activity of its resources and security mea-
sures.

• Bw(m) is the minimum guaranteed value of available band-
width of a given domain for a service request.

Table 1 summarizes the key symbols used to describe the
environment along with their meanings.

3.3. Parameters Computation

- Delay Computation
Considering the overall end-to-end delay as the time elapsed

from the instant the service request is made to the moment the
service is provided to the consumer, it is assumed to be the
linear combination of two contributions. The former, indexed
by t(tran)

(R(n)
s ,Dm)

, represents the transmission delay and refers to the

amount of time spent ensuring the arrival of the R(n)
s -th service

request in the m-th network domain. To calculate the transmis-
sion delay across the communication channel, it is necessary
to determine the transmission rate between the consumer and
the provider domain. The aforementioned rate, referring to the
R(n)

s -th request towards the m-th network domain, denoted by
U(R(n)

s ,Dm), is calculated using the Shannon formula [34] and re-
ported as follows:

U(R(n)
s ,Dm) = Bw(m) · log2

(
1 +

Ptx · H(m)

Pnoise

)
, (1)

where Ptx is the transmission power of the consumer request-
ing services, H(m) is the transmission channel gain, and Pnoise is
the noise power of the transmission channel. Considering the
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Table 1: Main Symbols Description.

Symbol Meaning
I Set of intents
D Set of network domains
N number of intent categories
M number of network domains
R(n) Set of consumer requests mapped

into n-th intent category
T(n) Set of tasks composing a service request
K Number of tasks composing a service
τ(n) Minimum requested throughput

for R(n)
s -th service request

γ(n) Deadline of the R(n)
s -th service request

∆(n) Impact of a security attack
β(n) Consumer budget for the R(n)

s -th request
B(n) Input size of the R(n)

s -th service request
θ(n) Tolerable risk associated with

the R(n)
s -th service request

Ω(m) Processing capability of the m-th domain
L(m) Likelihood of attacks in the m-th domain
σ(m) Cost to pay for resources

provided by the m-th domain
C(m)

l f Life cycle cost in the m-th domain
C(m)

u Usage cost in the m-th domain
C(m)

sec Security cost in the m-th domain
q(m) Maximum quota of tasks

that the m-th domain can handle
Bw(m) Minimum guaranteed bandwidth

for a request by the m-th domain
t(tran)
(R(n)

s ,Dm)
Transmission delay for the R(n)

s -th request

in the m-th domain
t(proc)
(R(n)

s ,Dm)
Processing delay for the R(n)

s -th request

in the m-th domain
U(R(n)

s ,Dm) Transmission rate between consumer
and the m-th domain

ρ(R(n)
s ,Dm) Cyber risk associated to the R(n)

s -th request
in the m-th domain

Rev(m) Total revenue of the m-th domain
x(Tk(R(n)

s ),Dm) Binary indicator variable indicating
if a task Tk of Rs(n) is allocated to Dm

F Set of tasks with unmet deadline requirements
E Set of tasks with unmet throughput requirements
C Set of tasks overshooting the user’s budget
S Set of tasks violating cyber risk requirements

B(n) input size of the data to be processed for the requested ser-
vice and the previously calculated transmission rate, the trans-
mission delay can be computed as reported in eq.2.

t(tran)
(R(n)

s ,Dm)
=

B(n)

U(R(n)
s ,Dm)

. (2)

The latter contribution, instead, indexed by t(proc)
(R(n)

s ,Dm)
, repre-

sents the processing delay and refers to the amount of time
needed by the m-th provider domain to process and complete
the R(n)

s -th requested service. It can be calculated as reported in
eq.3.

t(proc)
(R(n)

s ,Dm)
=
Φ · B(n)

Ω(m) , (3)

where Φ is the number of CPU cycles needed to process a
single bit, and according to [35], it has been set equal to 1000
cycles per bit.

Finally, considering the previous contributions, the overall
end-to-end delay for the provision of the R(n)

s -th requested ser-
vice by the m-th domain is calculated as shown in eq. 4.

t(R(n)
s ,Dm) = t(tran)

(R(n)
s ,Dm)

+ t(proc)
(R(n)

s ,Dm)
. (4)

- Cyber Risk Computation
Designed to connect vast numbers of devices and incorpo-

rate technologies like Software Defined Networking (SDN),
network slicing, and edge computing, B5G networks support
critical infrastructure and services, including healthcare (e.g.,
remote surgery), transportation (e.g., autonomous vehicles), en-
ergy grids, and public safety. Additionally, they promise ultra-
fast speeds and low latency, which are essential for real-time
applications. The integration of multiple technologies increases
the number of potential entry points for cyber attackers, creat-
ing new vulnerabilities and making network security more chal-
lenging. Each component (e.g., virtualized network functions,
edge devices) could serve as a potential target for cyber threats.
A successful cyber-attack can severely impact network perfor-
mance, with catastrophic consequences for critical infrastruc-
ture and services, including loss of life, large-scale economic
disruption, and threats to national security.

In this context, service providers must also account for non-
negligible risk factors when taking on service requests. These
risks can be caused by natural disasters or man-made events,
such as human failure, cybercrime (e.g., extortion, fraud), cy-
berwar, or cyberterrorism [36]. Generally, cyber risk compro-
mises the confidentiality, availability, or integrity of data or ser-
vices. Overall, it can be considered a function of three parame-
ters: (i) vulnerability, (ii) threat, and (iii) impact [37]. A vulner-
ability is a flaw or weakness in an asset’s design, implementa-
tion or operation and management, thus it depends on the secu-
rity level of network domains. A threat is a potential exploita-
tion of a vulnerability. Typically, these two factors are grouped
together and indexed as L, representing the likelihood of a suc-
cessful attack [38]. Then, the impact of cyber risk refers to the
consequences or effects that security threats and vulnerabilities
can have on individuals, organizations, and systems as a whole.
It represents the reputational, economic, and legal damages that
consumers, who formulate service requests, will suffer if they
become victims of a threat.

Estimating the security parameter affecting network domains
is a challenging task. A variety of heterogeneous risk assess-
ment methods are available in the literature for determining it.
Without loss of generality, this work adopts the model based on
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Attack Countermeasure Trees (ACT) [39] as the reference one
for likelihood modeling. This model enables the determination
of attack paths or vulnerabilities and the selection of appropri-
ate countermeasures to detect and mitigate them. The domain’s
security posture can thus be assessed by evaluating the proba-
bility of attack success. This is modeled as a ”k-out-of-n” prob-
ability, where AS represents the successful attack events out of
the total ADM attacks detected and mitigated. Then, the corre-
sponding expression for the likelihood of attack success for the
m-th network domain is provided in eq.5.

