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Abstract

The Internet of Everything has emerged as a prominent paradigm, enabling the development of advanced services by integrating
smart objects, individuals, processes, and data. In the context of social networking within this framework, addressing the inherent
uncertainty of the environment and developing secure service provisioning mechanisms is crucial. At present, there has been lim-
ited exploration into the stochastic behavior of the service fulfillment process, especially when considering the trustworthiness and
resource availability of service providers. Additionally, existing approaches supporting service provisioning often require continu-
ous and computationally prohibitive efforts. To overcome these challenges, this paper introduces a Markov chain-based stochastic
model that effectively predicts the steady-state behavior of service providers within an IoE network. The proposed model integrates
both the trust levels and resource capabilities of providers to ensure successful service delivery, while simultaneously identifying
and excluding malicious entities without imposing significant computational overhead. The validity of the model is demonstrated by
comparing various performance metrics against results obtained from extensive simulations, highlighting its effectiveness and prac-
tical applicability. Ultimately, the model serves as a valuable tool for fostering trusted service provisioning, optimizing the design
of service communities within social networks, preventing data traffic loss, and enhancing the overall reliability and responsiveness
of the system.
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1. Introduction

The Internet of Everything (IoE) expands upon the concept of
the Internet of Things (IoT) by integrating interconnected smart
objects, individuals, processes, and data, creating new opportu-
nities and unlocking substantial economic potential [1]. Fur-
thermore, it is distinguished by complex interconnections and
interactions involving a wide range of technologies, devices,
and stakeholders [2].

Within this framework, social networking presents a valuable
solution by facilitating collaboration and interaction among en-
tities, thereby enhancing resource sharing and enabling efficient
service provisioning [3, 4].The integration of social networking
capabilities into the IoE introduces the concept of the Social In-
ternet of Everything (SIoE), which has significant potential to
impact various domains, such as healthcare [5], the Internet of
Vehicles [6, 7], and smart cities [8, 9]. Furthermore, the incor-
poration of social skills enables access to information and ser-
vices from anywhere at any time, enhancing network resource
visibility and facilitating efficient service discovery [10]. Con-
sequently, representing social linkages within a virtual environ-
ment not only improves network scalability and navigability but
also allows for the assessment of stakeholders’ reputations, ul-
timately leading to more reliable service provisioning [11].

However, the pervasiveness of devices within the most inti-
mate aspects of individuals’ lives presents complex challenges
for researchers to address [12]. The prompt and successful

completion of services is significantly influenced by the avail-
ability of service providers and their limited resources. More-
over, selecting the most appropriate service provider requires
careful consideration of their trustworthiness, which involves
multiple interrelated factors, such as the provider’s social ties
with other entities [13] and their reputation based on previous
interactions [14]. Complicating matters further is the inherently
stochastic nature of SIoE systems. Accurately modeling this
unpredictable behavior is essential for evaluating the process of
selecting a trusted service provider.

It is worth noting that numerous studies in the literature
address trust management in the service provisioning process
within the context of Social Networks and the IoE [14–24].
However, to the best of the authors’ knowledge, existing models
typically necessitate time-continuous and computationally in-
tensive efforts to monitor the long-term evolution of the service
provisioning process. This includes maintaining a record of
social-based interactions and estimating the trust levels of ser-
vice providers, which can be computationally prohibitive [16].
Additionally, some models struggle to manage high-volume
traffic effectively [25]. Furthermore, none of the trust-based
models in the literature explicitly consider the resource avail-
ability of the entities involved in the service provisioning pro-
cess.

In addressing these open issues, this work aims to extend and
enhance the existing scientific literature. The main contribu-
tions of this study are summarized as follows:
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1. A stochastic analytical model, based on a multidimen-
sional Markov chain, is developed to capture the state of a
generic service provider. Specifically, the model predicts
the steady-state reputational behavior of an SIoE entity
by simultaneously considering multiple factors, including
friendship relationships, trust levels, and the available re-
sources of service providers.

2. The proposed strategy is capable of tracking the evolu-
tion of each SIoE entity’s reputation, thereby assessing
the overall capability of the SIoE network to successfully
fulfill services. It also identifies and excludes malicious
nodes from the provider selection process, ensuring sys-
tem reliability. Notably, this objective is achieved with-
out requiring extensive computational resources improv-
ing practicality, efficiency, and responsiveness. As a result,
the model is highly suitable for real-world applications and
environments.

3. The analytical model is validated through a comparative
analysis of various performance metrics against results ob-
tained from extensive simulations, demonstrating its effec-
tiveness and applicability in complex SIoE scenarios.

4. Finally, by evaluating available resources, the proposed
model is employed to optimally design the SIoE envi-
ronment, ensuring it can support various request loads in
a reliable and responsive manner. Furthermore, due to
its capability to identify entities with malicious intent, it
is utilized as a tool for investigating specific and well-
documented reliability attacks in service network provi-
sioning.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews related works, outlines the objectives of this con-
tribution, and presents the SIoE reference scenario. Section 3
formulates the novel Markov chain model designed to evaluate
the behavior of an entity within a SIoE environment. Section 4
discusses insights derived from the model’s outcomes. Model
validation and experimental results are detailed in Section 5.
Finally, Section 6 offers concluding remarks.

2. Related Works, goals, and reference SIoE scenario

The integration of social networking and IoT solutions has
been extensively examined in research, highlighting its poten-
tial to enhance networking services and foster new IoT appli-
cations. Early proposals primarily focused on incorporating
social-like capabilities into IoT objects to improve trust among
connected devices and enhance network navigability in large-
scale environments [3]. Within this context, trustworthiness and
resource availability are critical parameters that warrant thor-
ough investigation. Researchers have introduced various strate-
gies for evaluating trust management and the recommendations
of entities within social networks and typical IoT environments.
The paper [15] proposes a distributed trust model based on
Markov chains to address security risks in the IoT. This model
adapts an existing trust framework from Vehicular Ad hoc Net-
works (VANETs) for application within the IoT, utilizing an es-
timation algorithm to filter out malicious spam. The work pre-

sented in [16] introduces a Lightweight Hidden Markov Model
for trust evaluation in IoT networks. This scheme employs a
two-state Markov Model, consisting of Trusted and Compro-
mised states, to assess the trustworthiness of network nodes. In
[14], the authors propose a trust model for Social Internet of
Things (SIoT) that merges social trust theory with the distinc-
tive characteristics of IoT devices. This model captures com-
petence, willingness, and social relationships to enhance ser-
vice efficiency and security in the SIoT context. To manage
a large number of nodes, strategies aimed at predicting trust
and distrust values are essential. A focus on trust prediction is
discussed in [17], where the authors propose a dynamic trust
model that calculates both direct and indirect trust. This model
combines exponential smoothing with a Markov chain to pre-
dict trustworthiness. Additionally, a time-aware smart object
recommendation model is introduced in [18]. This study em-
phasizes the need for a recommendation system to assist users
in discovering smart objects capable of providing services, ad-
dressing the challenges associated with collecting traditional
user ratings or feedback. The paper [19] proposes a framework
for creating, managing, controlling, and monitoring SIoT ob-
jects, facilitating the virtual representation of real-world objects
as virtual entities for the composition of new services. This
evaluation of virtual object selection during service provision-
ing aims to assess and understand latencies in the process. The
contribution in [20] tackles challenges in SIoT, such as man-
aging complex relationships and conserving energy resources.
The proposed scenario considers object attributes, friend func-
tions, and intelligent friend selection to optimize group messag-
ing, enhancing communication reliability and improving ser-
vice discovery efficiency in SIoT networks. More recently, the
study presented in [21] introduces a recommendation model
for SIoT services based on trust and Quality of Service (QoS).
This approach integrates user trust connections and predicts
QoS metrics, including service availability, reliability, and ef-
ficiency. In [22], the authors propose Trust–SIoT, an artificial
neural network-based trust framework that integrates dynamic
social trust metrics, including direct trust (current and histori-
cal interactions), reliability, benevolence, credible recommen-
dations, and relationship degrees. Recommendations are ob-
tained from trusted neighbors, and a SIoT knowledge graph is
used to learn embedding vectors for quantifying relationships.
The study in [23] introduces a deep learning-based semantic
communication system with joint source-channel coding, chan-
nel adaptation, and bandwidth optimization, significantly im-
proving transmission efficiency by enabling natural and rapid
information exchange. Applied to the SIoT, this system ensures
reliable, high-quality data transmission in diverse and complex
environments, enhancing user experiences and supporting per-
sonalized services. However, scalability for large-scale SIoT
deployments remains a critical challenge. The authors of [24]
introduce the SIoT Community Detection Algorithm, aimed at
enhancing service provision efficiency by streamlining service
discovery and selection processes in SIoT environments opti-
mizing service composition by minimizing execution time and
reducing device distances required to fulfill user tasks.

Table 1 provides a summary of key works related to trust
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models in SIoT environments, highlighting their primary char-
acteristics in terms of reliability (e.g., malicious behavior detec-
tion) and efficiency (e.g., QoS metrics analysis such as latency
evaluation).

Ref. Trust Malicious QoS Predictive Resources
Detection metrics Model Evaluation

[15] ✓ ✓
[16] ✓ ✓
[14] ✓ ✓
[17] ✓ ✓
[18] ✓
[19] ✓ ✓
[20] ✓ ✓
[21] ✓ ✓ ✓
[22] ✓ ✓ ✓
[23] ✓ ✓ ✓
[24] ✓ ✓

This work ✓ ✓ ✓ ✓ ✓

Table 1: Trust models summary in Social Internet of Things environment.

