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Abstract

The global challenges of the 21st century, including climate change, the digital divide, social inequalities, and poverty, pose sig-
nificant obstacles to sustainable development, as highlighted by the United Nations agenda. Its 17 Sustainable Development Goals
(SDGs) outline a vision for addressing these issues, necessitating innovative solutions powered by infrastructures such as 6G, a key
driver of high-performance networking and societal progress. Achieving this dual objective requires a value-driven approach that
extends beyond traditional communication network functionalities. In this context, Key Value Indicators (KVIs) emerge as essential
metrics that capture intangible yet critical societal values, complementing traditional Key Performance Indicators (KPIs). However,
the integration of ethical principles and social values into networking remains largely unexplored in the scientific literature and
research communities. Building on these premises, this work introduces a system design framework that formalizes and evaluates
KVIs alongside KPIs, leveraging Intent-Based Networking (IBN) to embed ethical and social dimensions into network services.
To enable responsible resource-service provisioning, a bi-objective optimization problem is formulated, balancing network perfor-
mance and societal value. The problem is solved using an exact ε-constraint method, ensuring optimal trade-offs between KPIs and
KVIs. The results validate the effectiveness of the proposed service orchestration framework, demonstrating an improvement of up
to 70% in the ethical and social value provided by the network compared to baseline solutions. This highlights the framework’s
capability to integrate social and ethical considerations into the service allocation process while preserving competitive network
performance.
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1. Introduction

The global challenges of the 21st century, including cli-
mate change, the digital divide, social inequalities, and poverty,
present significant barriers to sustainable development world-
wide. The scale and complexity of these issues are underscored
by the United Nations (UN) agenda, which delineates a strate-
gic plan to address them through 17 Sustainable Development
Goals (SDGs) [1]. Realizing the vision of global sustainability,
founded on the principles of inclusivity, trust, and resilience, re-
quires innovative solutions enabled by advanced technological
infrastructures [2].

Building upon the advancements of previous network gen-
erations, 6G aims to deliver broader coverage, higher data
rates, denser connectivity, and ultra-low latency to enable next-
generation applications such as holographic telepresence, ex-
tended reality, and collaborative robotics [3]. Furthermore, it is
anticipated to play a primary role in promoting societal progress
and sustainability [4] by enhancing access to essential services
in rural and remote regions and facilitating the development of
educational and healthcare infrastructures [5, 6].

The dual objective of enhancing network performance while
simultaneously addressing social and ethical values necessitates
a value-driven approach that expands the utility and potential
of communication networks. In this context, innovative Key
Value Indicators (KVIs) metrics emerge to capture intangible
and non-quantifiable aspects, typically expressed qualitatively

or mapped to specific ranges and targets. Unlike conventional
Key Performance Indicators (KPIs), which primarily focus on
operational efficiency without considering the broader societal
impact of networks, leveraging KVIs enables a greater empha-
sis on inclusiveness, trustworthiness, sustainable energy con-
sumption, resource efficiency, and reliability [7].

However, despite the significant opportunities presented by
value-driven strategies within advanced technological infras-
tructures, the existing scientific literature has largely over-
looked the integration of ethical principles and social values
into networking frameworks and services to address the global
challenges of the 21st century. On the one hand, apart from per-
formance evaluation, research in this domain predominantly fo-
cuses on energy efficiency as the primary network value param-
eter [8–17]. This emphasis is evident in both research and stan-
dardization communities, where broader challenges outlined by
the SDG remain insufficiently addressed [18, 19]. On the other
hand, when KVIs extend beyond energy efficiency, they are pre-
dominantly defined through qualitative methodologies tailored
to specific use cases, as demonstrated in both academic research
and European initiatives [20, 21].