L(m) =

ADM∑
j=AS

(
AS

j

)
Pr j

Atk(1 − PrAtk)AS− j (5)

where PrAtk represents the probability of an attack event.
Therefore, considering the R(n)

s -th service request handled by
the m-th domain, the associated Cyber Risk ρ(R(n)

s ,Dm) can be de-
fined by the following equation:

ρ(R(n)
s ,Dm) = ∆

(n) · L(m). (6)

The proposed system model seeks to enhance orchestration
strategies by surpassing traditional KPI-based service provider
selection. It integrates the UN’ SDGs, monitored via KVIs, to
meet next-generation network objectives. Although B5G tech-
nologies facilitate these goals, they also introduce new vulnera-
bilities, positioning cyber risk as a crucial KVI for maintaining
B5G security.

- Cost Computation
The service provisioning procedure also incurs costs. Specif-

ically, domain providers must manage the entire life cycle of
resources and invest in security countermeasures. This work
assumes C(m)

l f as the cost associated with the life cycle of man-

aged resources, expressed as C(m)
l f = C(m)

act + (C(m)
depl · q

(m)), where

C(m)
act represents the cost of service activation, and C(m)

depl denotes
the deployment and maintenance cost of the physical network.
C(m)

sec , on the other hand, denotes the cost associated with au-
diting, vulnerability assessment, threat mitigation, implemen-
tation of security tools, as well as regular updates and patches
within the m-th network domain [40]. These costs ensure that
the domain remains secure and compliant with necessary reg-
ulations, reducing vulnerabilities to cyber attacks. Meanwhile,
consumers are charged based on the duration they utilize re-
sources from the domains. C(m)

ut represents the cost associated
with the usage of processing and storing resources. This cost is
often determined by the time resources are allocated to the con-
sumer’s service requests, ensuring that consumers pay propor-
tionately for the resources they consume. In summary, the to-
tal cost structure for service provisioning includes the life cycle
costs (C(m)

l f ), security costs (C(m)
sec ), and usage costs (C(m)

ut ). These
costs are essential for maintaining the infrastructure and ensur-
ing secure, reliable service delivery to consumers. Considering
the incurred costs to maintain network resources related to their
life cycle and the security of the infrastructure, along with the
profits generated from consumers, the total revenue of the m-th
domain, indexed by Rev(m), can be computed as shown in Eq.
7.

Rev(m) = C(m)
ut · t

(proc)
(R(n)

s ,Dm)
− (C(m)

l f +C(m)
sec · L

(m)), (7)

where the cost for resource employment and the security
costs are weighted by the time of resource usage and the likeli-
hood of cyber attacks succeeding in the m-th network domain,
respectively. This ensures that the revenue calculation accu-
rately reflects the economic impact of both operational costs
and potential security risks.

4. Problem Formulation

The primary objective of this study is to develop a service
orchestration strategy for selecting available network domains
that can fulfill consumer service requests while minimizing in-
consistencies caused by SLA violations. Specifically, the pro-
posed methodology aims to identify resource configurations
that simultaneously achieve the following goals:

• Minimizing the number of tasks whose completion time
exceeds their deadline.

• Minimizing the number of tasks that fail to meet their
throughput threshold.

• Minimizing the costs incurred by task deployment exceed-
ing the consumer’s budget.

• Minimizing the task assignments whose associated cyber
risk exceeds the consumer’s risk appetite.

Given the inherent heterogeneity of consumers and their re-
lated service requests, intent mapping serves as a crucial start-
ing point for organizing and orchestrating service requests ef-
fectively. Depending on the nature of the business or service,
intent mapping can automate the categorization process by an-
alyzing the content of consumer inquiries. This innovative ap-
proach facilitates the identification of the optimal network do-
main for processing and executing tasks to meet service require-
ments efficiently. Moreover, the proposed architecture facili-
tates the decomposition of requested services into smaller, eas-
ily manageable tasks that can be executed across different net-
work domains. Each task ideally represents a distinct function
or step in the service delivery process. This approach enhances
agility and improves the overall quality of service delivery for
organizations. In line with this, the proposed service orches-
tration method deploys tasks from various services, identify-
ing a suitable and distributed combination of network domains.
This combination collectively addresses the required comple-
tion time, throughput, cost, and cyber risk requirements.

Let x(Tk(R(n)
s ),Dm) denote a binary indicator variable that indi-

cates whether a task Tk assigned to fulfill the service request
Rs(n) is allocated to domain Dm:

x(Tk(R(n)
s ),Dm) =

1 if Tk for R(n)
s is assigned to Dm,

0 otherwise.
(8)
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with n ∈ [1,N] representing the n-th requested intent cate-
gory, and m ∈ [1,M] representing the m-th network domain.

Considering that each demanded service mapped into an in-
tent category has a deadline, it’s essential to define the set F
of tasks with unmet completion time requirements. Assuming
that each task composing the R(n)

s -th service request can be ex-
ecuted simultaneously by the selected network domain, the re-
sulting time t(R(n)

s ,Dm) spent to serve the consumer corresponds
to the maximum among the end-to-end delays of all provider
domains to fulfill their assigned tasks. According to this, F can
be expressed as follows:

F =
{
T (n)

k ∈ T
(n) | x(Tk(R(n)

s ),Dm) · t(R(n)
s ,Dm) > γ

(n); (9)

∀R(n)
s ∈ R(n), k ∈ [1,K], n ∈ [1,N],m ∈ [1,M]

}
.

Throughput represents another SLA metric for a demandable
service, referring to the rate at which tasks are processed or
completed within a given timeframe. In this context, let E be the
set of tasks whose completion does not guarantee the fulfillment
of the throughput requirements. Its expression is reported as
follows:

E =
{
T (n)

k ∈ T
(n) | x(Tk(R(n)

s ),Dm) · U(R(n)
s ,Dm) < τ

(n); (10)

∀R(n)
s ∈ R(n), k ∈ [1,K], n ∈ [1,N],m ∈ [1,M]

}
.

