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Abstract—The emergence of 6G networks demands
environment-aware communication paradigms to ensure
reliable and efficient connectivity, and Channel Knowledge
Maps (CKMs) offer a promising solution by mapping spatial
locations to detailed channel characteristics for proactive
network optimization. In this context, this paper proposes an
explainable Machine Learning (ML)-based framework that uses
geometrical features to predict receiver state probabilities in
UAV-based mmWave communication networks. Geometrical
characteristics extracted from the environment surrounding
each receiver are used to train ML models, namely Decision Tree
(DT), K-Nearest Neighbors (KNN), and Deep Neural Network
(DNN) models, to predict three receiver states probabilities:
Line-of-Sight (LOS), No-Line-of-Sight (NLOS), and Blocked.
Experimental results show that the DNN model outperforms
DT and KNN, achieving higher accuracy across all states, albeit
with no inherent explainability. To address this, the SHapley
Additive exPlanations (SHAP) method is applied to indicate
feature contributions to each state prediction of the black-box
DNN model. This improves the interpretability and reliability of
the proposed environment-aware framework for 6G UAV-based
networks.

Index Terms—Channel Knowledge Map (CKM), Explainabil-
ity, Geometrical Features, mmWave, Receiver State Prediction.

I. INTRODUCTION

The sixth-generation (6G) wireless networks are envisioned
to revolutionize network connectivity to deliver ultra-high
data rates, low latency, and ubiquitous coverage, enabling

applications such as autonomous vehicles, tactile internet,
and mixed-reality systems. To achieve these ambitious goals,
environment-aware communication paradigms are emerging
as key enablers, emphasizing the use of a priori knowledge
about the actual surrounding environment for the design
and optimization of communication networks. One approach
to enable such awareness is the Channel Knowledge Map
(CKM), a site-specific database that provides location-tagged
channel characteristics. It allows networks to predict channel
conditions proactively at any spatial point, not using solely
real-time measurements. By leveraging CKM, future networks
can achieve light-training communication, significantly reduc-
ing pilot overhead, especially in mmWave Unmanned Aerial
Vehicle (UAV)-based deployments, where channel estimation
is challenging due to mobility and blockage dynamics [1], [2].

In UAV-based mmWave communication systems, accurately
determining the state of ground receivers is essential for
optimizing communication quality. This arises from the in-
herent mobility of UAV platforms and the vulnerability of
mmWave signals to attenuation and blockage by environmen-
tal obstacles, which makes receiver states highly dynamic,
particularly in heterogeneous urban environments. Traditional
probabilistic models, mostly estimating LOS probabilities,
such as those based on distance, often fail to capture the
fine-grained spatial variability in real urban environments. By
integrating LOS/NLOS/Blocked probability models within the
CKM framework, we develop an environment-informed proba-
bilistic channel state model, enhancing environment awareness



for improving Quality of Service (QoS), blockage avoidance,
and trajectory optimization in UAV-based networks [1].

The majority of existing studies focus solely on estimating
LOS probability, which can be classified into empirical [3]–
[6], deterministic methods such as Ray Tracing (RT), and
geometry-based models [7]–[9]. For instance, Zhu et al. [8]
proposed a geometry-based model that incorporates variations
in transmitter and receiver height alongside urban parameters
such as building height distributions, spacings, and widths,
while considering the Fresnel zone. In another study, Saboor
et al. [9] developed a model that captures the influence
of User Equipment (UE) positions along streets, integrating
elevation and azimuth angles, as well as building and street
dimensions, within an artificially constructed urban grid using
ITU-defined parameters. Pang et al. [5] employed a hybrid
approach combining K-Nearest Neighbors (KNN) and a neural
network, both trained on RT simulation datasets; however,
their reliance on synthetically generated cities limits their
applicability. Similarly, the work [6] utilized a Graph Neural
Network to predict LOS probability while accounting for UAV
mobility, but their model also suffers from constraints imposed
by synthetic data. In particular, the work [10] was the first
to introduce probabilistic models covering LOS, NLOS, and
Blocked states, designed primarily for terrestrial networks;
however, their formulations do not extend to UAV-based
scenarios as they overlook urban geometry and transmitter
height effects. Overall, most UAV communication models
simplify environmental representation and rely primarily on
distance-based features, neglecting the real, intricate geomet-
rical characteristics of urban environments. As a result, the
primary aim of this study is to estimate the probabilities of
LOS, NLOS, and Blocked states for UEs at various locations
within a large-scale UAV cell using geometrical characteristics
describing the surrounding areas. Unlike prior models, the
proposed approach divides the environment into equal-sized
spatial sections, each characterized by distinct geometrical
or morphological features, depicting city districts, enabling a
more comprehensive estimation of channel state probabilities
across the deployment area.