2.1. Open issues covered by this contribution
In contrast to traditional strategies for securing networks,

social-based predictions can offer more comprehensive insights
into the experiences of entities [21]. Nevertheless, the afore-
mentioned studies in this field present several unresolved is-
sues and challenges for the scientific community. On one hand,
they often require substantial computational resources, mem-
ory, or exhibit high complexity in evaluating entities, which
can compromise network integrity, control, and performance.
On the other hand, the inherent diversity of entities in such het-
erogeneous environments often leads researchers to focus nar-
rowly on optimizing specific aspects of the service provision-
ing process, such as network latency or reliability. Thus, to
the best of our knowledge, developing a statistical model that
predicts the steady-state reputational behavior of a SIoE net-
work—while simultaneously considering friendship relation-
ships, trust parameters, and the available resources of service-
providing nodes—remains a significant challenge.

With this in mind, this contribution aims to expand the scien-
tific literature by proposing a Markov-based model that statis-
tically analyzes the trustworthiness of service providers within
a SIoE network. Specifically, the model presented in this paper
explores the intricacies of the overall service provisioning pro-
cess, capturing both the reputation and available resources of
service providers registered in the social network of heteroge-
neous entities. This objective can be achieved while maintain-
ing an acceptable level of complexity (as will be shown in Sec-
tion 4.1), thereby enhancing practicality and efficiency, making
the model applicable to real-world scenarios. Consequently, it
can be effectively utilized to design and assess the capabilities
of the SIoE network in delivering trusted services, while ensur-
ing that the number of unserved service requests remains below
specified thresholds.

2.2. Background on SIoE scenario
This work proposes a SIoE-based network architecture, illus-

trated in Figure 1, which consists of heterogeneous social en-

Figure 1: The SIoE reference environment.

tities. These entities can include individuals, physical devices
(such as sensors, vehicles, and smartphones), software applica-
tions, processes, and data, interacting with one another to share
information and content, collaborate on various tasks, and exe-
cute or provide services. The social entities are physically dis-
tributed across different geographical areas and, through their
digital representation, can expose their attributes and features.
By matching these attributes, they establish social relationships
that reflect the level of trust shared among the participating enti-
ties. This process aids in identifying trusted candidates capable
of fulfilling specific requests [26]. Within this composed Social
Network, entities can function as both service requesters and
service providers. Service providers share their resources and
broadcast their availability to offer specific services, while ser-
vice requesters communicate their needs. For this reason, each
social entity specifies the list of services it can provide, enabling
entities to join service communities based on shared application
contexts and the services they can offer, thereby enhancing net-
work navigability. Each service community is managed by a
fog node that leverages the stored information related to enti-
ties’ past experiences and the comprehensive set of attributes
of registered social entities to operate the Trust Management
System (TMS). This system implements automated mechanisms
to manage and calculate parameters associated with trust val-
ues. Selecting an appropriate trust metric is crucial for social
entities, enabling them to make informed decisions regarding
the most suitable service provider to meet their demands [27].
The overall system is overseen by upper-level fog nodes with
greater storage capacities, which facilitate effective synchro-
nization among the structures of distributed clusters through
mutual interactions.

2.3. Trust Management Procedure
The adopted Trust Management strategy extends beyond

mere reliability and security by incorporating assessments of
service trustworthiness and resource consumption. Figure 2 il-
lustrates the service provisioning procedure, where a social en-
tity sends a service request to the nearest fog node operating
the TMS. The TMS generates a trust ranking for potential ser-
vice providers and selects the most appropriate one for service
execution. Additionally, it aids in identifying potential mali-
cious social entities by excluding service providers that fall be-
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low a configured trust threshold during the selection process.
According to our recent, albeit preliminary, conference papers
[28, 29], the trustworthiness level of a service provider is depen-
dent on feedback from past interactions between entities, which
collects information about the services provided. The resulting
Trust value Tri j(t) is determined by two primary factors when
considering the i-th social entity requesting a service and the
j-th social entity as a potential provider. The first factor is the
Sociality factor S i j, which reflects the level of friendship be-
tween the entities and categorizes established relationships by
their importance [30]. The second factor is the Reputation Fac-
tor R j(t), which is derived from feedback received from prior
interactions up to the time instant t. This factor evolves dynam-
ically over time and is modeled as a linear combination of three
primary components:

• direct feedback: represents how the requester evaluated
the provider based on their service provision.

• indirect feedback: reflects the evaluations provided by the
requester’s friends regarding the provider.

• indirect non-friend feedback: captures the evaluations
from other non-friend social entities regarding the
provider.

Further details on this formulation and its application can be
found in our previous work [28]. The Trust value is ultimately
calculated as follows: Tri j(t) = S i j · R j(t).

Additionally, the designed TMS enhances the process by as-
sessing the resource capability of social objects to prevent ser-
vice execution failures or unavailability due to insufficient re-
sources, which is critical in environments where network par-
ticipants may have limited capabilities. After computing the
trust ranking, the resource capacity of the candidate provider
is verified to ensure that sufficient resources are available for
service execution. If this check fails, the candidate provider is
temporarily removed from the list. Subsequently, the service
requester submits feedback to the system, providing an evalua-
tion of the service provider. This feedback is represented as a
quantitative value that reflects the requester’s level of satisfac-
tion with both the quality and reliability of the service delivered.
Then it is stored for future evaluations in the fog node. Many
valuable state-of-the-art studies, such as the one proposed in
[31], focus on analyzing feedback evaluation in detail. With-
out loss of generality, this work defines a threshold to classify
feedback as either positive or negative. Specifically, feedback
values exceeding this threshold are considered positive, while
those falling below are categorized as negative. Finally, the
TMS interfaces with the upper-level fog node, which main-
tains a distributed database containing information about the
relationships and reputations of social entities. This interface
facilitates synchronization between different geographical clus-
ters. This scalable double-clustered framework leverages fog
computing to enable the responsive dissemination of real-time
trustworthiness information for entities within a SIoE environ-
ment [32].
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Figure 2: The designed Trust Management System procedure.

3. Modelling a social entity through Markov Theory

To achieve the objectives of this contribution and predict
the behavior of an entity within a SIoE environment, a novel
Markov chain model is formulated. As is well known, Markov
chains are particularly useful for investigating systems that ex-
hibit a degree of randomness or uncertainty [33]. In this con-
text, the proposed Markov chain evaluates trust and resource
properties associated with a social entity. This evaluation can
be readily extended to the entire Social Network by considering
an independent Markov chain for each involved entity.

With reference to the j-th candidate provider entity in the
Social Network, each state of the Markov chain consists of a
triad of values, represented as (p j,T j, c j). Specifically, p j de-
notes the number of positive feedbacks received based on past
actions, T j specifies the total number of services offered, and c j

indicates the resources currently allocated to provide these ser-
vices. It is important to note that, by design, since the feedback
received can be mapped in a binary value (positive or nega-
tive), it depends on the probability of each entity in the network
providing the service correctly. In the considered model, this
probability, denoted as Pp f , is influenced not only by the ethical
behavior of the entity within the network but also by its capabil-
ities, which may vary. Therefore, since the evaluation provided
by the requester is considered honest, the probability of receiv-
ing negative feedback is influenced not only by malicious intent
but also by potential errors on the part of the provider. These
errors, however, are not necessarily indicative of an attack on
the system’s trustworthiness but may result from factors such
as service delivery failures or resource limitations. The last pa-
rameter of the triad, in fact, highlights the heterogeneous nature
of the entities, as they exhibit varying capacities and can offer
different amounts of resources. For the sake of generality, and
based on the classification outlined in [34], smart IoE entities
can be categorized into several distinct groups. These include
Low-end IoE devices, characterized by limited resources (e.g.,
the Open Mote); Middle-end IoE devices, which provide more
features and better processing capabilities compared to Low-
end devices (e.g., the Arduino); and High-end IoE devices, dis-
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Table 2: Main Symbols Description.

Symbol Meaning
Tri j Trust level of i towards the entity j
S i j Sociality factor measuring

the friendship ties between i and j
R j Reputation factor of the entity j
γA→B Transition rate from the state A to the state B
Λ Total number of service requests
λ Average number of service requests

per unit of time
µ Average number of requesters served

per unit of time
λ j Average number of service requests

assigned to the entity j
1/µ j Average service rate employed by the entity j

to perform a service
P(Reqi→ j) Probability that a service request

from i is assigned to provider j
N Number of social entities

belonging a service community
C j Maximum number of allocable resources

of the j-th social entity
ϕ set of entities owning a Trust value with i

greater than Tri j

Pa=n(δ) Probability of n arrival in δ
Ps=n(δ) Probability of n task accomplished in δ
Pn f Probability to receive a negative feedback
Pp f Probability to receive a positive feedback
Fi Set of friends of the i-th requester
F j Set of friends of the j-th provider
PB( j) Blocking probability of the j-th provider
Rloss Reputation Loss Percentage
E[R j|T j] Average Reputation of the j-th provider
L(T j) Intensity of unserved requests
T∆ Number of received feedback at steady state
A jhe (T jhe ) Probability that an high-end

provider is available to perform a request

tinguished by substantial resources and storage capacity (e.g.,
smartphones). To address these differences, the proposed model
assigns distinct values for maximum allocable resources (de-
noted as C j) to each social entity based on its capabilities, as
determined by its class.

Figure 4 illustrates the complete sequence of states in the
Markov chain. In this graph, the edges are labeled with the
transition rates between states. Without loss of generality, we
assume that service requests are generated according to a Pois-
son distribution with a rate parameter λ. Furthermore, the inter-
arrival times and service times are considered to be statistically
independent. Table 2 summarizes the key symbols used to de-
scribe the model along with their meanings.

Given the current state (p j,T j, c j), the proposed model can
yield important insights into the behavior of a social entity from
both trustworthiness and resource perspectives. Specifically, it

State of a social entity

State 
probabilities

P(pj, Tj, cj)
(Sec III.C)

(pj, Tj, cj)

μj
(Sec III.A)

λj
(Sec III.A)

∑

State transition probabilities
(Sec III.B)

TMS

Requests of i-th entity are 
assigned to j-th entity?