Let also C be the set of service tasks entailing costs that fit
within the user’s budget. Considering the possible task divi-
sion among domains, the processing time t(proc)

(R(n)
s ,Dm)

must account
for the maximum among the processing times of all provider
domains to process their assigned tasks. Its expression is as
follows:

C =
{
T (n)

k ∈ T
(n) | x(Tk(R(n)

s ),Dm) ·C
(m)
ut · t

(proc)
(R(n)

s ,Dm)
> β(n); (11)

∀R(n)
s ∈ R(n), k ∈ [1,K], n ∈ [1,N],m ∈ [1,M]

}
.

Furthermore, if the cyber risk ρ(R(n)
s ,Dm) associated with the n-

th service request, denoted as R(n)
s , handled by the m-th domain

exceeds the acceptable levels of risk appetite θ(n), it suggests a
potential misalignment between the risk tolerance levels of the
two parties involved. Consequently, cybersecurity concerns are
not appropriately addressed. Considering this, let S be the set
of tasks of a service assigned to domains that violate their cyber
risk requirements, as reported below:

S =
{
T (n)

k ∈ T
(n) | x(Tk(R(n)

s ),Dm) · ρ(R(n)
s ,Dm) > θ

(n); (12)

∀R(n)
s ∈ R(n), k ∈ [1,K], n ∈ [1,N],m ∈ [1,M]

}
.

Therefore, to identify the optimal decision in task assignment
for the service orchestration procedure, addressing violations of
the SLAs becomes pivotal. This can be achieved by jointly min-
imizing the cardinality of the previously defined sets F ,E,C,S,

thereby reducing the number of tasks that fail to adhere to ser-
vice requirements. Accordingly, the following multi-objective
optimization problem is formulated and reported in eq.13:

min
x

(Tk (R(n)
s ),Dm)

|F | + |E| + |C| + |S| (13)

s.t.
N∑

n=1

S∑
s=1

K∑
k=1

x(Tk(R(n)
s ),Dm) ≤ q(m),∀m ∈ [1,M] (14)

M∑
m=1

K∑
k=1

x(Tk(R(n)
s ),Dm) = K, (15)

∀R(n)
s ∈ R(n),∀n ∈ [1,N]

M∑
m=1

S∑
s=1

K∑
k=1

x(Tk(R(n)
s ),Dm) ≤

M∑
m=1

q(m) (16)

x(Tk(R(n)
s ),Dm) ∈ {0, 1}. (17)

The proposed multi-objective problem is subject to con-
straints reported in eq.(14)-(16). Constraint (14) expresses that
the m-th network domain can handle at most q(m) tasks simul-
taneously. Constraint (15) indicates that all K tasks of a re-
quested service must be assigned to a network domain. Finally,
constraint (16) formalizes that the number of tasks referred to
the overall set of requested services does not exceed the total
capacity of all network domains. Therefore, all requested ser-
vices mapped into intents must be assigned and processed by at
most one network domain.

The formulation expressed in eq.(13)-(17) constitutes a com-
binatorial problem, proven to be NP-hard [41]. Indeed, the
search spaces for solutions of such problems tend to grow expo-
nentially as the size of the input increases, making it infeasible
to find an optimal solution in polynomial time.

5. The Proposed Solution

In this section, a service orchestration procedure is developed
utilizing a multi-criteria decision-making algorithm within a
stable matching game framework. This approach employs a
heuristic method to address the NP-hard problem outlined in
Section 4.

5.1. Service Orchestration Procedure Overview

The conceived novel procedure leverages matching theory,
a field that enables the development of flexible solutions, par-
ticularly matching games, for combinatorial problems [42–44].
Typically, a matching game involves interactions between el-
ements of two distinct sets, referred to as players, and pro-
duces a matching function that establishes valuable relation-
ships among them. These relationships are based on the prefer-
ences expressed by each player of one set toward players of the
opposing set, indicating the level of satisfaction with the match,
which is computed according to appropriate criteria [44]. Con-
sidering these assumptions, the players in the proposed work
are represented by sets of network domains and service requests

7



Step 3: Generation of preferences with TOPSIS

Step 1:

Service orchestration module

Step 2: Decision matrices composition

Intent mapping

Intent layer

Intent matrix
definition

Domain matrix
composition

Step 4: Many-to-many matching game

Resource configurations

Consumers

Network orchestration module

NDT 1 NDT 2 NDT M…

Service
requests

Figure 2: Overall orchestration procedure.

mapped into categories of intents. Their preferences are eval-
uated using the TOPSIS multi-criteria decision-making algo-
rithm [45]. By defining players and computing preferences in
this manner, it is possible to match intents to domains capable
of processing them in a timely, efficient, convenient, and safe
manner. Conversely, domains are matched with intents that en-
tail higher revenues.

The rest of this section illustrates the methodology followed
by the conceived procedure, schematically shown in Fig. 2 and
fully deployable through the modules of the reference archi-
tecture described in Section 3. Specifically, starting from the
NDT representations and the intent category definitions, the
conceived Service Orchestration module builds the domain and
intent matrices. Utilizing this collected data, a decision matrix
or vector is composed for each player in the matching game
(e.g., consumers’ intents and domains). The values within the
decision matrices, representing the outcomes of NDTs, effec-
tively capture the resource configurations a domain must ex-
pose to fulfill a specified intent. This mathematical model-
ing through matrices expresses the capacity of NDTs to self-
simulate their capabilities, enabling analysis, prediction, and
offering decision-making support for the Service Orchestra-
tion module. After computing the weights, the TOPSIS multi-
criteria decision-making algorithm derives preferences from the
decision matrices for each player. The evaluation of these pref-
erences paves the way for establishing the associations in the
many-to-many matching game, leading to the extraction of ben-
eficial network resource configurations.

Step 1 - Domains and intent matrix composition
By providing an abstraction of network domains, NDTs en-

able effective monitoring and analysis of complex network sys-
tems. This approach facilitates the construction of detailed be-
havioral models, capturing performance metrics such as latency
and throughput. The proposed work leverages the outcomes of
NDTs as an initial step in the service orchestration process, pre-
senting the results using a matrix representation. Specifically, D
represents the domain matrix, with dimensions [M × V], where
M denotes the number of network domains considered, while
V represents the set of features captured by the NDTs abstrac-
tion. These features include processing capability, the quota
of assignable tasks, the likelihood of security-compromising
attacks, costs, and the guaranteed bandwidth of each domain,
as detailed in Section 3. Here, the domain matrix entries dm,v,

where m ∈ [1,M] and v ∈ [1,V], represent the value associ-
ated with the v-th feature for the m-th domain. As the param-
eters captured by the NDTs fluctuate throughout the day, the
domain matrix values are updated accordingly. The matrix is
represented as follows:

D =


d1,1 d1,2 · · · d1,V
d2,1 d2,2 · · · d2,V
...