To the best of the authors’ knowledge, no prior research has
explored the potential of guiding next-generation networks to-
ward ethical networking, enabling the simultaneous fulfillment
of performance, ethical, and social values, while actively ad-
dressing global challenges aligned with the UN’s SDGs.
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To bridge this gap, this study proposes a methodology to for-
malize and evaluate KVIs alongside KPIs, aiming to enhance
the value and impact of networking services for users. This ap-
proach leverages the advantages of the Intent-Based Network-
ing (IBN) paradigm [22], which simplifies network manage-
ment in complex environments with distributed endpoints and
diverse applications by enabling a more autonomous opera-
tional model. Within this framework, users define high-level
objectives or intents in human-readable terms, which are then
translated into ethical and actionable policies, followed by sys-
tematic deployment and assurance [23]. Differently from previ-
ous works, the proposed strategy enables the dynamic integra-
tion of social and ethical dimensions into services, incorporat-
ing aspects such as trustworthiness, inclusiveness, and environ-
mental sustainability. Consequently, the impact of communi-
cation networks on SDGs can be systematically monitored and
assessed through a service orchestration solution that optimizes
metrics extending beyond traditional performance indicators.

The main contributions of this work can be summarized as
follows:

• A system design is proposed for acquiring service requests
expressed in natural language, processing them using a
Large Language Model (LLM) to generate trustworthi-
ness, inclusiveness, and environmental sustainability met-
rics alongside traditional performance indicators. The sys-
tem can precisely interpret service expectations, orches-
trate and optimize them, and subsequently deploy them
within a communication network. By leveraging IBN, this
approach integrates a social dimension directly into the
service delivery process.

• A bi-objective optimization problem is formulated to bal-
ance network performance, represented by the KPIs of re-
sources providing requested services, with the network’s
social and ethical value, represented by the KVIs of re-
sources providing these services. This enables the align-
ment of service provisioning with the most suitable and
responsible network resources.

• To optimize the selection of service and resource combina-
tions that maximize network utility and potential in service
delivery, the exact ε-constraint method is applied. This
technique reformulates the original multi-objective prob-
lem into a single-objective problem, subsequently gener-
ating and solving a sequence of constrained optimization
problems to identify all optimal solutions.

• The obtained results indicate a substantial enhancement
in the social and ethical value provided by the network
during the service delivery process, achieving up to a
70% increase compared to baseline approaches that focus
solely on network performance parameters. This improve-
ment is consistently observed across all evaluated scenar-
ios, which encompass diverse 6G services with varying re-
quirements in terms of environmental sustainability, trust-
worthiness, and inclusiveness.

The remainder of this paper is organized as follows: Section
2 reviews related works. Section 3 describes the reference sce-
nario, formulates the system model, and defines the optimiza-
tion problem. Section 4 presents the exact ε-constraint method,
while Section 5 provides performance evaluations, including
comparisons with baseline approaches. Finally, conclusions are
drawn in Section 6.

2. Related Works

Advancing the potential of next-generation networks requires
innovative design and orchestration that jointly meet KPIs and
KVIs, ensuring efficient, ethical, and sustainable use of network
resources.

Initially, scientific research on service orchestration meth-
ods primarily focused on network design to minimize delays
and maximize throughput [24, 25]. More recently, ongoing
studies have increasingly explored solutions to enhance sus-
tainability by evaluating energy efficiency [8–17], as reducing
energy wastage is crucial for ensuring both the affordability
and longevity of energy resources. In this context, the au-
thors of [8] formulate an optimization problem to minimize
long-term carbon emissions and energy trading costs, decom-
posing it into three independent subproblems using Lyapunov
optimization. The study in [10] presents a model for assessing
the feasibility of future green cellular networks, formulating an
optimization problem to minimize emission costs and green-
house gas emissions, which is solved numerically for small
networks with varying peak traffic profiles. The authors of
[11] explore an in-network computing model designed to re-
duce data center energy consumption by leveraging virtualiza-
tion and software-defined networking technologies. Specifi-
cally, they model a multi-objective task scheduling optimiza-
tion problem, addressed using an evolutionary algorithm based
on multiple target decomposition. Similarly, the authors of [14]
propose an optimization strategy for Virtual Machines (VMs)
allocation, formulating an optimization problem to minimize
both cost and energy consumption, which is solved heuristically
using allocation and migration algorithms. While the grow-
ing demand for network transmission capacity and data pro-
cessing significantly increases computational requirements and
energy consumption, it is essential to expand the concept of
sustainability through an interdisciplinary perspective that inte-
grates broader societal objectives into network design and op-
eration. In this context, IBN offers a promising paradigm for
translating broader societal objectives into actionable mecha-
nisms within network orchestration by automatically associat-
ing services with KVIs, thereby enabling systematic tracking of
progress toward the SDGs. However, existing scientific litera-
ture primarily explores this paradigm with a focus on deliver-
ing services based on traditional KPIs [26–40]. For instance,
the studies in [26, 27] propose an intent fulfillment framework
that translates intents into policy trees using LLMs, follow-
ing the Metro Ethernet Forum (MEF) Policy Driven Orches-
tration (PDO) model and executing them through Finite State
Machines (FSMs). Complementing these efforts, [35] intro-
duces an intent-based system that leverages natural language
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Figure 1: The proposed intent-based framework.