(Appendix A)
Trust Model∑

Trustworthiness

System Evaluation Assessments
(Sec IV.A)

Availability

Figure 3: The complete conceived methodology.

can determine whether a node is acting appropriately or mali-
ciously by evaluating its average reputation. Furthermore, the
model can assess the entity’s availability by analyzing the num-
ber of requests it has successfully fulfilled versus those that
remain unserved. The remainder of this section outlines the
methodology used to obtain the state probabilities of the enti-
ties, as schematically shown in Figure 3. Specifically, starting
from the known current state, the proposed model calculates
the rate of requests that could be assigned to the j-th evaluated
provider, denoted as λ j. Subsequently, using λ j along with the
service time required to fulfill a request, the evaluation of tran-
sition rates enables the prediction of state probabilities. This, in
turn, facilitates the extraction of insights regarding the potential
behaviors that an entity may exhibit.

3.1. Evaluation of the average number of service requests as-
signed to a social entity

Let N be the number of social entities belonging to a service
community. For each entity j ∈ N, let (p j,T j, c j) represent
the triad that characterizes its current state. Additionally, let
F j denote the set of entities that have a social relationship with
entity j, defined as:

F j =
{
∀n ∈ N | S n j ≥ 0

}
. (1)

Assuming that the social entity requesting the service is
i ∈ F j, the average number of service requests assigned to the
j-th social entity, denoted as λ j, can be computed using the fol-
lowing formula:

λ j =

|F j |∑
i=1

λi j · P(Reqi→ j|(p j,T j, c j)), (2)

where λi j is the average number of service requests originat-
ing from the i-th social entity that can be assigned to the j-th
provider, and P(Reqi→ j) is the probability that the TMS selects
the j-th social entity as the most suitable provider.
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Figure 4: State Diagram of the proposed model.

Now, letFi be the set of entities that have a social relationship
with the i-th requester, defined as:

Fi =
{
∀n ∈ N | S ni ≥ 0

}
. (3)

Let ϕi be the set of social entities that are perceived as more
trusted than the j-th entity according to the i-th requester’s opin-
ion, defined as:

ϕi =
{
∀n ∈ Fi | Trin ≥ Tri j

}
. (4)

To calculate the probability that a request coming from i is
assigned to j, denoted by P(Reqi→ j), the Total Probability Law
is applied across all possible cardinalities of the set ϕi. The
resulting probability can be expressed as:

λ j =

|F j |∑
i=1

λi j

|Fi |∑
n=0

P(Reqi→ j

∣∣∣(p j,T j, c j), |ϕi| = n). (5)

In the interest of clarity, the mathematical steps for develop-
ing Equation 5 will be relegated to Appendix A.

It is evident that the probability expressed by P(Reqi→ j) is
linked to the comparison of trustworthiness values of all avail-
able service providers at the moment the service request arrives.
Based on the trust model introduced in the TMS discussed in
Section 2.3, and leveraging the parameters of the triad that rep-
resents the state of an entity, the trust value of a service provider
can be defined as follows:

Definition 1. Given the triad (p j,T j, c j) representing the state
of the j-th service provider, and the Sociality factor S i j, which
quantifies the strength of the friendship ties between the i-th
and j-th social entities, the Trust value Tri j can be expressed as:
Tri j = S i j · R j, where R j =

p j

T j
represents the Reputation Factor

of the j-th entity. This Reputation Factor R j reflects the propor-
tion of positive feedback (p j) out of the total number of services
provided (T j), thus capturing the historical performance of the
service provider based on past interactions and evaluations.

In this context, µ j is introduced as the average service rate
representing the number of service requests the j-th entity can
handle per unit of time. Mathematically, µ j is the reciprocal of
the service time required by the j-th provider to fulfill a request.
Here, while C j represents the maximum allocable resources for
a service provider, µ j quantifies the efficiency with which the
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provider can serve requests. Both parameters, C j and µ j, are
defined according to the classification of social entities outlined
in [34], which categorizes entities into different classes based
on their resource capabilities. In the model development, the
values of (C j, µ j) are assumed to be fixed for each class of en-
tity, reflecting the inherent capabilities of each service provider.
Specific numerical values for these parameters will be provided
in the Section 5, illustrating how they influence the overall ser-
vice performance of the network.

3.2. States Transition Rates
As discussed in Section 3.1, the parameters λ j and µ j play a

crucial role in governing the dynamics of these transitions. The
variation in the triad (p j,T j, c j), which represents the current
state of the social entity, directly impacts the selection process
for the most suitable service provider for future requests.

The state transition diagram of a generic node is depicted in
Figure 5. The conceived model accounts for the following three
types of events: (i) the TMS assigns a service request to the j-
th entity provider, (ii) the reception of positive feedback in re-
sponse to a service provided, and (iii) the reception of negative
feedback following a service provided.
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(pj, Tj, cj+1)

(pj+1, Tj+1, cj-1)

(p j, Tj+1, cj-1)
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B
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D

Figure 5: Transition rate diagram of j-th provider.

3.2.1. Case 1: the TMS assigns a service request to the j-th
entity provider.

In reference to the states illustrated in Figure 4, all downward
edges correspond to the assignment of a service task to the j-th
provider.

Theorem 1. Let (p j,T j, c j − 1) represent the generic state A
of the j-th social entity. Given C j as the maximum number of
allocable resources for the considered entity and PA→B as the
probability of transitioning from state A to B (characterized by
the triad (p j,T j, c j)), the transition rate γA→B from state A to
state B can be expressed as:

γA→B = γ(p j,T j,c j−1)→(p j,T j,c j) =

0 i f c j = C j,

λ j i f c j < C j.
(6)

Proof. Considering the transition resulting from the assignment
of a service, it will consequently lead to the utilization of a free
resource of the j-th entity. Accordingly, the resulting state will
be represented by the triad (p j,T j, c j). However, if the param-
eter pertaining to the currently allocated resources has reached
its maximum value C j, the task cannot be assigned to the j-
th entity, and the transition cannot occur. Thus, the transition
rate γA→B, which quantifies the probability per unit of time of
an event occurring (e.g., the state transition due to service as-
signment) within an infinitesimally time interval δ, is defined
as: γ(p j,T j,c j−1)→(p j,T j,c j) = limδ→0

PA→B(δ)
δ

if c j < C j and equal
to 0 if c j = C j. This limit represents the probability that
one service is assigned to the j-th entity (denoted as Pa=1(δ)),
while no services are accomplished (denoted as Ps=0(δ)) dur-
ing a time interval of length δ. Assuming that these probabil-
ities are independent, the previous equation can be rewritten
as: limδ→0

Pa=1(δ)·Ps=0(δ)
δ

. Given that the inter-arrival and service
times are assumed to follow an exponential distribution, with
arrival and conditional service rates governed by a Poisson pro-
cess, the corresponding probabilities can be expressed as fol-
lows: Pa=1(δ) = λ jδ · e−λ jδ and Ps=0(δ) = (e−µ jδ)c j−1. Conse-
quently, the aforementioned limit can be calculated as:

lim
δ→0

λ jδ · e−λ jδ · (e−µ jδ)c j−1

δ
= λ j.

3.2.2. Case 2: negative feedback reception in response to a ser-
vice provided.

With reference to Figure 4, all the edges progressing upward
forward indicate the reception of negative feedback in response
to successful service delivery.

Theorem 2. Let (p j,T j, c j) represent the generic state B of the
j-th social entity, and let Pn f j denote the probability of receiving
negative feedback due to successful service execution. Given C j

as the maximum number of allocable resources for the consid-
ered entity and PB→D as the probability of transitioning from
state B to D (characterized by the triad (p j,T j + 1, c j − 1)), the
corresponding transition rate γB→D can be expressed as fol-
lows:

γB→D = γ(p j,T j,c j)→(p j,T j+1,c j−1) =

=

0 i f c j = 0,
c j · µ j · Pn f j i f 0 < c j < C j.

(7)

Proof. Considering the j-th entity in the state described by the
triad (p j,T j, c j), when a task is completed, feedback is received.
If the feedback is negative, the number of positive evaluations
remains unchanged, while the total number of evaluations in-
creases. Additionally, upon successful completion of the ser-
vice, the j-th social entity releases an allocated resource, which
becomes available again. Therefore, the new state after this
transition will be (p j,T j +1, c j −1). However, if c j = 0, this in-
dicates that the entity j is not currently engaged in any service
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and, consequently, will not receive any feedback. The transi-
tion rate γB→D, which measures the probability per unit of time
that an event occurs (such as a state transition due to the recep-
tion of negative feedback) within an infinitesimally small time
interval δ, is defined as: γ(p j,T j,c j)→(p j,T j+1,c j−1) = limδ→0

PB→D(δ)
δ

,
if 0 < c j < C j, and equal to 0 if c j = 0. This limit repre-
sents the probability that no new services are assigned to the
considered entity (denoted as Pa=0(δ)), and that one service is
successfully completed, accompanied by the reception of neg-
ative feedback (denoted as Ps=1(δ)), within a time interval δ.
Assuming these two probabilities are independent, and defin-
ing Pn f j as the probability of receiving negative feedback for
the j-th entity, the previous equation can be rewritten as:

γ(p j,T j,c j)→(p j,T j+1,c j−1) = lim
δ→0

Pa=0(δ) · Ps=1(δ) · Pn f j

δ
. (8)

Given that the inter-arrival and service times are assumed to
be exponential, and the arrival and service rates follow Poisson
distributions, the probabilities can be expressed as: Pa=0(δ) =
e−λ jδ and Ps=1(δ) = c j · (1− e−µ jδ) · e−µ jδ(c j−1). Substituting these
into the Equation 8, the following formula is obtained:

lim
δ→0

e−λ jδ · c j · (1 − e−µ jδ) · e−µ jδ(c j−1) · Pn f j

δ
(9)

Since e−λ jδ → 1 as δ→ 0, and 1−e−µ jδ ≈ µ jδ, the expression

simplifies to: limδ→0
c j·µ jδ·Pn f j

δ
= c j ·µ j ·Pn f j Thus, the transition

rate γ(p j,T j,c j)→(p j,T j+1,c j−1) is:

γ(p j,T j,c j)→(p j,T j+1,c j−1) = c j · µ j · Pn f j .