In this study, after presenting the adopted methodology
(Section II), we explore the use of Machine Learning (ML)
techniques, namely Decision Tree (DT), Deep Neural Net-
works (DNN), and KNN, to map environmental features to
probabilistic channel states in Air-to-Ground (A2G) commu-
nication and then compare their predictive performance (Sec-
tion III). Furthermore, we perform an explainability analysis
through SHapley Additive exPlanations (SHAP) to gain insight
into the decision-making processes of the models, utilizing
data from Florence city to evaluate their generalization ability
(Section IV). Finally, we conclude the paper, summarizing the
main contributions and outlining directions for future work.

II. METHODOLOGY

This study uses urban 3D maps from ten different cities,
each covering a 1km2 area. The selected cities include Dubai,
Florence, London, Madrid, Munich, New York, Ottawa, Paris,
Tokyo, and Vienna, offering various urban layouts ranging
from dense metropolitan, high-rise deployment to typical
Manhattan-like districts. This diversity ensures that trained
models are exposed to a wide variety of structural layouts
and environmental conditions, enhancing their generalization
capability across different deployment scenarios.

The 3D city models are acquired from OpenStreetMap
[11] and converted into DXF files using Blender software.
The DXF format is chosen for 3D representation of urban
sections due to its compatibility with Wireless InSite, as well
as its ability to preserve detailed geometrical representations
with accurate XYZ vertex coordinates. Unlike other common
3D formats, DXF files retain complex building geometries
without simplification, ensuring high fidelity in urban structure
representation. The 3D city maps maintain their real-world
geographic orientation throughout the preprocessing pipeline,
without any rotations, preserving true spatial alignment.

For propagation modeling, we employ Wireless InSite, a
high-precision RT simulator by REMCOM [12], renowned
for its accuracy for 3D propagation simulations. The UAV
transmitters are placed in the center at 150 meters height above
terrain, operating at a 28 GHz mmWave carrier frequency
with 30 dBm output power, employing an omnidirectional
antenna oriented downward to provide full coverage of the
lower hemisphere. The building walls are modeled as solid
concrete. The receivers are located with 20-meter spacing from
each other, forming a grid, at an altitude of 2 meters from
the ground surface, resulting in 2500 receivers per each city
cell, ensuring complete spatial coverage. The noise figure of
each receiver is 3 dB. Each UAV city cell is partitioned into
equal square sections of 100m2, as this area can provide an
optimal trade-off between feature consistency and resolution
granularity, and 25 receivers are arranged in a 5x5 grid inside
each section.

To construct the feature set for inputs of the ML-based chan-
nel state model, we extracted a set of geometrical descriptors
characterizing each square section:

• 3D Distance: The direct Euclidean distance from the
UAV transmitter to the center of each section, incorpo-
rating both horizontal displacement and vertical height
differences. This feature also encapsulates UAV elevation
and terrain elevation.

• Number of Buildings: Represents the total count of
distinct building objects within each section, related to
region density.