processing to interact with users, interpret their requirements,
and provide context-aware provisioning responses, dynamically
configuring network paths to meet specific application needs.

Expanding upon the current state of the art, our previous
research works [41, 42] utilize IBN to enforce and optimize
KVIs, enabling the seamless integration of sustainability, in-
clusivity, and trustworthiness metrics. Specifically, in [41], we
design a malicious intent detection module to identify harmful
service requests and prevent their propagation within the net-
work, thereby enhancing trustworthiness, resilience, and avail-
ability. Meanwhile, [42] introduces a novel service orchestra-
tion framework that aligns network resource management with
broader societal objectives, such as economic sustainability and
security, while minimizing Service Level Agreement (SLA) vi-
olations. This is achieved through a multi-criteria decision-
making algorithm and a matching game, enabling dynamic and
efficient service orchestration that meets both technical and eth-
ical requirements.

Although some efforts have been made, the integration of so-
cietal and ethical dimensions into networking systems through
KVIs remains largely unexplored. Previous research has pri-
marily focused on performance, often associating sustainability
with KPIs or energy efficiency. Broader values such as inclu-
siveness, trust, and equity have largely been addressed at a con-
ceptual level or within isolated use cases, due to the inherent
challenges in quantifying them compared to technical metrics.
To bridge this gap, this work leverages IBN to automatically
map natural language requests to explicit parameters expressed
through KPIs and KVIs, facilitating the management of net-
work requirements and service provisioning while promoting
value-driven and ethical networking.

3. System Model and Problem Formulation

This section introduces the proposed system design based
on the IBN paradigm, detailing the system model and problem
formulation for orchestrating and optimizing services within a
value-driven communication network.

3.1. Proposed Intent-Based System Design
Figure 1 presents the architecture of the proposed intent-

based framework, which automatically translates end-user ser-
vice requests, typically expressed in natural language, into
structured network intents enriched with both KPIs and KVIs.
To achieve this, end-users interact with the system via high-
level interfaces such as applications, templates, or chatbots,
without needing to specify technical parameters. To bridge
this semantic gap, the framework incorporates a LLM as a core
component for interpreting user inputs. The LLM extracts rele-
vant information from natural language requests, inferring both
quantitative performance requirements (e.g., latency, data rate,
packet loss rate) and value-driven indicators (e.g., trustworthi-
ness, inclusiveness, sustainability), and generates a structured
representation that constitutes an intent. Key semantic compo-
nents are highlighted with distinct colors in Figure 1 to illustrate
their roles in identifying both KPIs and KVIs. Following this
procedure, intents enable the system to accurately interpret re-
quirements, objectives, and constraints to effectively guide net-
work operations [43]. Their declarative nature abstracts service
requesters from the underlying resource and network infras-
tructure state, delegating request interpretation to a dedicated
intent-processing mechanism [44]. Specifically, following the
standard intent lifecycle, the proposed framework consists of
four key components: Intent Profiling, Intent Translation, In-
tent Resolution, and Intent Activation.