3.2.3. Case 3: positive feedback reception in response to a ser-
vice provided.

Differently from the Case 2, as illustrated in Figure 4, all
the edges progressing downward correspond to the successful
completion of a service accompanied by the reception of posi-
tive feedback.

Theorem 3. Let (p j,T j, c j) be the generic state B of the j-th
social entity. Given C j as the maximum number of allocable
resources for the considered entity and PB→E as the probability
of transitioning from state B to E, represented by the triad (p j+

1,T j + 1, c j − 1), the transition rate γB→E can be expressed as:

γB→E = γ(p j,T j,c j)→(p j+1,T j+1,c j−1) =

=

0 i f c j = 0,
c j · µ j · Pp f j i f 0 < c j < C j.

(10)

Proof. When a service is successfully accomplished and pos-
itive feedback is received, both the number of positive eval-
uations p j and the total evaluations T j for the j-th social en-
tity increase by 1. Additionally, upon service completion, the

j-th social entity releases one of its employed resources, re-
ducing c j by 1. Therefore, the new state after this transition
is represented by the triad (p j + 1,T j + 1, c j − 1). However,
if the parameter representing the currently allocated resources,
n j, is equal to 0, this indicates that the j-th entity is not cur-
rently performing any tasks. Consequently, no state transition
can occur under these circumstances. The transition rate γB→E ,
which measures the probability per unit time that a state tran-
sition occurs due to the reception of positive feedback within
an infinitesimally small time interval δ, can be mathematically
expressed as follows:γ(p j,T j,c j)→(p j+1,T j+1,c j−1) = limδ→0

PB→E (δ)
δ
,

if 0 < c j < C j. If c j = 0, meaning no resources are cur-
rently allocated, the transition rate is equal to 0, as no feed-
back can be received when the entity is not performing any
tasks. This limit can be derived using a similar approach to
that followed in the previous theorem, with the sole difference
being the consideration of the probability of receiving posi-
tive feedback. Consequently, it can be explicitly expressed as:

limδ→0
e−λ jδ·c j·(1−e−µ jδ)·(e−µ jδ(c j−1))·Pp f j

δ
= c j · µ j · Pp f j .

Corollary 3.1. Each state transition related to service accom-
plishment and feedback reception follows a similar calculation
methodology. These transitions are influenced by the resources
currently allocated, as indicated in the triad representing the
state of the j-th entity, and depend on both the entity’s service
rate µ j, and the probability of receiving either a positive or neg-
ative feedback. All the transition rates are depicted in the state
diagram shown in Figure 5.

3.3. State Probability
Building upon the estimation of transition rate probabilities

evaluated in the previous section, the focus now shifts to cal-
culating the state probabilities of the designed Markov chain.
In this context, each state represents the condition of an entity,
encompassing evaluations received from past experiences and
resources allocated for executing services.

Theorem 4. Given the state (p j,T j, c j) of the j-th social en-
tity, let λ j and µ j be the average number of service requests as-
signed to the j-th entity and the average service rate employed
by the j-th entity, respectively. Assuming the transition rates
are calculated as described in Section 3.2, the state probability
describing the behavior of the j-th social entity can be summa-
rized by the following equation:

P(p j,T j, c j) = P(p j,T j, c j − 1) ·
λ j

λ j + (c j − 1) · µ j
+

+ P(p j,T j − 1, c j + 1) ·
(c j + 1) · µ j · Pn f j

λ j + (c j + 1) · µ j
+

+ P(p j − 1,T j − 1, c j + 1) ·
(c j + 1) · µ j · Pp f j

λ j + (c j + 1) · µ j
.

(11)

where 0 ≤ p j ≤ T j and 0 ≤ c j ≤ C j. If the state probability
arguments do not satisfy these inequalities, the corresponding
probability is equal to 0.
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Proof. This theorem articulates the behavior of a social en-
tity using a recursive formula applicable to any state within
the Markov chain. Starting from an initial state with a prob-
ability of one, each state can be expressed as a function of its
predecessor, adhering to the principles of the Markov process.
Specifically, the probability of the generic state (p j,T j, c j) (as
illustrated in Figure 5) is computed by applying the Total Prob-
ability Law across all possible current states: P(p j,T j, c j) =∑S

s=1 P((p j,T j, c j)|σs),whereσs denotes the s-th state that tran-
sitions into the (p j,T j, c j) state. By leveraging the definition
of conditional probability, the equation can be reformulated as:
P(p j,T j, c j) =

∑S
s=1 P((p j,T j, c j)|σs) · P(σs).

In this context, the conditional probability P((p j,T j, c j)|σs)
can be determined using the empirical definition of probabil-
ity. This approach assesses the likelihood of an event occur-
ring based on the ratio of favorable outcomes to the total num-
ber of possible outcomes. Specifically, the probability of tran-
sitioning to the state (p j,T j, c j) from the originating state σs

can be can be expressed as the transition rate γσn→(p j,T j,c j), di-
vided by all the possible transition rates departing from the
state σs. Therefore, let P(p j,T j, c j − 1), P(p j,T j − 1, c j + 1),
and P(p j − 1,T j − 1, c j + 1) represent the probabilities of
the states transitioning into (p j,T j, c j), the (p j,T j, c j) can be
written as reported in the Equation.11. In this expression,
the denominator λ j + (c j + 1)µ j accounts for the total tran-
sition rates associated with the state (p j,T j, c j). Specifically,
λ j+(c j+1)·µ j·Pn f j+(c j+1)·µ j·Pp f j = λ j+(c j+1)·µ j·(Pn f j+Pp f j ).
Since (Pn f j+Pp f j ) = 1, the equation simplifies to: λ j+(c j+1)·µ j.

4. Model Applicability and Complexity Analysis

This section aims to elucidate the insights gained from the
model’s outcomes. Specifically, it is helpful in evaluating the
following aspects: the average reputation of a social entity, the
intensity of unserved requests, the establishment of a reputation
threshold, and the probability of availability of higher-class ser-
vices.

1. Average reputation. As described in Definition 1, the
Reputation Factor plays a critical role in establishing the
trustworthiness of stakeholders, influencing the selection
of the most appropriate service provider. Given p j as the
number of positive feedbacks and T j as the total num-
ber of feedbacks received by a social entity, the expected
value of the reputation R j can be computed as follows:
E[R j|T j] =

∑T j

p j=0
p j

T j
P(p j|T j). In this context, for a fixed

T j, the probability P(p j|T j) in the aforementioned equa-
tion serves as the weight for the reputation values that a
social entity may attain. By explicitly defining this proba-
bility, the average reputation of an entity can be computed

as follows:

E[R j|T j] =
T j∑

p j=0

p j

T j

C j∑
c j=0

P(p j,T j, c j)

T j∑
p j=0

C j∑
c j=0

P(p j,T j, c j)

. (12)

2. Intensity of unserved requests on the SIoE Network.
As detailed in Section 3, c j denotes the quantity of re-
sources currently utilized by the j-th entity. In this con-
text, the probability of being in a state characterized by
the maximum value of c j (i.e., c j = C j) corresponds to
the likelihood that a new incoming request directed to the
j-th entity is rejected due to insufficient resources. This
analysis provides an opportunity to explore the intensity
of unserved requests within the social network. Let N rep-
resent the total number of social entities within a service
community. Given P(p j,T j,C j) as the state probability,
and assuming a fixed T j, the intensity of service requests
that cannot be fulfilled, denoted by L(T j), can be expressed
as follows:

L(T j) =
N∑

j=1

λ j(p j,T j,C j)

T j∑
p j=0

P(p j,T j,C j)

T j∑
p j=0

C j∑
c j=0

P(p j,T j, c j)

. (13)

3. Reputation threshold. The proposed model can also be
utilized to establish a reputation threshold, thereby high-
lighting its significance within the social network. To this
end, it is essential to define the number of feedbacks re-
ceived, denoted as T∆, beyond which the analysis can be
deemed adequate for providing a robust evaluation of the
conduct of the social entity. Considering p0 and T0 as
the initial values related to positive feedback and the to-
tal feedback received, the percentage of reputation loss for
a social entity, denoted as Rloss, can be expressed through
the inequality: p j

T j
≤ Rloss ·

p0
T0
,where p j represents the aver-

age number of received positive feedbacks. In particular, it
becomes counterproductive to consider social entities with
a reputation below the threshold defined by Rloss in the ser-
vice provisioning process. Such entities can consequently
be categorized as malicious. Assuming T j = T0 + T∆ and
let p j expressed as: p j = p0 + T∆ · Pp f j . Isolating T∆ in the
previous inequality, we can reformulate it as follows:

T∆ ≥
p0 − Rloss · p0

( Rloss p0
T0

) − Pp f j

, (14)

4. Probability that an higher-class provider is available
to perform a request. By examining the states of the
Markov chain, the proposed model serves as an effective
tool for monitoring the likelihood that a service provider
within a service community possesses the requisite re-
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sources to fulfill a service request. Specifically, in accor-
dance with the categorization outlined by [34], the pro-
posed Markov chain can be evaluated in a way that high-
lights the highest-performing entities. Assigning requests
to devices with elevated computing capabilities can en-
hance network efficiency, facilitating quicker processing
of service requests and decreasing the incidence of un-
served requests. In this context, and considering a fixed
T j, the availability of the jhe-th high-end service provider,
denoted by A jhe (T jhe ), can be articulated in terms of the

probability:
T jhe∑

p jhe=0

C jhe−1∑
c jhe=0

P(p jhe ,T jhe , c jhe |T jhe ). Transition-

ing from conditional probability to joint probability and
explicitly incorporating P(T jhe ), the final expression can
be articulated as follows:

A jhe (T jhe ) =

T jhe∑
p jhe=0

C jhe−1∑
c jhe=0

P(p jhe ,T jhe , c jhe )

T jhe∑
p jhe=0

C jhe∑
c jhe=0

P(p jhe ,T jhe , c jhe )

. (15)

4.1. Complexity evaluation
As detailed in the preceding sections, the proposed method-

ology calculates state probabilities based on the triad of a state
(p j,T j, c j), facilitating the analysis of trust and availability in
social entities. In this context, it is crucial to consider the com-
putational complexity of Equation 11 to make informed deci-
sions regarding its practical application and ensure efficient in-
tegration into the intended environment.