...
. . .

...
dM,1 dM,2 · · · dM,V


M×V

(18)

Moreover, the proposed procedure entails the definition of
intent categories based on the service requirements levels that
a consumer can articulate. These are encompassed in an intent
matrix, I, with dimensions [N × Z] and entries in,z, where n ∈
[1,N] and z ∈ [1,Z]. Here, N refers to the considered intent
categories, while Z represents the set of parameters specified
with each service request, as detailed in Section 3. Specifically,
these parameters include the set of tasks, deadline, minimum
throughput, impact, risk appetite, budget, and input size of the
data to be processed. The defined intent matrix is represented
as follows:

I =


i1,1 i1,2 · · · i1,Z
i2,1 i2,2 · · · i2,Z
...

...
. . .

...
iN,1 iN,2 · · · iN,Z


N×Z

(19)

Step 2 - Decision matrices formulation
The second step involves the construction of decision ma-

trices, which serve as the input for the subsequent multi-
criteria decision-making algorithm that characterizes prefer-
ences. Specifically, starting from the values expressed by the
matrix D, a domain decision matrix is constructed for each of
the N intent categories. The goal of this approach is to cap-
ture the domain state when handling a service request mapped
to the n-th intent category. Therefore, a given domain decision
matrix is denoted by D(n), where n ∈ [1,N], and its dimensions
are [M × f ]. Here, M represents the number of network do-
mains, and f corresponds to the system parameters evaluated in
the optimization problem formulated in Section 4 (e.g., comple-
tion time, throughput, cost, and cyber risk). A domain decision
matrix is reported as follows:

D(n) =


d(n)

1,1 d(n)
1,2 · · · d(n)

1,4
d(n)

2,1 d(n)
2,2 · · · d(n)

2,4
...

...
. . .

...
d(n)

M,1 d(n)
M,2 · · · d(n)

M,4


M×4

(20)

Similarly, beginning with the values expressed by the matrix
I, an intent decision vector is generated for each of the M do-
mains. This vector is denoted by I(m), where m ∈ [1,M], and
possesses a size of [N×1], where n ∈ [1,N]. These vectors sig-
nify the revenues derived from deploying, utilizing, and storing
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domains’ resources for every requested intent. In contrast to
the domain decision matrices, for a specific domain, the deci-
sion to handle a request hinges exclusively on the potential rev-
enues from allocating and processing the consumer’s request.
This value, elucidated in Section 3, delineates the costs and also
mirrors the potential security risks associated with deploying
services. An intent decision vector is reported as follows:

I(m) =


i(m)

1,1
i(m)

2,1
...

i(m)
N,1


N×1

(21)

Step 3 - Preference lists generation
The third step of the procedure entails calculating the pref-

erences, which serve as input for the matching game. These
preferences quantify the satisfaction and suitability of assign-
ing a domain to an intent, and vice versa. In this regard, the de-
vised strategy employs the well-known TOPSIS multi-criteria
decision-making algorithm to compute the lists of preferences,
leveraging the features presented by the domain decision matri-
ces and the intent decision vectors as the criteria for decisions.
Here, the designed solution categorizes all criteria presented by
the domain decision matrices as costs, with the exception of
throughput which is classified as a benefit. This classification
aligns with the revenue criterion outlined by the intent decision
vector that also falls under the benefits.

According to the TOPSIS algorithm, each criterion of every
decision matrix must be associated with a weight that quanti-
fies its importance in deriving preferences. This work employs
the EWM [46] to evaluate the relevance of the criteria. Specif-
ically, EWM computes the entropy of each criterion for each
column of the decision matrices, assigning higher weights to
criteria with greater variability as a consequence of lower en-
tropy. For each domain decision matrix, the resulting weight
vector is denoted by W(n):

W(n) = [w(n)
1 ,w

(n)
2 ,w

(n)
3 ,w

(n)
4 ]. (22)

where
∑4

f=1 w(n)
f = 1 and 0 ≤ w(n)

f ≤ 1.
Once a weight vector is associated with every decision ma-

trix, TOPSIS starts the procedure to provide the preference
lists. Here, the adopted multi-criteria decision-making algo-
rithm normalizes the decision matrices and multiplies their en-
tries by the respective weights assigned through the EWM pro-
cedure, as follows:

ˆd(n)
m, f = w(n)

f ·
d(n)

m, f

max
m∈M

(
d(n)

m, f

) (23)

Then, TOPSIS identifies the Positive Ideal Solution (PIS),
encompassing the maximum value for benefit criteria and the
minimum value for cost criteria. Similarly, it evaluates the Neg-
ative Ideal Solution (NIS), comprising the minimum value for

benefit criteria and the maximum value for cost criteria. These
are represented as follows:

PIS+ =
{

ˆdm,1
(n)+
, . . . , ˆdm,4

(n)+}
(24)

NIS− =
{

ˆdm,1
(n)−
, . . . , ˆdm,4

(n)−}
. (25)

At this point, the procedure computes the Euclidean distance
from each entry in the normalized domain decision matrices to
the values in the PIS and NIS sets. For clarity, the computed
Euclidean distances for each row of the decision matrices are
denoted as d+m and d−m, respectively, and are outlined as follows:

S +m =

√√√ 4∑
f=1

(
d̂(n)

m, f − d̂(n)+
m, f

)2
, m = 1, . . . ,M, (26)

S −m =

√√√ 4∑
f=1

(
d̂(n)

m, f − d̂(n)−
m, f

)2
, m = 1, . . . ,M. (27)

By leveraging these distances and considering the selected
criteria, TOPSIS can now compute how close each domain is to
the ideal solutions when handling a service request mapped to a
specified intent category. This closeness parameter, represent-
ing the preference score, is defined as the Relative Closeness
(RC) and is computed for each domain in the domain decision
matrix as follows:

RCm =
S −m

S +m + S −m
, m = 1, . . . ,M (28)

The preferences for all domains are then ranked in decreasing
order of their RC.

This procedure is iteratively applied to each domain decision
matrix, where the rows correspond to the behavior of each do-
main in response to a service request within the n-th intent cat-
egory. Consequently, the designed orchestration process pro-
duces a prioritized list of provider domains for each specified
request R(n)

s , as illustrated below:

R(n)
s pref = (D1,D2, . . . ,DM). (29)

The ranking presented in eq.29 suggests that the R(n)
s -th re-

quest would be more effectively managed by domain D1 com-
pared to domain D2. This preference relation is denoted as
D1 ≻R(n)

s
D2.