In detail, the procedure begins with the Intent Profiling
component, where service requesters define desired outcomes
in natural language. These high-level inputs are then forwarded
to the Intent Translation component, which leverages LLMs
to infer the corresponding performance metrics and value in-
dicators, generating structured intents accordingly. LLMs are
well-suited for this task, as they are advanced artificial intelli-
gence models based on the Transformer architecture, designed
to process and generate human-like language [45, 46]. These
models, trained on vast textual corpora and consisting of bil-
lions of parameters, exhibit strong capabilities in text genera-
tion, factual information retrieval, and complex logical and tem-
poral reasoning. As a result, this module fine-tunes a general-
purpose LLM, improving its ability to interpret service requests
and generate structured inputs aligned with the intended op-
timization objectives. For this work, the mapping capability
is assumed to function correctly, as the primary focus is not
on LLM alignment or its associated challenges, but rather on
the system’s capacity to detect and interpret human intents ex-
pressed in natural language. It is well recognized that achieving
robust alignment is highly complex: human preferences and
values are diverse, context-dependent, and evolve over time.
Additionally, real-world environments involve conflicting ob-
jectives and shifting goals, further complicating alignment ef-
forts [47, 48].

Instruction fine-tuning serves as a mechanism to adapt LLMs
for more complex tasks. During pre-training, LLMs acquire the
capability to comprehend instructions and generate responses;
however, this ability remains latent until activated through a
form of supervised fine-tuning. By leveraging a dataset com-
prising instructions and their corresponding outputs, fine-tuning
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enables the model to learn the specific characteristics of fu-
ture user inputs, including KPIs and KVIs, which encapsulate
human, ethical, and social values. This process mirrors stan-
dard model training but is conducted on a significantly smaller
dataset compared to pre-training. Within the intent mapping
procedure, a service request is transformed into a sequence of
tokens, where tokens represent small units of information, such
as individual words or word groups. The LLM predicts the next
token yt based on the conditional probability P(yt | y0→t, txt),
where txt denotes the input natural language sequence, and y0→t

represents the previously generated tokens. Through this pro-
cess, the LLM can comprehend the context of the user-provided
natural language request (txt), infer relevant KPIs and KVIs,
and subsequently generate performance parameters. Moreover,
the model produces an inclusive metric, referred to as the Sus-
tainability of Service (SoS), which encapsulates the three social
and ethical dimensions embedded in a given service request [7].

The generated performance parameters correspond to tradi-
tional KPIs, such as service delay, data rate, and packet loss
rate, which are specified as desired values and acceptable tol-
erances, respectively. Furthermore, by leveraging LLM infer-
ences, critical social and ethical dimensions, such as trustwor-
thiness, inclusiveness, and environmental sustainability, are en-
capsulated into KVIs, thereby addressing broader challenges
outlined in the UN’s SDGs [20, 49]. Aligning with these prin-
ciples:

• The trustworthiness value aims to ensure network secu-
rity, robustness, and privacy, thereby safeguarding resilient
technological infrastructures.

• The inclusiveness value focuses on equitable access to dig-
ital technologies, reducing the digital divide, and empow-
ering diverse communities.

• The sustainability value encompasses the ecological di-
mension by prioritizing energy efficiency, fostering eco-
nomic growth, and mitigating environmental impact.

After the translation process, the Intent Resolution compo-
nent orchestrates and optimizes resource-service selection, bal-
ancing the trade-off between maximizing network performance
and adhering to social and ethical values. The details of the sys-
tem model and the procedure for optimal service orchestration
in this context are described in the following sections.

Finally, the Intent Activation component enforces the re-
solved intent within the physical network infrastructure. A con-
tinuous monitoring mechanism ensures that intents remain ful-
filled over time, leveraging a closed-loop system to enhance
adaptability and learning. This guarantees that the requested
service is effectively deployed while maintaining strict adher-
ence to both KPIs and KVIs.

3.2. System Model

Based on the described intent-based system design,
this work envisions a communication infrastructure where
network resources provide services, defined as R =

{r1, r2, . . . , rn, . . . , rN}. Each resource rn ∈ R declares its ca-
pabilities (Crn , y1rn

, y2rn
, . . . , yirn

, . . . , yIrn
), where Crn represents

the available cores of the rn-th resource allocated for service
execution. Meanwhile, y1rn

, y2rn
, . . . , yirn

, . . . , yIrn
denote the ex-

posed performance attributes used to evaluate the considered
KPIs, such as computation delay, data rate, and packet loss rate.

Then, users in the network can request services of various
types, represented by the set S = {s1, s2, . . . , s j, . . . , sJ}.