Considering the Markov property, which asserts that the fu-
ture state of the process depends solely on its present state, as-
sessing the complexity of the entire model entails calculating
the complexity of all incoming state probabilities along with
the corresponding state transition rates for every state within
the chain. Specifically, let t represent the number of steps re-
quired to construct the Markov chain. To reach the steady-state
at step T∆, (t+ 1) backward recursions are required, and at each
step, we account for C j + 1 resources in order to determine the
complete set of state probabilities.

Additionally, the computational complexity associated with
the evaluation of the state transition rates necessitates count-
ing the number of elementary operations involved, denoted as
Nλ j , for the computation of λ j. Consequently, the total number
of elementary operations required to determine the steady-state
probabilities, referred to as Nss, can be bounded as follows:

Nss <

T∆∑
t=0

(t + 1)(C j + 1)Nλ j (16)

Explicitly, the number of elementary operations Nλ j is of the
orderO(|Fi|

3 ·|F j|·ν0),where |Fi| and |F j| represent the cardinal-
ities of the respective sets. A detailed explanation of this result
can be found in Appendix B. By substituting these expressions
into Equation 16, the resulting formula is obtained as follows:

Nss <

T∆∑
t=0

(t + 1)(C j + 1)(|Fi|
3|F j|ν0) =

= (C j + 1)(|Fi|
3|F j|ν0)

(
1 +

T∆∑
t=1

t + 1
)
=

= (C j + 1)(|Fi|
3|F j|ν0)(1 +

T∆
2

(T∆ + 1) + T∆) =

= (C j + 1)(|Fi|
3|F j|ν0)(1 +

T 2
∆

2
+

3T∆
2

)

(17)

Since C j is, by design, significantly smaller than the other
quantities, Equation 17 indicates that the overall computational
complexity of the procedure is of the order:

O(|Fi|
3 · |F j| · ν0 · T 2

∆).

Moreover, it is important to note that, since the Markov chain
for the single social entity is evaluated in a limited geographi-
cal cluster of the framework detailed in Section 2.3, the range
of possible values for |F |, ν, and T∆ is inherently constrained to
hundreds and tens by design, making the computations manage-
able for modern computing systems. This characteristic allows
for the implementation of the proposed methodology without
reliance on more complex tools or dynamic programming ap-
proaches, which could increase the complexity and hinder prac-
tical applicability. Furthermore, avoiding such methods helps
to circumvent potential convergence time issues that may arise
from more elaborate computational strategies.

5. Model validation and analysis

This section evaluates the proposed model and analyzes the
results obtained. First, the analytical Markov chain-based
model is validated by comparing its results against heuristic
approaches and simulation solutions to ensure that the model
accurately reflects the environmental behavior. Second, vari-
ous network configurations based on real-world scenarios are
examined to assess the overall network performance.

Table 3: Social Entities resources and capabilities

(a) Services Parameter

Type of Service Resource Information
Consumption Size[Mbit]

High-end service 0.3 1.4
Middle-end service 0.2 1
Low-end service 0.1 0.6

(b) Device Parameter

Social Entity Res. Clock
C j µClass Capab. [Mcyc./s]

High-end dev. 0.9 2000 3 1.428
Middle-end dev. 0.6 1000 2 0.714
Low-end dev. 0.2 40 1 0.025
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5.1. Parameter setup

The validation of the proposed Markov chain-based model
is a critical step in this research process, as it enables the as-
sessment of the model’s accuracy and its capacity to effectively
capture the behavior of social entities.

To achieve this, this study employs a simulator developed in
C++ to compare the findings of [28] and [29] with the proposed
analytical model. Specifically, the SIoE simulator is designed
to replicate the service provisioning process within a Social
Network of social entities organized into logical clusters, each
comprising service communities defined by the types of ser-
vices they can handle. For this analysis, given that the focus is
on a single type of service, only one service community is sim-
ulated. In this context, the SIoE simulator accommodates three
distinct types of services: High-end, Middle-end, and Low-end
services. Table 3 provides detailed information regarding each
type of service and corresponding social entity class. Specif-
ically, Table 3a presents the resource consumption associated
with each type of service, which ranges from 0.1 to 0.3, along-
side the bit size of the information to be processed, as outlined
in the classification by [34]. In contrast, Table 3b details the re-
source capabilities of each class of social entity, which range
from 0.2 to 0.9, along with their clock speeds, measured in
Megacycles per second. Additionally, it defines values for the
pair (C j, µ j), which represent the maximum allocable resources
and the average service rate utilized in the Markov chain, re-
spectively.

Service requests are generated according to a Poisson distri-
bution, with an average rate λ ranging from 3 to 22 requests per
second. This variation in request rates enables the assessment
of network performance under different traffic loads. To ensure
robust results, data from each simulated scenario are collected
using 10 different random seeds, allowing for diverse distribu-
tions of social relationships and service requests. Furthermore,
the analysis involves 25 social entities evenly distributed across
the High-end and Middle-end classes within a High-end ser-
vice community cluster. A fixed percentage of these entities is
designated as malicious, intentionally providing poor services.
In conjunction with the computer simulation, the behavior of
each social entity is analyzed through its corresponding Markov
chain, constructed using the analytical model presented. For the
construction of these chains, the initial parameters are set with
p0 = 18 and T0 = 20.

5.2. Model validation

• Social entity reputation. The Reputation Factor serves
as a reliable indicator for identifying malicious entities
within the SIoE Network. Figure 6 illustrates the evolu-
tion of social entities in terms of their reputation over time.
It depicts the temporal progression of feedback received
by a provider, averaged over the total number of feed-
back instances. For the purpose of this evaluation, three
social entity providers were randomly selected (specifi-
cally, the 5th, 6th, and 25th entity). In this scenario, only
one of the selected entities exhibits malicious behavior by
delivering poor services more frequently than the others.

Figure 6: Average reputation validation.

Figure 7: Intensity of unanswered request validation.

Consequently, the negative feedback directed toward this
misbehaving entity adversely impacts its overall reputa-
tion. The results obtained from the SIoE simulator have
been compared with those of the analytical model, ensur-
ing that both methodologies processed an equal number of
events. The marked curves in the figure represent the rep-
utation trends of the entities as derived from the SIoE sim-
ulator, while the flat curves illustrate the trends obtained
through the analytical model. Specifically, the reputation
values have been calculated for each processed event by
utilizing equation 12. Notably, the reputation values of
social entities derived from the simulator demonstrate sig-
nificant fluctuations during the initial processing of ser-
vices. In contrast, the curves from the analytical model
exhibit a much more stable trend. However, as the number
of processed events increases, the discrepancies between
the curves of the analytical model and the simulation di-
minish considerably, ultimately leading to convergence.

• Resource availability in the cluster. Another key perfor-
mance indicator used for model validation is the intensity
of unanswered requests in service provisioning. Figure 7
illustrates this indicator, showcasing the availability of a
social entity as the traffic intensity λ increases. The model
outcomes, obtained through the evaluation of equation 13,
are represented by the continuous blue line. The simulated
rate of unserved requests is depicted using box plot curves.
In this representation, the central mark of each box denotes
the median, while the bottom and top edges correspond to
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(a) λ = 9 (b) λ = 10 (c) λ = 11

Figure 8: Simulation time convergence

the 25th and 75th percentiles, respectively. The marked
curve illustrates the averaged trend. For low values of traf-
fic requests (i.e., λ ≤ 12), the variance of the values ob-
tained from the simulator is notably low. Concurrently, the
results from the analytical model align consistently with
the simulator outcomes, as evidenced by the blue curve in-
tersecting the median value of each box across all points.
Conversely, at higher traffic request levels, the variation
in the simulator outcomes becomes evident, resulting in
wider boxes. Despite this significant variation, the ana-
lytical model continues to follow the same trend as the
averaged outcomes from the simulator, further confirming
the validity of the analytical results. Additionally, Figure
8 provides further insight into the convergence of steady-
state results between the analytical model and the simula-
tion presented in [29]. By considering fixed values of λ
(specifically, λ = 9, 10, and 11), it is shown that the pro-
posed model immediately yields a value for the steady-
state condition of unanswered traffic. In contrast, the bars
related to [29] indicate that approximately 10,000 seconds
(or about 3 hours) are required to achieve a steady-state re-
sult. This disparity highlights the extensive computational
efforts and significant time commitment needed to evalu-
ate steady-state results from the service provider selection
process, particularly for SIoE systems with a large num-
ber of service requests and devices. This finding under-
scores the utility of the proposed analytical model, which
effectively captures the long-term evolution of the over-
all service provisioning process. By ensuring system re-
sponsiveness and circumventing the need for extensive and
continuous computational efforts, the model enhances the
efficiency of service provisioning in social networks.