Similarly, the orchestration procedure is performed for each
intent decision vector, generating a preference list for every do-
main Dm. This can be expressed in the following form:

Dmpref = (I1, I2, . . . , IN). (30)
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This ordering implies that domain Dm has a stronger prefer-
ence for handling the I1-th intent over the I2-th intent. Formally,
this preference is represented by the relation I1 ≻Dm I2.

Both domain and intent preference lists then serve as inputs
to the subsequent matching game step.

Step 4 - Many-to-many matching game
The final step involves executing the many-to-many match-

ing game to establish associations between consumer service
requests and domains providing services, enabling optimal re-
source configurations. Specifically, considering the set of net-
work domains D and service requests R as disjoint and finite
sets of players, the associations among them are determined
based on their individual preferences defined in the previous
step. The game produces a function λ that is defined as follows:

λ : D ∪ R→ D ∪ R. (31)

This function represents a match if it satisfies the following
conditions:

• Condition 1: each domain Dm ∈ D is matched with a sub-
set of service requests mapped to the n-th intent category,
i.e., λ(Dm) ⊆ R(n) ∈ R.

• Condition 2: each service request R(n)
s ∈ R(n) is matched

with a subset of domains, i.e., λ(R(n)
s ) ⊆ D.

• Condition 3: each domain Dm ∈ D can process at most q(m)

tasks composing service requests, i.e., | λ(Dm) |≤ q(m).

• Condition 4: a domain Dm ∈ D is matched with a service
request R(n)

s ∈ R if and only if the service request R(n)
s is

matched to the domain Dm,
i.e., R(n)

s ∈ λ(Dm) ⇐⇒ Dm ∈ λ(R
(n)
s ).

The individual players’ preferences generated through TOP-
SIS are complete, meaning every player ranks all players in the
other set. Dealing with complete preferences is necessary be-
cause the constraint (16) of the formulated optimization prob-
lem requires that all tasks composing service requests be as-
signed to at most one network domain, even if individual do-
mains may fail to meet the service requirements. Additionally,
preferences are strict, indicating that players exhibit a strict or-
der of preference towards other players.

To enable optimal resource configurations, the matching
game must result in a stable outcome. To achieve this, λ must
be individually rational, meaning that no player would prefer
being unmatched over being matched with another player. Ad-
ditionally, λ must be pairwise stable, meaning that there are no
blocking pairs in the game.

Accordingly, the proposed stable many-to-many matching al-
gorithm is based on the well-known Deferred Acceptance Algo-
rithm (DAA) [47]. The details are provided in the pseudocode
presented in Algorithm 1. The ultimate goal of the designed
game is not only to provide a stable matching between ser-
vice requests and provider domains, but also to investigate the
possibility of distributing tasks of the same request to different

Algorithm 1 Many-to-many matching algorithm

Input: R(n)
s pref∀R(n)

s ∈ R(n),Dmpref∀Dm ∈ D
Output: λ : D ∪ R→ D ∪ R

1: while ∃R(n)
s ∈ R(n) not completely assigned do

2: Send proposal to its most preferred Dm

3: if Dm busy cores < q(m) then
4: if Dm can accept the entire request then
5: Assign R(n)

s to Dm

6: else
7: Assign T (n)

k of R(n)
s to Dm

8: end if
9: Update Dm busy cores and R(n)

s to be assigned
10: else
11: Find R(n)

s′ in λ(Dm) | R(n)
s ≻Dm R(n)

s′

12: if ∃R(n)
s′ then

13: Remove R(n)
s′ from λ(Dm)

14: Remove Dm from λ(R(n)
s′ )

15: if Dm can accept the entire request then
16: Assign R(n)

s to Dm

17: else
18: Assign T (n)

k of R(n)
s to Dm

19: end if
20: Update Dm busy cores and R(n)

s to be assigned
21: else
22: Not assign R(n)

s to Dm

23: end if
24: end if
25: Delete Dm from R(n)

s pref
26: end while

providers in order to achieve better performance. In steps 1-
2, each unassigned service request sends a proposal to its most
preferred domain. Every domain that receives at least one pro-
posal performs the following operations:

• If all of its computational cores are not currently utilized,
the domain evaluates whether it can process the entire R(n)

s -
th service request or if it has the capacity to process only
some tasks, and then accepts the request accordingly (steps
3-9).

• If it reaches its quota and has previously accepted a request
less preferred than the incoming one (e.g., R(n)

s′ ), the game
replaces the less preferred request with the most preferred
one accordingly (steps 11-22). Otherwise, R(n)

s is not as-
signed to its Dm-th preferred provider domain.

After completing the matching procedure (step 1-24), the
first request’s preference is removed from the R(n)

s pref list. Then,
the algorithm iterates until all service requests have been com-
pletely matched.

Designing such a strategy ensures that service requests are
matched to domains according to their ordered preference lists,
ensuring they are matched with domains beneficial to them and
guaranteeing an individually rational matching. Similarly, do-
mains accept beneficial proposals based on their preferences.
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Moreover, the matching λ prevents the formation of blocking
pairs. Furthermore, given that all preferences are strict, this
algorithm yields a matching beneficial for the players initiat-
ing the procedure and sending out proposals first. Therefore,
the whole procedure can be considered service request-optimal
and indicates that the matching is the best possible outcome for
all service requests, given the constraints of stability. Conse-
quently, the outcome of the matching game identifies the com-
bination of domains that ensures the optimal resource configu-
ration. This is achieved by leveraging preferences that capture
the service requirements specified by consumers.

6. Numerical Results

This section outlines the environmental setup and reviews the
results from the simulation campaigns obtained using a Mat-
lab script. These campaigns evaluate the effectiveness of the
proposed service orchestration model in deploying B5G service
requests mapped to intents, with the aim of minimizing SLAs
violations.