Each requested service s j ∈ S is defined by a tuple of KPIs,
(Ds j , y1s j

, y2s j
, . . . , yis j

, . . . , yIs j
, y1′s j
, y2′s j
, . . . , yi′s j

, . . . , yI′s j
),

where Ds j denotes the required amount of processing re-
sources for executing the s j-th service, assuming that each
resource corresponds to a single task of the service, with
each task requiring one processing core for execution;
y1s j
, y2s j
, . . . , yis j

, . . . , yIs j
represent the desired performance

parameters, such as service delay, data rate, and packet loss
rate. Meanwhile, y1′s j

, y2′s j
, . . . , yi′s j

, . . . , yI′s j
define the minimum

acceptable performance thresholds that the service can tolerate
for the corresponding KPIs.

Based on these performance thresholds, the proposed sys-
tem model defines Qtols j

as the overall quality tolerance of a
service request. This parameter quantifies the permissible de-
viation from the ideal requested performance within the range
0 ≤ Qtols j

≤ 1. It can be computed as:

Qtols j
=

I∑
i=1

wi · ˆy′is j
, (1)

where wi is a weight representing the importance of the i-th
KPI, ensuring that

∑I
i=1 wi = 1 and 0 ≤ wi ≤ 1. Addition-

ally, ˆy′is j
represents the normalized value of the i-th KPI for the

service request s j, computed using the min-max normalization
model:

ˆy′is j
=

y′is j
−min(y′i)

max(y′i) −min(y′i)
where max(y′i) and min(y′i) denote the maximum and mini-

mum observed values of the i-th KPI across all service requests.
Given the presence of various standards for quantifying per-

formance attributes, the proposed model defines the normal-
ized performance quality related to the i-th attribute of the rn-th
network resource facing the s j-th service as ˆqirn ,s j

, constrained
within the range [0, 1]. This normalization is performed using
the standard model [50], formulated as follows:

ˆqirn ,s j
=


1 −

max(yirn )−yis j

max(yirn )−y′is j

, if the KPI is a benefit.

1 −
yis j
−min(yirn )

y′is j
−min(yirn ) , if the KPI is a cost.

0, otherwise.

(2)

The overall KPI value, denoted as Qrn,s j reflects the level of
performance quality by aggregating the normalized values of
various attributes and it is computed as follows:

Qrn,s j =

I∑
i=1

wi · ˆqirn ,s j
. (3)
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Without loss of generality, Table 1 presents a summary of the
key symbols used to describe the environment, along with their
corresponding definitions.

Table 1: Main Symbols Description.

Symbol Meaning
R Set of network resources
S Set of requested services
N Number of network resources [#]
J Number of services [#]
Crn Cores of the rn-th resource
Ds j Resource demand of the j-th service [#]
yirn

Exposed performance attribute of the rn-th resource
yis j

Desired performance parameter of the s j-th service
yi′s j

Minimum tolerable value for yis j
parameter

ˆqirn ,s j
Normalized performance quality of i-th attribute for rn facing s j

Qtols j
Overall quality tolerance of the s j-th service request

Qrn,s j Overall quality KPI for rn providing the s j-th service
Vrn,s j Overall social and ethical KVI of rn providing s j

w1,w2,w3 Weights for the KPIs relevance
w′1,w

′
2,w

′
3 Weights for the KVIs relevance

σrn,s j Environmental sustainability indicator
θrn,s j Trustworthiness indicator
ιrn,s j Inclusiveness indicator
trn,s j
comp Computing delay of the rn-th resource facing the s j-th service [s]
Bs j Input size of the data to be processed for the s j-th service request [Mb]
Clkrn Processing capability of the rn-th resource [Megacycles/s]
λrn,s j Average number of service requests that rn can handle per day
corn Carbon offset associated with the rn-th resource [gCOe2 per day]
urn

c Core usage factor of the rn-th resource
Prn

c Power consumption of a single core of the rn-th resource [kW]
Prn

m Power consumption of memory of the rn-th resource [kW]
PUE Power usage effectiveness coefficient
CI Carbon intensity factor [gCOe2/kWh]
ρrn,s j Cyber risk of rn providing s j

κrn,s j Cyber confidence associated with rn facing s j-th service
MTT Frn Mean time to failure of the rn-th resource [h]
prn Probability of failure of the rn-th resource within a day
xs j,rn Binary variable indicating if resource rn provides service s j

Q(X) Network quality performance function
V(X) Network social and ethical function
δ Discretization parameter

3.3. Social and ethical values

The primary advancement of the proposed approach lies in its
ability to deliver services that are aligned with social and ethi-
cal KVIs. Specifically, three indicators, such as environmental
sustainability, trustworthiness, and inclusiveness, are defined to
reflect intangible but essential societal values, measuring the
impact of communication networks on SDGs.