5.3. Numerical results
By leveraging the ability to estimate the behavior of a social

entity, the proposed model can serve as an effective tool for es-
tablishing appropriate QoS thresholds in the context of service
provisioning. Specifically:

• the maximum number of malicious entities so that the ser-
vice can be successfully accomplished with a given prob-
ability (taken as design parameter);

• the minimum number of high-end providers (and their
availability) to take the intensity of unanswered requests
under a given limit (taken as design parameter).

The aforementioned thresholds will be determined based on
various configuration scenarios, including global traffic inten-
sity and the ratio of good to malicious service providers. Ad-
ditionally, these thresholds can be effectively utilized to design
the SIoE service community in terms of the number of service
providers and their available resources, ensuring that service
requests are successfully completed with a given probability,
even in the presence of a certain number of malicious enti-
ties. In terms of reliability, the service community can be ef-
fectively configured to identify and exclude malicious entities
from offering their resources for executing service requests. To
achieve this, the analysis focuses on investigating the parame-
ter E[R j|T j], as detailed in Section 4, which represents the ex-
pected reputation of a social entity.

Table 4: Reputation analysis

Malicious Pp f Community Misbehaved
Entities for malicious Reputation Services

[%] entities [%]
10 75 0.903 9.1
10 60 0.898 10.3
10 45 0.896 10.8
10 30 0.899 10.0
20 75 0.900 9.9
20 60 0.895 11.2
20 45 0.892 11.8
20 30 0.896 10.8
30 75 0.894 11.2
30 60 0.886 13.3
30 45 0.883 14.2
30 30 0.887 13.2
40 75 0.893 11.6
40 60 0.884 14.0
40 45 0.880 15.1
40 30 0.885 14.0

Table 4 provides an application example of the proposed
model, demonstrating its utility in assessing the impact of ma-
licious entities within a service community. The example is
based on a real-world scenario from a Vehicular Social Net-
work, as described in [7], where mobile nodes exhibit pre-
dictable social behavior. The model enables the evaluation of
how the presence of malicious entities affects the overall service
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provisioning, offering insights into the reliability and trustwor-
thiness of potential service providers.

Figure 9: Unanswered requests analysis.

Table 5: Traffic requests analysis

High-end Avg probability Intensity of
λ [req/s] Entities high-end unserved

[%] availability req. [req/s]
3 30 0.98 0.06
7 30 0.94 0.23
11 30 0.88 0.64
15 30 0.80 1.18
19 30 0.72 1.83
23 30 0.63 2.57
3 50 0.99 0.04
7 50 0.95 0.141
11 50 0.89 0.451
15 50 0.83 0.868
19 50 0.76 1.383
23 50 0.69 1.987
3 70 0.99 0.02
7 70 0.95 0.113
11 70 0.90 0.285
15 70 0.84 0.537
19 70 0.78 0.868
23 70 0.71 1.275

The steady-state percentage of misbehaved services is eval-
uated by examining various distributions of malicious entities,
with the proportion ranging from 10% to 40% of the total en-
tities involved in service provisioning. The second column of
Table 4 displays the probability of receiving positive feedback
for malicious entities, which quantifies the extent of their mis-
behavior. The overall community reputation is calculated by
weighting the reputation of each entity within the service com-
munity based on the number of services provided by that entity.
This is expressed by the following equation:

∑N
j=1 E[R j|T j] ·

T j

Λ
,

where Λ represents the total number of service requests pro-
cessed by all providers. The results indicate that the percentage
of misbehaved services increases with the proportion of ma-
licious entities, and Pp f decreases. This trend highlights the
potential hostile intentions of malicious providers. However,

when the Pp f value for malicious entities drops significantly
(e.g., Pp f = 0.3), these entities are no longer selected as ser-
vice providers, resulting in a slight improvement in the overall
network reputation. This demonstrates the model’s ability to
effectively capture the self-healing behavior of the SIoT trust
management system.
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Figure 10: Analysis of well-known malicious attack on trust.

Similarly, the intensity of unanswered requests, L(T j), as for-
mulated in Equation 13, can be utilized to establish the desired
Grade of Service (GoS) for the SIoE cluster. This metric serves
as a key indicator for estimating how many service requests can
be successfully processed under the current network conditions.
Evaluating L(T j) allows for the informed design and appropri-
ate sizing of service communities by ensuring the allocation of
social entities is aligned with their capacity to handle specific
request loads. Table 5 presents the results for various configu-
rations of service communities, characterized by differing per-
centages of high-end entities, ranging from 30% to 70%. The
analysis is conducted under various traffic loads, with λ values
ranging from 3 to 23 in increments of 4, and considers different
average probabilities of service provider availability to accept
service requests. It is evident that, for a constant percentage
of high-end providers, an increase in λ results in a decrease in
the average probability of availability among these providers,
consequently leading to an increase in the intensity of unserved
requests. It is crucial to highlight that the model can be effec-
tively utilized to quantify the maximum traffic load that can be
managed while achieving a specified minimum level of GoS,
indicated by the maximum acceptable intensity of unanswered
requests. This capability is further illustrated in Figure 9, which
visually represents the results detailed in Table 5.

By establishing a GoS threshold, exemplified by the horizon-
tal line in Figure 9, it becomes straightforward to determine the
maximum value of λ for different percentages of high-end enti-
ties. This analysis clearly demonstrates which configurations of
the SIoE network are capable of effectively processing a target
request load.

5.4. Malicious attack detection and baseline comparison

An additional consideration regarding the Markov chain-
based model for evaluating entity behavior within a SIoE en-
vironment is its capability to detect and assess specific relia-
bility attacks targeting the system. In particular, the model fa-

13



=4 =8 =16 =24

Service rate [req/s]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

U
n

s
e

rv
e

d
 R

e
q

u
e

s
ts

 [
#

]

Baseline

Proposed Work

(a) 10% of the entities act maliciously in 70% of the services they
provide.
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(b) 10% of the entities act maliciously in 25% of the services they
provide.
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(c) 25% of the entities act maliciously in 70% of the services they
provide.
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(d) 25% of the entities act maliciously in 25% of the services they
provide.

Figure 11: Unserved requests comparison agains a baseline solution.

cilitates the identification of network entities exhibiting well-
documented attack behaviors, enabling proactive mitigation
and enhancing the overall trust and reliability of the network.
The types of trust attacks analyzed in this work are comprehen-
sively detailed in [35], including:

• On-Off Attack: a node periodically alternates its behav-
ior between benevolent (ON) and malicious (OFF). During
the ON phase, it builds up its trust, which is later exploited
to attack the network during the OFF phase.

• Self-Promoting Attack: a malicious node provides posi-
tive recommendations about itself to increase its chances
of being selected as a service provider. Once selected, it
delivers poor or malicious services.

Such behaviors were identified by evaluating the average repu-
tation of specific entities calculated in Section 4 and analyzing
their state probabilities at a fixed steady-state step T∆. This
approach enables a detailed examination of the entities’ tran-
sition patterns, revealing deviations indicative of malicious be-
havior. Figure 10 presents three trends for comparison. The
non-malicious entity (represented by the red curve) consistently
performs the requested services at a nearly constant rate, result-
ing in a stable average reputation within the network. In con-
trast, the curves for entities detected as malicious exhibit typ-
ical patterns associated with the On-Off (black line) and Self-
Promoting (blue line) attacks. In the On-Off attack, the entity

alternates between increasing and decreasing its average repu-
tation, strategically manipulating its standing to avoid a signifi-
cant drop in the provider selection rankings. On the other hand,
in the Self-Promoting attack, the node initially delivers services
of the highest quality, maximizing its average reputation to se-
cure selection as the preferred service provider. Once chosen,
however, it begins delivering poor or malicious services.
Both attack patterns are recognized by the model through the
evaluation of the entity’s state, as indicated by the evolution of
the probability of receiving positive feedback. This probability
either increases or decreases depending on the type of attack af-
fecting the network, significantly impacting the state probabil-
ities. This allows the model to detect and potentially eliminate
such malicious entities from the service provisioning process.

To further validate the applicability of the proposed model,
this section presents a comparative analysis with a traditional
trust management model from the current state of the art. The
comparison focuses on the number of unserved requests at
steady state, a critical metric for evaluating the efficiency of ser-
vice provisioning in resource-constrained environments. Un-
like the proposed model, the baseline approach does not ex-
plicitly incorporate resource availability into its state definition,
which limits its ability to account for the dynamic capacity of
service providers when selecting suitable entities for task ful-
fillment. Figure 11 illustrates the trend of unserved requests
within the cluster across four distinct scenarios:

1. 10% malicious entities in the cluster, where malicious
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nodes provide improper service with a probability of 70%
and correct service with a probability of 30%.

2. 25% malicious entities in the cluster, where malicious
nodes similarly provide improper service with a probabil-
ity of 70% and correct service with a probability of 30%.

Each scenario highlights the impact of varying proportions of
malicious entities and their behavior on the overall system per-
formance in terms of unserved service requests. The evaluation
considers four configurations, with service request rates pro-
gressively increasing from 4 requests per second (req/s) to 24
req/s. It is important to emphasize that unserved requests within
the cluster result from the absence of a suitable provider capa-
ble of fulfilling the requested service. This may occur due to the
following reasons: the provider offering the required service is
malicious and either fails to deliver the service properly or does
not participate in the service provider selection process, or the
provider is temporarily unavailable due to insufficient resources
to meet the service demand.
In general, a higher proportion of malicious nodes within the
network (e.g., the scenario with 25% malicious entities) leads
to a significant increase in the rate of unserved requests, primar-
ily due to the reduction in trustworthy service providers.
Nevertheless, across all evaluated scenarios, the proposed
model consistently outperforms the baseline by incorporating
resource availability into the state probability calculations of
the Markov chain. This integrated approach enhances the
system’s ability to identify suitable providers and allocate re-
sources more efficiently.
The performance gap between the proposed model and the
baseline becomes increasingly evident as the service request
rate rises. For instance, at a high request rate of λ = 24req/s,
the proposed model demonstrates a reduction in the unserved
request rate of up to 50% compared to the baseline, highlighting
its robustness and scalability under high-demand conditions.