• Building Height Statistics: Includes minimum, maximum,
mean, standard deviation, variance, and median of build-
ing heights. These statistics describe the vertical distribu-
tion profile, revealing patterns such as whether the area



contains mostly tall structures, sparse short buildings, or
a mixture of low-rise buildings with occasional towers.
We also extract the number of buildings above average
height, which quantifies how many buildings exceed the
mean height, showing dominant tall structures that may
block or reflect signals.

• Building Density Ratio: The fraction of the total section
area occupied by building footprints, capturing urban
compactness and man-made footprint. Moreover, the fea-
ture unoccupied area has a complementary role for this
feature.

• Number of 3D Faces and Vertices: Measures the geomet-
rical complexity of building facades within each section.
Higher counts reflect more intricate architectural designs,
which influence scattering, diffraction, and non-specular
reflections.

Each feature is selected to comprehensively characterize
the spatial, structural, and morphological attributes of the
environment, enabling the ML models to learn complex rela-
tionships between environmental geometry and channel state
probabilities.

The Wireless InSite parameters include up to six reflections
and one diffraction, capturing dominant propagation paths
in urban environments. No transmission through buildings is
allowed, reflecting the high penetration losses of mmWave
frequencies.

ML techniques have demonstrated strong capabilities in
solving both classification and regression problems across nu-
merous scientific fields, owing to their capability in identifying
hidden patterns within the data [13], and have also shown po-
tential in improving UAV systems for tasks such as detection,
security and surveillance [14]. Instead of proposing analytical
closed-form formulas, this study employs ML approaches to
model the complex relationship between geometrical features
and receiver state probabilities as a multi-output regression
problem. Among the approaches tested, DT, KNN, and DNN
[15] are selected for evaluation. DT is a non-parametric
algorithm that divides data into hierarchical segments based
on optimal feature splits, offering intuitive interpretability at
the cost of overfitting. KNN operates as an instance-based
learner, predicting outputs by averaging the outcomes of the
most similar training examples, effectively capturing local
data patterns without requiring explicit parameterized training,
although it is sensitive to outliers. DNN, consisting of multiple
layers with nonlinear activation functions, excels at learning
hierarchical and abstract representations, making it well-suited
for modeling the complex and nonlinear relationship between
environmental and channel state data.

III. PERFORMANCE EVALUATION

The effectiveness of the proposed ML models was eval-
uated using three standard regression metrics: coefficient of
determination (R2), Mean Squared Error (MSE), and Mean
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Fig. 1: Performance evaluation of the selected models on the
test set in terms of (a) MSE, (b) R2, and (c) MAE for LOS
(blue), NLOS (orange), and Blocked (green) states.

Absolute Error (MAE) [16]. The R2 score measures how well
the predicted values approximate the actual data by indicating
the proportion of variance explained by the model, and is
computed as (1):

R2 = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − ȳ)2
(1)

where ŷi is the predicted value and ȳ is the mean of the
actual values as: ȳ = 1

N

∑N
i=1 yi, with N is the total number

of data. The MSE calculates the average of squared differences
between actual and predicted values, penalizing larger errors
more heavily:

MSE =
1

N

N∑
i=1

(yi − ŷi)
2. (2)

Additionally, MAE quantifies the average magnitude of
prediction errors, offering an interpretable measure of typical



Fig. 2: 3D and 2D Elevation map of the chosen area, with its location on the Florence cell.

prediction error:

MAE =
1

N

N∑
i=1

|yi − ŷi| . (3)

Fig. 1 summarizes the performance of the models for LOS,
NLOS, and Blocked state probabilities using these three eval-
uation metrics. All models were evaluated using 10-fold cross-
validation, and the resulting performance metrics for LOS,
NLOS, and blockage probabilities exhibited low variability,
with standard deviations of less than 0.1, indicating robust
performance across different data partitions.

The results in Fig. 1 indicate that KNN performs moderately
well, outperforming DT in all metrics, highlighting its strength
in using local patterns. However, its performance remains
inferior to that of DNN due to limitations in handling high-
dimensional feature interactions. DT, on the other hand, shows
the highest prediction errors, reflecting its limited capacity to
generalize for high nonlinearity. In general, the DNN model
emerges as the most effective approach for the environment-
aware channel state prediction model in this study, despite its
inherent interpretability challenges.