The environmental sustainability indicator σrn,s j quantifies
the climate impact of service provisioning, expressed in grams
of carbon dioxide equivalent. This KVI effectively captures the
global warming potential of greenhouse gas emissions gener-
ated within the provisioning time frame. The indicator accounts
for the greenhouse gas emission compensation of the rn-th re-
source, achieved through the acquisition of carbon credits or
offsets, where each unit corresponds to a tonne of gCO2e re-
duced or removed from the atmosphere. This compensation
is facilitated by funding initiatives such as reforestation, re-
newable energy development, or carbon capture projects [51].
This mechanism enables individuals, enterprises, and govern-
mental entities to mitigate their environmental footprint and

advance toward carbon neutrality, an urgency widely acknowl-
edged. Environmental sustainability extends well beyond car-
bon reduction and encompasses metrics at the device, equip-
ment, flow, path, and domain levels, as well as the prevention
of various forms of environmental degradation [52]. In this con-
text, the current indicator for environmental sustainability does
not preclude the inclusion of complementary metrics address-
ing other ecological concerns.

Formally, the environmental sustainability indicator quanti-
fies the difference between the carbon offset corn of the rn-th re-
source, characterized by a carbon intensity factor CI (expressed
in gCO2e/kWh), and its carbon footprint associated with the
provisioning of the s j-th service.

For each rn ∈ R, the time required for the rn-th resource to
process the s j-th service, denoted as computing delay trn,s j

comp, can
be calculated as reported in Eq. 4.

trn,s j
comp =

Φ · Bs j

Clkrn

, (4)

where Φ represents the number of CPU cycles required to
process a single bit. According to [53], this value is set to 1000
cycles per bit. Furthermore, Bs j denotes the input size of the
data to be processed for the requested service, while Clkrn repre-
sents the processing capability of the rn-th resource, expressed
in [cycles/s].

Given λrn,s j , the average number of service requests s j that
the rn-th resource can handle per day, the environmental sus-
tainability indicator can be computed as follows [54]:

σrn,s j = corn − [trn,s j
comp ·λrn,s j ·Crn · (P

rn
c ·u

rn
c +Prn

m ) ·PUE ·CI], (5)

where Prn
c represents the power consumption of a single pro-

cessing core, and Prn
m corresponds to the power consumption of

memory, both expressed in kilowatts (kW). The core usage fac-
tor (urn

c ), ranging from 0 to 1, represents the fraction of total exe-
cution time during which a processor core is actively engaged in
computation. A value of 1 indicates full, continuous utilization
throughout the entire period, while values below 1 reflect inter-
vals of inactivity or reduced load. This parameter allows adjust-
ment of theoretical power consumption, often based on the pro-
cessor’s thermal design power, to more accurately represent real
operational conditions. When detailed usage data is unavailable
or impractical to obtain, setting urn

c = 1 provides a conservative
estimate that likely overestimates actual energy consumption.
Furthermore, PUE denotes the power usage effectiveness co-
efficient, set to 1.67 as the globally averaged measured value
[54], while CI represents the carbon intensity factor, quantify-
ing the equivalent carbon emissions associated with the con-
sumed energy. The CI varies significantly between countries,
reflecting differences in national energy mixes—lower values
are typically found in countries relying primarily on renewable
sources, while higher values correspond to regions heavily de-
pendent on fossil fuels.