6.1. Environmental setup

The investigated environment considers 10 network domains
that exhibit varying computing capabilities, likelihood of secu-
rity attacks, countermeasure investments, resource management
costs, and available bandwidth, as detailed in Section 3. These
parameters are uniformly sampled from the specified ranges
reported in Table 3. Specifically, the processing capabilities
of domains are expressed in megacycles per second [megacy-
cles/s] and range from 40 to 2000. The maximum quota of
tasks that a domain can handle varies from 750 to 2800. The
likelihood of attack success is assumed to be in the range [0,
1]. The costs are defined by assessing the prices for access-
ing and using cloud resources. In this regard, the usage cost
C(m)

ut is expressed in dollars per second [$/s] and ranges from 1
to 2. Meanwhile, the lifecycle cost components C(m)

l f and the

security countermeasure costs C(m)
sec are expressed in dollars [$]

and vary in the ranges [0.001, 0.002] and [0.003, 0.005], re-
spectively. Finally, the transmission rate U(R(n)

s ,Dm) between con-
sumers and the provider domain is expressed in megabits per
second [Mbps] and is set in the range [100, 1000]. The param-
eters of the aforementioned network domains are captured by
their NDTs and updated every 30 minutes.

The environment also includes an indefinite number of con-
sumers who demand service requests mapped through the de-
signed architecture into categories of intents. The considered
number of service requests ranges from 750 to 2500 (i.e., 750,
1000, 1500, 2000, 2500) each 30 minutes. Concurrently, five
classes of B5G services have been investigated to define the in-
tent categories. These classes include E-Health, Massive Twin-
ning, Mixed-Reality, Industrial, and Smart Cities use cases and
services [48], as shown in Table 2. These can be mapped to the
three common scenarios defined by ITU-T IMT for 2020 and
beyond [49], including enhanced Mobile BroadBand (eMBB),

massive Machine Type Communications (mMTC), and Ultra-
Reliable and Low Latency Communications (URLLC). Specif-
ically, the E-Health class aligns with the URLLC usage sce-
nario due to its stringent latency requirements, which prior-
itize real-time communications. Additionally, it demands a
high level of reliability, security, and privacy due to the sen-
sitive nature of the critical data being transmitted. The Mas-
sive Twinning class also corresponds to the URLLC usage
scenario, given its requirements for extremely high reliability,
low latency, and precise synchronization in industrial control,
decision-making, and operations adaptation. These character-
istics allow the managing of critical situations, real-time sim-
ulations, and dynamic reconfigurations in industrial environ-
ments. The Mixed-Reality class is associated with delivering
high-quality, immersive experiences that demand high band-
width, low latency, and high data rates, key characteristics of
eMBB. The fully immersive experience and real-time context
awareness necessitate the high-capacity data transmission that
eMBB aims to provide. This class primarily involves outdoor
environments with a high density of users, with safety consid-
erations mainly related to the movement of people in urban
scenarios. The Industrial class aligns with both the URLLC
and eMBB usage scenarios due to the required precise posi-
tioning, synchronization, and the need for reliable, low-latency,
and high-data-rate communications. Finally, the Smart Cities
class pertains to both the eMBB and mMTC scenarios, requir-
ing high data rates to support the collection, transmission, and
processing of data from sensors, alongside robust and resilient
communication solutions capable of handling a large number of
connections. In general, network security and trustworthiness
are crucial due to the volume and nature of the collected data.
To quantify the parameters and metrics of the system model,
the parameters listed in Table 2 have been considered, with val-
ues defined based on the requirements of B5G services and the
characteristics described above in terms of the time deadline,
expressed in seconds [s], throughput, expressed in [Mbps], bud-
get, impact, and risk appetite. Besides, the described B5G ser-
vice classes consider the number of tasks and the size of the
request that can be mapped to each category.

In this context, the consumer budget, expressed in dollars [$],
varies in the range [10, 120]. Impact and risk appetite are both
represented with values in the range [1, 3]. Generally, higher
impact indicates more severe consequences caused by an attack,
while higher risk appetite reflects a consumer’s willingness to
accept greater risk. The number of tasks ranges from 5 to 10,
and the input size, B(n), expressed in megabits [Mb], has been
sampled from the range [0.6, 1.2] for each category. All these
specified ranges have been set based on the type of deployment
and devices involved in the specific service, as noted in [48].

Therefore, 48 test runs are considered for every simulation,
spanning from 00:00 to 23:30 at runtime.

To improve the evaluation of the conceived methodol-
ogy, four different evaluation scenarios have been considered,
namely S1, S2, S3, and S4. According to the most common
B5G needs, these correspond to specific use cases encompass-
ing the majority of service requests. These needs typically en-
tail stricter deadlines, higher throughput, lower budgets, and
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higher cyber risk requirements, respectively. For each scenario,
the results are obtained by considering 50 different seeds, ac-
counting for varying distributions of service requests These re-
sults are averaged over a 2.5-hour time window, sliding by half
an hour, within a 80% confidence interval.

Scenario S1 involves 80 % of articulated service requests
with stricter deadlines, associated with E-Health and Mixed-
Reality B5G services. Conversely, scenario S2 involves 60 %
of consumer requests requiring high throughput. Scenario S3
considers 80 % of generated service requests mapped to intents
associated with lower budgets. Lastly, scenario S4 entails 80 %
of service requests mapped to risky intent categories, associated
with higher impacts and lower risk appetite. These refer to the
E-Health, Industrial, and Smart Cities services.

6.2. Baseline approaches
The performance of the proposed solution has been evalu-

ated against three baseline approaches, each distinguished by
their respective methods of distributing service requests across
provider domains and their ability to decompose services into
individual tasks.

The considered baseline approaches are described below:

• Random Matching (RM): associations between service re-
quests and available domains are executed randomly, with-
out taking into account any specific preferences.

• Greedy Matching (GM): service requests are greedily as-
signed to domain providers by iteratively selecting the
available and most favorable option based on a given cri-
terion. Specifically, service requests are assigned a priori
to the domain that guarantees the lowest end-to-end delay,
highest throughput, lowest costs, and lowest cyber risk in
the S1-th, S2-th, S3-th, and S4-th scenarios, respectively.

• Joint Decision Making (JDM): service requests are as-
signed to domains using the algorithm proposed in our
previous work [19]. This approach does not include the
decomposition of service requests into tasks. Instead, it
computes service request preferences through the TOPSIS
algorithm and assigns them to the highest-ranked avail-
able provider domain without performing a matching pro-
cedure.

6.3. Service Level Agreements adherence Analysis
Firstly, the performance of the proposed approach is evalu-

ated against baseline solutions in terms of SLA missed adher-
ence for each scenario (e.g., S1, S2, S3, S4) and for varying
numbers of service requests generated per day (e.g., 750, 1000,
1500, 2000, 2500 requests every 30 minutes). For each gen-
erated service request, the average number of inconsistencies
related to deadline, throughput, budget, and risk appetite with
respect to the established SLAs is calculated. This value is as-
sessed and averaged for all service requests generated every 30
minutes and expressed as a percentage.