IV. EXPLAINABILITY ANALYSIS

In ML-based models, explainability plays a crucial role
in understanding how different input features influence the
final decisions of the model. Explainability techniques provide
insights into feature contributions, enabling verification of
whether the behavior of the ML model aligns with physical
expectations and ensuring confidence in its deployment for
wireless communication applications, particularly for UAV-
based networks [13], [17]. One of the most promising eX-
plainable Artificial Intelligence (XAI) techniques that provide
understanding and interpretability for various black-box ML
models is the SHAP method [13], [18].

To illustrate the behavior of the model, a SHAP explainabil-
ity analysis was performed using a region with a relatively

dense urban layout of Florence city, i.e., Section 91. Fig. 2
depicts both the 3D and 2D elevation views of this section,
highlighting the distribution of buildings and the section
position relative to the UAV transmitter.

Fig. 3 shows the SHAP force plots for the specific section
under analysis, with the features with positive contributions
on the left and the features with negative contributions on
the right, respectively, by also indicating the magnitude and
direction of the contributions. In particular, the plots reveal the
contributions of various geometrical features to the predicted
probabilities of LOS, NLOS, and Blocked states. Note that the
base value is the model’s average prediction across all data,
and the bold number shows the final prediction for a specific
instance. Red and blue arrows represent features that increase
and decrease the prediction, respectively. Moreover, the size of
each arrow shows how strong that feature’s influence is, and
the related value is its SHAP value. For the LOS prediction,
a larger unoccupied area (large size of the relative red arrow
and high SHAP value) combined with a moderate density ratio
increases the likelihood of LOS, while a greater 3D distance
(the first blue arrow from the left) to the UAV transmitter
significantly decreases this probability. In the case of NLOS
prediction, the 3D distance, the number of buildings, and the
number of buildings above the average height, i.e., the first
three red arrows starting from the right, contribute positively,
pushing the output towards higher NLOS prediction, whereas
the density ratio (the first blue arrow from the left) exerts a
negative influence, helping the Blocked state. Finally, for the
Blocked probability, a higher density ratio (the first red arrow
starting from the right) increases the likelihood of blockage,
but a greater 3D distance and a higher number of buildings
(in blue) reduce the predicted probability of the Blocked
state. This plot jointly shows the model’s understanding of
propagation conditions in this urban environment.



Fig. 3: SHAP force plots for the section under analysis.

V. CONCLUSIONS

This paper presents an ML-based framework for
environment-aware receiver state prediction for A2G
UAV-assisted mmWave communication, leveraging detailed
geometrical features extracted from the urban region where the
receiver is located. By incorporating morphological attributes
into the prediction process, the proposed approach contributes
to the broader vision of CKM for proactive and intelligent
network optimization. We train and evaluate three state-of-
the-art ML models, namely DT, KNN, and DNN, using the
extracted features to estimate the probabilities of LOS, NLOS,
and Blocked states. The results indicate that the DNN model
demonstrated superior predictive performance for all states
across all evaluation metrics, highlighting its ability to capture
complex relationships between the urban environment and the
channel state. However, due to the black-box nature of the
DNN model, interpretability remains a challenge. To address
this, we employ SHAP to analyze feature contributions and
provide transparency into the decision-making process of the
model. The explainability analysis reveals meaningful insights
into how specific environmental factors affect each of the
predicted receiver states. As for the future, we will explore
additional explainable artificial intelligence techniques to
further enhance model interpretability and support more

trustworthy and robust decision-making in complex urban
communication scenarios. Moreover, a promising direction
involves leveraging high-resolution LiDAR data to enhance
the accuracy and adaptability. Integrating LiDAR-based
3D environmental sensing into the proposed framework
for UAV systems could enable real-time CKM refinement,
thereby improving channel state prediction in dynamic urban
environments.
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