Secondly, the trustworthiness indicator θrn,s j quantifies the
security level of the service provisioning offered by the rn-
th resource to the s j-th service. As discussed in our previ-
ous work [42], successful cyber-attacks can severely degrade
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network performance, leading to substantial consequences for
both infrastructure and service reliability. Therefore, it is es-
sential to quantify the cyber risk that threatens the confiden-
tiality, integrity, and availability of data and services associated
with each rn-th resource. Following the methodology outlined
in [42], the likelihood of a successful cyber attack, denoted as
Lrn , can be computed for each resource. Consequently, the as-
sociated cyber risk ρrn,s j is defined as the product of Lrn and the
impact ∆s j of an attack on the provisioning of service s j. The
impact parameter ∆s j quantifies the potential consequences and
disruptions resulting from a successful cyber attack. Thus, the
cyber confidence κrn,s j , expressing the confidence of the rn-th
resource in providing the s j-th service is formally calculated
as:

κrn,s j = 1 − ρrn,s j . (6)

The indicator θrn,s j is modeled as a generalized logistic func-
tion, which increases with cyber confidence. This formula-
tion ensures that more resilient resources, characterized by en-
hanced security measures and lower cyber risk, attain higher
values of θrn,s j . The adoption of a logistic function effectively
captures the nonlinear relationship between cyber confidence
and trustworthiness, as outlined in [55] and reported as follows:

θrn,s j = Lθ +
Uθ − Lθ

1 + e−B
(
κrn ,s j−x0

) . (7)

Here, Lθ represents the lower bound of the trustworthiness
achievable by a resource lacking strong security guarantees.
This value may vary across providers, as even resources without
a robust security profile can exhibit a baseline level of trust due
to factors such as third-party management, secure default con-
figurations, or adherence to regulatory standards. Conversely,
Uθ defines the upper bound of attainable trust, recognizing that
even highly secure systems are still subject to residual risks,
including zero-day vulnerabilities and insider threats. The pa-
rameter B controls the steepness of the curve, determining how
rapidly trust increases with an improved security posture. A
higher absolute value of B results in a sharper transition near
the inflection point, while lower values produce a more gradual
increase appropriate for contexts where trust evolves over time
due to long-term organizational or cultural developments. The
inflection point x0 denotes the security level at which a resource
begins to be perceived as trustworthy. This threshold can vary
depending on the complexity of the organization, as more intri-
cate infrastructures typically face greater exposure to systemic
threats. Importantly, highly vulnerable resources may exhibit
minimal risk reduction from initial countermeasures, whereas
mature and secure systems often experience diminishing returns
from additional security investments. This reflects real-world
cybersecurity dynamics, where the impact of interventions de-
pends heavily on the system’s initial resilience, and risk mitiga-
tion follows a nonlinear trajectory.

Furthermore, the inclusiveness indicator, denoted as ιrn,s j ,
quantifies the network’s capability to deliver adequate service

to users, ensuring operational continuity and resilience for un-
interrupted service functionality. In the context of this work, in-
clusiveness is approximated using availability as a proxy. This
property is evaluated based on the time-to-failure T Frn , which
is modeled using an exponential distribution under the assump-
tion of a constant failure rate. The parameter MTT Frn repre-
sents the mean time to failure (MTTF), which denotes the av-
erage time between consecutive failures. This metric is crucial
in assessing the reliability of the rn-th provider. The probability
that the rn-th provider experiences failure or downtime within a
given time period t is expressed as:

P(T Frn ≤ t) = 1 − e−
t

MTT Frn (8)

Let prn denote the probability of failure of the rn-th resource
within a day. Assuming that the Crn available cores of the rn-th
resource fail independently with probability prn , the probabil-
ity of observing k failures within an hour follows a binomial
distribution and is given by:

P(Frn = k) =
(
Crn

k

)
(prn )k(1 − prn )Crn−k, k = 0, 1, . . . ,Crn (9)

Thus, the probability of no failures occurring in an hour, de-
noted as P

(
Frn = 0

)
is given by:

P
(
Frn = 0

)
=

(
1 − prn

)Crn (10)

The inclusiveness indicator can thus be expressed as:

ιrn,s j = trn,s j
comp · λrn,s j ·

(
1 − prn

)Crn (11)

Finally, the overall social and ethical KVI associated with the
provisioning of the s j-th service by the rn-th network resource
is defined as follows:

Vrn,s j = w′1 · σrn,s j + w′2 · θrn,s j + w′3 · ιrn,s j (12)

where w′1,w
′
2,w

′
3 are weighting factors ranging within [0, 1],

with their sum equal to 1, representing the relative importance
of each specific indicator.