The percentages in Fig. 3 illustrate the effectiveness of the
proposed model, showcasing a significant improvement in SLA
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Figure 3: SLA missed adherence.
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Table 2: Intent categories definition.

B5G service Intent Category Task [#] Deadline [s] Throughput [Mbps] Impact Risk appetite Budget [$]
E-Health 1 5 0.200 0.1 3 1 100
Massive Twinning 2 8 2 1000 1.5 2.5 90
Mixed-Reality 3 8 0.100 100 1 3 30
Industrial 4 10 0.200 0.1 2 2.5 60
Smart Cities 5 6 1 10 1.8 2.8 10

Table 3: Simulation settings.

Parameter Setting
M 10
N 5
Reqs/30 min [750, 1000, 1500, 2000, 2500]
Ω(m) [40, 2000] Megacycles/s
q(m) [750, 2800]
L(m) [0, 1]
C(m)

u [1, 2] $/s
C(m)

l f [0.001, 0.002]$
C(m)

sec [0.003, 0.005]$
U(R(n)

s ,Dm) [100, 1000] Mbps
B(n) [0.6, 1.2] Mb

adherence compared to the worst-performing outcomes among
the baseline approaches. Low percentages of SLA missed ad-
herence indicate that the proposed approach can effectively
identify suitable and available network domain resources to
meet all declared service requirements. It consistently achieves
a failed compliance rate below 14 % across all scenarios and
settings, with a minimum of 5.04 % in the S2-th scenario with
1500 service requests. In contrast, the baseline approaches fre-
quently report a failed compliance rate exceeding 30 %. The
JDM approach, in particular, results in the highest failure rate of
32.41 % in the S1-th scenario with 750 service requests. Over-
all, the baseline approaches perform poorly due to their inabil-
ity to thoroughly evaluate all service requirements articulated
by the consumer simultaneously. Specifically, when compared
to the worst-performing JDM approach, the proposed approach
shows an improvement of up to 22 % for 750 service requests
every 30 minutes, as reported in Fig. 3a. The proposed solution
enhances SLA adherence by up to 22.31 % with the genera-
tion of 1000 service requests every 30 minutes, as illustrated in
Fig. 3b. With 1500 service requests, the approach achieves an
improvement of up to 22.36 %, as depicted in Fig. 3c. Fur-
thermore, the approach demonstrates improvements of up to
22.44 % and 21.14 % with 2000 and 2500 service requests ev-
ery 30 minutes, respectively, as shown in Figures 3d and 3e.
These results underscore the approach’s ability to identify the
service provider that minimizes SLA violations for all intent
categories across all reference scenarios.

6.4. Matching Satisfaction Analysis
Fig. 4 presents the average matching satisfaction for each

reference scenario. It depicts the mean RC assigned to all do-
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Figure 4: Average matching satisfaction per request.
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(d) Average cyber risk

Figure 5: KPI and KVI analysis assessed in S2 with 1500 requests/30 min.
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(b) Average throughput
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(d) Average cyber risk

Figure 6: KPI and KVI analysis assessed in S2 with 2500 requests/30 min.
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Figure 7: KPI and KVI analysis assessed in S4 with 1500 requests/30 min.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time [hour]

10-4

10-3

10-2

A
ve

ra
ge

 e
nd

-to
-e

nd
 d

el
ay

 [s
]

Conceived approach RM GM JDM

(a) Average end-to-end delay

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time [hour]

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

Th
ro

ug
hp

ut
 [M

bp
s]

Conceived approach RM GM JDM

(b) Average throughput

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time [hour]

10-1

100

101

A
ve

ra
ge

 C
os

ts
 [$

/s
]

Conceived approach RM GM JDM

(c) Average costs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time [hour]

0.25

0.5

0.75

1

1.25
1.5

A
ve

ra
ge

 C
yb

er
 R

is
k

Conceived approach RM GM JDM

(d) Average cyber risk

Figure 8: KPI and KVI analysis assessed in S4 with 2500 requests/30 min.
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mains selected through the orchestration procedure to fulfill the
tasks of the requested services.

Here, a higher average matching satisfaction indicates the
selection of the highest-ranked domain in the computed pref-
erence list, which better meets the requirements specified by
consumers. This evaluation metric is expressed as a percentage
and is reported for an increasing number of generated service
requests. Overall, the proposed approach demonstrates supe-
rior performance compared to baseline approaches, consistently
achieving the highest average matching satisfaction, typically
within the 70-80 % range across all setups. The baseline ap-
proaches, on the other hand, report an average matching satis-
faction hovering around 50 % (50 % for RM and GM, 49 %
for JDM). Specifically, the GM yields substantially lower re-
sults compared to the proposed approach. This is because the
domain provider selection is based solely on one of the four
criteria considered for deriving RC values, without accounting
for any trade-off among the evaluation of other requirements.
When considering the JDM, despite its initial selection of the
highest-ranked domain based on relative closeness, the absence
of task subdivision means that the most appropriate and avail-
able provider choice is not assured. This deficiency arises be-
cause JDM does not incorporate any matching game among
preferences. Consequently, this approach ranks the lowest in
terms of matching satisfaction.

6.5. Analysis of Kpi and Kvi impacting preferences
To provide further insights into the effectiveness of the pro-

posed approach, this section presents an analysis of the evalua-
tion criteria for provider selection, traditionally defined as KPIs.
Specifically, the average end-to-end delay, expressed in seconds
[s], measures the total elapsed time, encompassing both trans-
mission and processing delays, while throughput, expressed in
[Mbps], represents the transmission rate between the consumer
and the selected network provider. Additionally, novel business
needs and security requirements are articulated through KVIs.
These include the average cost per service request, expressed in
[$/s], and the average cyber risk per service request. The latter
metric quantifies the potential risk a consumer faces when their
service request is processed by a matched domain, weighted by
the associated risk appetite.

Figures 5 and 6 illustrate the analysis in the S2-th scenario,
characterized by a majority of service requests requiring higher
throughput. Specifically, Fig. 5 compares the performance of
the proposed approach against baseline solutions considering
1500 service requests generated every 30 minutes.