6. Conclusions

This paper presents a stochastic analytical model grounded in
a multidimensional Markov chain framework for the selection
of trusted providers in SIoE service provisioning. The proposed
model effectively monitors the evolution of the reputation and
capability of SIoE entities to fulfill service requests, while si-
multaneously filtering out malicious entities from the social net-
work. Through validation and extensive testing, the analytical
model has exhibited a substantial degree of convergence with
simulation outcomes, operating within a computational com-
plexity that is manageable for modern computing systems. This
indicates its suitability and practicality for real-world SIoE sce-
narios. Numerical results testify that the model serves as an ef-
fective tool for detecting malicious behaviors, facilitating trust-
worthy operations, and enhancing overall system reliability.

Furthermore, the model can quantify the maximum traffic
that the network can handle while still achieving a minimum
GoS level in the service provisioning process. This capability
is very helpful in guiding the design of the SIoE network struc-

ture, ensuring optimal performance under varying load condi-
tions.

Appendix A. Details on the average number of requests as-
signed to a social entity

This Appendix elaborates on the derivation of Equation 5,
as referenced in Section 3.1, which pertains to the calculation
of λ j. Specifically, this equation can be assessed by explicitly
defining each possible value that the cardinality of ϕ may as-
sume.

Assuming |ϕ| = 0
By utilizing the joint probability distribution in accor-

dance with the scheme P(A|B,C) = P(A,B,C)
P(B) , the probability

P(Reqi→ j|(p j,T j, c j)) can be expressed as follows:

P(Reqi→ j|(p j,T j, c j)) =
P(Reqi→ j, (p j,T j, c j), |ϕ| = 0)

P(p j,T j, c j)
. (A.1)

Thus, transitioning from joint probability to conditional
probability, we arrive at the following expression:

P(Reqi→ j|(p j,T j, c j)) =

=
P(Reqi→ j|((p j,T j, c j), |ϕ| = 0))P((p j,T j, c j), |ϕ| = 0)

P(p j,T j, c j)
.

(A.2)

By applying Bayes’ Theorem and simplifying the denomina-
tor, the previous equation can be reformulated as follows:

P(Reqi→ j|(p j,T j, c j)) =
= P(Reqi→ j|((p j,T j, c j), |ϕ| = 0))︸                                  ︷︷                                  ︸

Θ(|ϕ|)

· P(|ϕ| = 0|(p j,T j, c j))︸                    ︷︷                    ︸
Ω(|ϕ|)

(A.3)

where Θ(|ϕ|) denotes the joint probability that a request from
entity i is assigned to entity j, conditioned on the current state
of j and the fact that no other social entities are considered more
trustworthy than j by entity i. Conversely, Ω(|ϕ|) represents the
probability that no social entities exceed j in trustworthiness.
Thus, assuming |ϕ| = 0, there are no elements in Fi that are
more trusted than j, the service request issued by entity i will be
definitively assigned to entity j. Consequently, the probability
defined by Θ(|ϕ|) is equal to 1.

Let n1, n2, j, . . . , n|Fi | represent the friends of the social en-
tity i belonging to the set Fi. The assumption that there are no
elements in Fi more trusted than j implies that the j-th social
entity is the most trusted among them. Therefore, the probabil-
ity Ω(|ϕ|) can also be expressed as:

Ω(|ϕ|) = P(Tri j > Trin1 ,Tri j > Trin2 , ...,

, ...,Tri j > Trin|Fi |
|(p j,T j, c j)).

(A.4)

Assuming that these events are all independent of each other,
it becomes:
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Ω(|ϕ|) =
|Fi |∏

m=1

P(Tri j > Trinm |(p j,T j, c j)) (A.5)

Making explicit the Trust value, the previous equation can be
also written as:

Ω(|ϕ|) =
|Fi |∏

m=1

P(S i jR j > S inm Rnm |(p j,T j, c j)), (A.6)

where S i j and S inm represent the Sociality Factors estimating
the degree of social relationship between the i-th entity and the
j-th entity, as well as between the i-th entity and the nm-th en-
tity, respectively. Meanwhile, R j and Rnm denote the Reputation
values of the j-th entity and the nm-th entity, defined as:R j =

p j

T j

and Rnm =
pnm
Tnm

. Therefore,

Ω(|ϕ|) =
|Fi |∏

m=1

P(pnm <
S i jR jTnm

S inm

) =
|Fi |∏

m=1

ν0∑
ν=0

P(pnm = ν) (A.7)

where ν0 =
⌊ S i jR jTnm

S inm

⌋
. Developing the probability using the

binomial distribution based on the Bernoulli process, we obtain:

Ω(|ϕ|) =
|Fi |∏

m=1

ν0∑
ν=0

(
Tnm

ν

)
· Pνp fnm

· (1 − Pp fnm
)Tnm−ν, (A.8)

where Pp f j and Pp fnm
denote the probabilities that the j-th and

nm-th entities receive positive feedback following the provision
of a service.

Finally, the average number of service requests assigned to
the j-th social entity, denoted by λ j, under the assumption that
|ϕ| = 0, can be expressed as shown in Equation A.9.

Assuming |ϕ| = 1
The assumption of |ϕ| = 1 can be articulated as the sum of the

probabilities that precisely one entity within the set Fi is more
trusted than the j-th provider, while no other entities share this
status. Consequently, Equation 5 can be reformulated as pre-
sented in Equation A.10a. In this context, since all the stated
events are mutually disjoint, the union can be extended across
the entire equation. Consequently, the probability of the union
of mutually disjoint events is equal to the sum of the proba-
bilities of these events occurring, as shown in Equation A.10b.
By employing the same methodology used to derive Equation
A.3, Equation A.10b can subsequently be expressed as Equa-
tion A.10c.

For the sake of simplicity, we can analyze the two proba-
bilities, denoted as Ξ(ϕ) and Ψ(ϕ), separately. In this context,
the analysis of Ξ(ϕ) considers the scenario in which a service
request from the i-th requester is assigned to the j-th service
provider, even though the nm-th entity, belonging to the set Fi,
may represent the most suitable candidate to execute the ser-
vice. This choice can be rationalized by the unavailability of

resources from the nm-th most trusted service provider. In prob-
abilistic terms, this unavailability can be conceptualized as the
blocking probability associated with that entity, which is artic-
ulated in the following equation:

Ξ(|ϕ|) = PB(nm) =

=

(
λnm

µnm

)Cnm 1
Cnm !

1∑Cnm
s=1

(
λnm
µnm

)s 1
s!

,
(A.11)

where λnm denotes the average number of service requests
assigned to the nm-th entity, µnm signifies the average service
rate utilized by the nm-th entity to execute a service, and Cnm

represents the maximum amount of resources allocated by the
nm-th social entity.

The evaluation of Ψ(|ϕ|) involves calculating the probabil-
ity that only one element of Fi is more trusted than the j-th
provider, as articulated in the following equation:

Ψ(|ϕ|) =P(Trin1 ≤ Tri j,Trin2 ≤ Tri j, ...,

, ...,Trinm > Tri j,Trin|Fi |
≤ Tri j|(p j,T j, c j)).

(A.12)

Assuming all events are independent and expliciting the
Trust value, the previous equation can be expressed as follows:

Ψ(|ϕ|) = P(S inm Rnm > S i jR j)
|Fi |∏

l=1,l,m

P(S inl Rnl ≤ S i jR j), (A.13)

where R j, Rnm , and Rnl denote the reputation values of the
j-th, nm-th, and nl-th social entities, respectively. These values
are calculated as: R j =

p j

T j
, Rnm =

pnm
Tnm
, Rnl =

pnl
Tnl
.

Moreover, by setting and isolating the terms pnm and pnl as
the random variables in the equation, we obtain:

Ψ(|ϕ|) =
Tnm∑
ν=ν0+1

P(pnm = ν)
|Fi |∏

l=1,l,m

νl∑
ν′=0

P(pnl = ν
′) (A.14)

where ν0 =
⌊ S i jR jTnm

S inm

⌋
and νl =

⌊
S i jR jTnl

S inl

⌋
.

By applying the binomial formula in a manner analogous to
that used in Equation A.7, the probabilities P(pnm = ν) and
P(pnl = ν

′) can be expressed as follows:

P(pnm = ν) =
(
Tnm

ν

)
· (Pp fnm

)ν · (1 − Pp fnm
)Tnm−ν,

P(pnl = ν
′) =

(
Tnl

ν′

)
· (Pp fnl

)ν
′

· (1 − Pp fnl
)Tnl−ν

′

,

(A.15)

Finally, the average number of service requests assigned to
the j-th social entity, denoted as λ j, under the assumption that
|ϕ| = 1, can be expressed as shown in Equation A.16.