Regarding the average end-to-end delay, the novel strategy
proposed in this work consistently achieves the lowest values,
remaining under 0.01 seconds. In contrast, all the baseline ap-
proaches report significantly higher delays. Specifically, the av-
erage end-to-end delay with the proposed strategy is reduced by
an order of magnitude compared to RM and GM, and by two
orders of magnitude compared to JDM.

In terms of average throughput, the proposed approach
achieves peak performance of 7800 Mbps, which is 15% higher
compared to RM, which does not consider any service require-
ments for provider domain selection. The other baseline ap-

proaches, instead, report performance similar to the proposed
approach. In this scenario, GM consistently favors provider
domains that guarantee higher transmission rates, resulting in
a throughput outcome very close to the optimal. Similarly,
JDM achieves an average throughput that is 5% lower than the
proposed approach, as the JDM methodology assigns higher
weights to this KPI in its multi-criteria decision-making pro-
cess, thereby favoring domains that guarantee higher transmis-
sion rates.

Also considering the average costs per service request, the
proposed approach registers the most favorable results, consis-
tently remaining under 1 $/s, whereas the RM and GM report
costs that are an order of magnitude higher.

The JDM approach incurs the highest costs, nearly two or-
ders of magnitude greater than those of the proposed solution.
This is attributed to the intensive use of the same network re-
sources by the selected domain, which could be the most ex-
pensive.

Furthermore, considering the average cyber risk, the pro-
posed approach consistently yields results below the ones re-
ported by the other approaches, demonstrating the capacity
to select the safest domain provider for consumers’ requests.
Specifically, the baseline approaches report results that are 10-
30 % higher if compared to the proposed approach. In par-
ticular, both the RM and GM entirely neglect the security re-
quirement. Although the JDM approach employs the same
multi-criteria decision-making algorithm, it does not perform
any matching procedure. As a result, it replaces the highest-
ranked but unavailable domains with lower-ranked and poten-
tially riskier domains.

Fig. 6 confirms the efficiency of the proposed approach
even with an increasing number of generated service requests.
Specifically, when considering 2500 service requests per 30
minutes, the registered average end-to-end delay remains un-
der 0.001 seconds. This is 20% lower than the delays reported
by both RM and GM, and 90% lower than the delay reported
by JDM.

This analysis confirms the validity of the proposed method-
ology compared to the baselines, demonstrating its ability to
identify network providers that concurrently satisfy both KPIs
and KVIs, even with an increasing number of generated service
requests.

To investigate the performance of the proposed methodology
under different conditions, the S4-th scenario was evaluated. In
this scenario, the majority of service requests are characterized
by a lower risk appetite for the demand.

In detail, Fig. 7 compares the performance of the proposed
solution against baseline approaches with 1500 service requests
generated every 30 minutes.

In terms of average end-to-end delay, the proposed approach
consistently reports values generally under 0.001 seconds, with
peaks reaching 0.003 seconds during certain hours. These fluc-
tuations can be attributed to the varying resources exposed
by domains through NDTs, which change throughout the day.
Both RM and GM exhibit results up to 50% higher than those
obtained with the proposed approach. The JDM once again
registers the highest average end-to-end delays, doubling the
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results achieved with the proposed strategy.
Similar to the S2-th scenario, the proposed approach guar-

antees the highest average throughput, peaking at 8000 Mbps.
It effectively distributes requests among domain providers to
ensure high performance for all service requests. In contrast,
all baseline approaches report significantly lower performance.
Specifically, in this case, GM neglects the throughput require-
ment of the generated service requests entirely, resulting in an
average throughput that is 10% lower than that achieved by the
proposed strategy. RM consistently fails to identify provider
domains guaranteeing high throughput by not addressing any
articulated service requirements. Meanwhile, JDM reports re-
sults varying between 7500 and 5500 Mbps, often identifying
providers that do not fully meet the requirements specified by
consumers.

Concerning the average costs, the reported KVI for the pro-
posed approach is consistently lower than those reported by
the baseline approaches, as it is closely related to the transmis-
sion delays contributing to the overall end-to-end delay. Conse-
quently, the average costs remain under 0.6 $/s, whereas other
approaches (e.g., RM, GM) reach values 50% higher. The
JDM approach, by not performing a matching procedure, se-
lects high-ranked and available domains that may, however, uti-
lize the most expensive resources.

Regarding the registered cyber risk, the proposed strategy
exhibits provider selections similar to those reported by the
GM. Indeed, this baseline approach overlooks all service re-
quirements except for security in this scenario, thus favoring
network domains that guarantee a safer processing of service
requests. Conversely, the other baseline techniques identify
riskier provider domains by either neglecting the security re-
quirement (e.g., RM) or assigning requests to available but
riskier domains (e.g., JDM).

The efficiency and scalability of the conceived solution are
evaluated in Fig. 8, which reports the performance in the S4-
th scenario with an increasing number of generated service re-
quests. In particular, when considering 2500 service requests
per 30 minutes, the approach demonstrates even better perfor-
mance in terms of average end-to-end delay, with peaks reach-
ing 0.001 seconds.

Overall, this analysis underscores both the effectiveness and
scalability of the proposed approach in deploying B5G service
requests mapped to different intent categories. This results in
the joint minimization of SLAs violations related to latency,
throughput, costs, and cyber risk requirements.

7. Conclusions

The work proposed a model for the orchestration of B5G
services to minimize the number of tasks, composing service
requests, not complying with the established SLAs. The con-
ceived approach identifies the suitable resources exposed by
network domains through NDTs to handle service requests ap-
propriately mapped through intents.

Mapping service requests to intents allows consumers and
providers to define and satisfy, respectively, the requested per-

formance, business, and security demands. By jointly consid-
ering KPIs and KVIs, the service provisioning problem is mod-
eled as a many-to-many matching game between service re-
quests mapped to intents and domains. Preferences of the play-
ers have been computed via TOPSIS. Computer simulations
have testified the validity of the conceived approach against
baseline solutions in terms of missed SLA-adherence, match-
ing satisfaction and the joint evaluation of average end-to-end
delay, throughput, costs, and cyber risk. In the future, the re-
search efforts will investigate the effectiveness of the proposed
approach with an experimental testbed and in more complex
scenarios entailing a larger array of KPIs and KVIs, centered
around environmental sustainability, specifically addressing en-
ergy consumption and the use of energy sourced from renew-
able resources, and trustworthiness, which involves quantifying
the reliability of a network domain. Moreover, an intent map-
ping scheme will be implemented to enrich the orchestrating
model.
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