Assuming |ϕ| = 2
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λ j(|ϕ| = 0) =
|F j |∑
i=1

λi j

|Fi |∏
m=1

ν0∑
ν=0

(
Tnm

ν

)
Pνp fnm

(1 − Pp fnm
)Tnm−ν (A.9)

P(Reqi→ j|(p j,T j, c j), |ϕ| = 1) = P(Reqi→ j|(p j,T j, c j),
|Fi |⋃

m=1

(Trinm > Tri j,

|Fi |−1⋂
l=1,l,m

(Trinl ≤ Tri j))) = (A.10a)

=

|Fi |∑
m=1

P(Reqi→ j|(p j,T j, c j),Trinm > Tri j,

|Fi |−1⋂
l=1,l,m

Trinl ≤ Tri j) = (A.10b)

=

|Fi |∑
m=1

P(Reqi→ j|((p j,T j, c j),Trinm > Tri j,

|Fi |−1⋂
l=1,l,m

P(Trinl ≤ Tri j)))︸                                                                   ︷︷                                                                   ︸
Ξ(|ϕ|)

· P(Trinm > Tri j,

|Fi |−1⋂
l=1,l,m

Trinl ≤ Tri j|(p j,T j, c j))︸                                                  ︷︷                                                  ︸
Ψ(|ϕ|)

(A.10c)

λ j(|ϕ| = 1) = λ j(|ϕ| = 0) +
{ |F j |∑

i=1

λi j

|Fi |∑
m=1

[ (λnm

µnm

)Cnm 1
Cnm !

1∑Cnm
s=1

(
λnm
µnm

)s 1
s!

· (A.16)

·

Tnm∑
ν=ν0+1

(
Tnm

ν

)
(Pp fnm

)ν(1 − Pp fnm
)Tnm−ν

|Fi |∏
l=1,l,m

νl∑
ν′=0

(
Tnl

ν′

)
(Pp fnl

)ν
′

(1 − Pp fnl
)Tnl−ν

′
]}

The assumption of |ϕ = 2| can be articulated as the sum of
the probabilities of all possible instances in which two enti-
ties from the set Fi are simultaneously more trusted than the
provider j. Therefore, starting from equation 5, and following
the same procedure outlined in the previous case, the probabil-
ity P(Reqi→ j|(p j,T j, c j), |ϕ| = 2) can be expressed as shown in
Equation A.17.

As in the previous case, the two probabilitiesΞ(|ϕ|) andΨ(|ϕ|)
will be developed independently. Here, Ξ(|ϕ|) represents the
event where a service request from the i-th service requester is
assigned to the j-th provider, despite the presence of two other
elements from the set Fi that are more trusted than j. This allo-
cation occurs due to the lack of available resources exhibited by
the nm-th and nz-th potentially most suitable service providers,
which can be interpreted probabilistically as evaluating their
blocking probabilities:

Ξ(|ϕ|) =PB(nm) · PB(nz) =

=

(
λnm

µnm

)Cnm 1
Cnm !

1∑Cnm
s=1

(
λnm
µnm

)s 1
s!

·

·

(
λnz

µnz

)Cnz 1
Cnz !

1∑Cnz
s=1

(
λnz
µnz

)s
1
s!

.

(A.18)

The evaluation of Ψ(|ϕ|), on the other hand, involves calcu-
lating the probability that the nm-th and nz-th entities, which

belong to Fi, are more trusted than the j-th provider. This can
be expressed as follows:

Ψ(|ϕ|) = P(Trin1 ≤ Tri j,Trin2 ≤ Tri j,Trinm > Tri j, ...,

, ...,Trinz > Tri j,Trin|Fi |
≤ Tri j|(p j,T j, c j)).

(A.20)

Assuming the independence of the events and making ex-
plicit the Trust values, the previous equation can be reformu-
lated as follows:

Ψ(|ϕ|) = P(S inm∆nm > S i jR j) · P(S inz Rnz > S i jR j)·

·

|Fi |−2∏
l=1,l,m,l,z

P(S inl Rnl ≤ S i jR j),
(A.21)

where R j, Rnm , Rnz , and Rnl denote the Reputation fac-
tors of the j-th, nm-th, nz-th, and nl-th social entities, respec-
tively. These reputation values are defined as follows: R j =
p j

T j
, Rnm =

pnm
Tnm
, Rnz =

pnz
Tnz
, Rnl =

pnl
Tnl
. Moreover, by iso-

lating the terms pnm , pnz , and pnl as random variables, we can
express the equation as follows:
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P(Reqi→ j|(p j,T j, c j), |ϕ| = 2) =
|Fi |∑

m=1

|Fi |−1∑
c=1,c,m

P(Reqi→ j|((p j,T j, c j),Trinm > Tri j,Trinc > Tri j,

|Fi |−2∏
l=1,l,m,l,z

P(Trinl ≤ Tri j)))︸                                                                                    ︷︷                                                                                    ︸
Ξ(|ϕ|)

· P(Trinm > Tri j,Trinc > Tri j)
|Fi |−2∏

l=1,l,m,l,z

P(Trinl ≤ Tri j|(p j,T j, c j))︸                                                                          ︷︷                                                                          ︸
Ψ(|ϕ|)

(A.17)

λ j(|ϕ| = 2) = λ j(|ϕ| = 0) + λ j(|ϕ| = 1) +
|F j |∑

i=1,i, j

λi j ·
{ |Fi |∑

m=1

|Fi |−1∑
z=1,z,m

[ (λnm

µnm

)Cnm 1
Cnm !

1∑Cnm
s=1

(
λnm
µnm

)s 1
s!

·

·

(
λnz

µnz

)Cnz 1
Cnz !

1∑Cnz
s=1

(
λnz
µnz

)s
1
s!

Tnm∑
ν=ν0+1

(
Tnm

ν

)
Pνp fnm

(1 − Pp fnm
)Tnm−ν·

·

Tnz∑
ν′=νz+1

(
Tnz

ν′

)
Pν
′

p fnz
(1 − Pp fnz

)Tnz−ν
′

|Fi |−2∏
l=1,l,m

νl∑
ν′′=0

(
Tnl

ν′′

)
Pν
′′

p fnl
(1 − Pp fnl

)Tnl−ν
′′
]}
. (A.19)

Ψ(|ϕ|) =
Tnm∑
ν=ν0+1

P(pnm = ν) ·
Tnz∑
ν′=νz+1

P(pnz = ν
′)·

·

|Fi |−2∏
l=1,l,m

νl∑
ν′′=0

P(pnl = ν
′′),

(A.22)

where ν0 = ⌊
S i jR jTnm

S inm
⌋, νz = ⌊

S i jR jTnz
S inz
⌋, and νl = ⌊

S i jR jTnl
S inl
⌋.

By employing a binomial formula analogous to the one used
in equation (A.7), the probabilities P(pnm = ν), P(pnz = ν

′), and
P(pnl = ν

′′) can be computed as follows:

P(pnm = ν) =
(
Tnm

ν

)
· Pνp fnm

· (1 − Pp fnm
)Tnm−ν,

P(pnz = ν
′) =

(
Tnz

ν′

)
· Pν

′

p fnz
· (1 − Pp fnz

)Tnz−ν
′

,

P(pnl = ν
′′) =

(
Tnl

ν′′

)
· Pν

′′

p fnl
· (1 − Pp fnl

)Tnl−ν
′′

,

(A.23)

Finally, the average number of service requests assigned to
the j-th social entity, denoted by λ j, assuming |ϕ| = 2, can be
expressed as as reported in the Equation A.19.

Assuming |ϕ| be greater than 2
It is worth noting that the formula A.17 can be extended to

cases where |ϕ| = 3, |ϕ| = 4, and so forth, i.e., scenarios in
which three, four, or more entities are more trusted than j, but
all lack available resources. However, the probability of such
events becomes negligible when compared to the cases consid-
ered, and thus they are not included as further contributions in
Equation 5. In fact, evaluating the probability in Equation A.17

for higher values of |ϕ| would lead to excessive model complex-
ity, with only a marginal improvement in accuracy.

Appendix B. Computational complexity of the average
number of requests assigned to a social entity

Assuming that the probability of events where |ϕ| exceeds 2
is negligible, the evaluation of the complexity of the λ j term
simplifies to the sum of the elementary operations performed in
Equations A.9, A.16, and A.19.

Nλ = |F j|
[[

(|Fi|)(ν0 + 1)
]
+

+
[
(|Fi|)(Cnm + Tnm − ν0 + (|Fi|)(νl + 1))

]
+

+
[
(|Fi|)(|Fi| − 1)(Cnm +Cnz + Tnm − ν0 + Tnz−

+ νz + (|Fi| − 2)(νl + 1))
]]

. (B.1)

Considering the cardinality of the sets of friends of the enti-
ties as expressed in the model’s development, we now investi-
gate the upper bound of the term Nλ. Assuming that the quan-
tities Tnm ≃ Tnz and ν0 ≃ νz ≃ νl, given that they correspond to
social entities presumed to be of the same type, the equation for
Nλ (Equation B.1) simplifies to the following expression:

Nλ < |F j|
[
|Fi|ν0 + |Fi|Cnm + |Fi|Tnm − |Fi|ν0+

+ |Fi|
2ν0 +

[
|Fi|

2Cnm + |Fi|
2Cnm + 2|Fi|

2Tnm−

+ 2|Fi|
2ν0 + |Fi|

3ν0
]]
.

(B.2)
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Furthermore, by design, the term expressing the maximum
amount of resources for an entity, denoted as Cnm , is signifi-
cantly smaller than the other quantities involved in the model
(e.g., Cnm ≪ Tnm or Cnm ≪ |Fi|). As a result, this term becomes
negligible when determining the overall order of complexity of
λ j. Assuming the term Tnm as the step that characterizes the
steady-state of the Markov chain, as calculated in equation 14,
we obtain:

Nλ < |F j|
[
|Fi|T∆ + 2|Fi|

2T∆ − |Fi|
2ν0 + |Fi|

3ν0
]
=

= |Fi|
3|F j|ν0 + |Fi|

2|F j|(2T∆ − ν0) + |Fi||F j|T∆.
(B.3)

Revealing that the order of complexity for calculating λ j is
O(|Fi|

3|F j|ν0), this shows that the computational complexity in-
creases cubically with the cardinality of the set Fi.
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