3.4. Problem Formulation

Let xrn,s j denote a binary variable that indicates whether ser-
vice request s j ∈ S is allocated to network resource rn, and let
X be the set of all binary indicator variables:

xrn,s j =

1 if rn provides service for s j

0 otherwise.
(13)

The network’s capability to deliver services can be defined as
the overall quality KPI derived from the matching of services
with available resources, as reported in the following:

Q(X) =
∑
s j∈S

∑
rn∈R

Qrn,s j · xrn,s j . (14)
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Similarly, the network’s ability to provide value-oriented and
ethical services can be defined as the total KVI derived from the
matching of services with available resources:

V(X) =
∑
s j∈S

∑
rn∈R

Vrn,s j · xrn,s j . (15)

For users requesting services, the benefit lies in receiving
satisfactory services by jointly ensuring performance quality
through KPIs and societal and ethical values through KVIs. Ac-
cordingly, the following multi-objective optimization problem
is formulated and presented in Eq. (16):

max
X

(Q(X),V(X)), (16)

s.t.
(
Qrn,s j − Qtols j

)
· xrn,s j ≥ 0,∀s j ∈ S,∀rn ∈ R, (17)

Vrn,s j · xrn,s j ≥ 0,∀s j ∈ S,∀rn ∈ R, (18)∑
s j∈S

Ds j · xrn,s j ≤ Arn ,∀rn ∈ R, (19)

∑
rn∈R

xrn,s j = 1,∀s j ∈ S (20)

xrn,s j ∈ {0, 1},∀s j ∈ S,∀rn ∈ R (21)

Constraint (17) ensures that the service assigned to network
resources meets the overall quality tolerance of a service re-
quest. Similarly, constraints (18) ensure that the social and eth-
ical value provided by network resources is greater than zero.
Constraint (19), instead, ensures that the total requested ser-
vices do not exceed the availability of network resources. Con-
straints (20) ensure that each service is assigned to exactly one
network resource, whereas constraints (21) enforce the binary
nature of the indicator decision variables.

The defined problem (16) is a generalization of the maximum
Generalized Assignment Problem (GAP), which is known to be
NP-hard [56]. In practice, efforts to enhance the quality and
performance of service provision may lead to increased sys-
tem complexity or an expanded attack surface, thereby poten-
tially introducing new security concerns. Consequently, since
the problem involves two conflicting objective functions, a so-
lution that simultaneously satisfies both objectives may not al-
ways exist. In the context of multi-objective optimization prob-
lems, the concept of Pareto optimality can be utilized to as-
sess the optimality of solutions. A solution X∗ is considered
Pareto optimal or dominant if there exists no solution X such
that Q(X) ≥ Q(X∗) and V(X) ≥ V(X∗), where X is any solu-
tion distinct from X∗ within the feasible region. To obtain all
dominant or Pareto-optimal solutions, the exact ε-constrained
method can be employed [57, 58].

4. The Proposed Solution

This section presents the solution approach used to address
the NP-hard problem described in Section 3, leveraging the ex-
act ε-constraint technique.

4.1. Exact Epsilon-Constraint Method

Multi-objective optimization problems involve two or more
conflicting objective functions that must be optimized simulta-
neously. A commonly used approach for solving such prob-
lems is the weighted sum method, which converts the multi-
objective formulation into a single-objective problem by assign-
ing weights to each objective function. However, the effective-
ness of this method depends on the careful selection of weights,
which relies on empirical judgments, introducing subjectivity
and increasing both computational and temporal complexity.
An alternative and more structured approach is offered by the ε-
constraint method [59], which reformulates the problem into a
series of single-objective sub-problems, known as ε-constraint
problems. This is achieved by selecting one objective as the
primary function while transforming the remaining objectives
into constraints, each bounded by an ε-value. By systematically
varying the bounds, this method enables the generation of the
complete set of non-dominated solutions, known as the Pareto
front. Compared to the weighted sum method, the ε-constraint
approach overcomes several of its limitations. Specifically, it
reduces sensitivity to the scaling of objective functions and pro-
vides finer control over the distribution of Pareto-optimal solu-
tions by adjusting the granularity of the constraint bounds.

Without loss of generality, the social and ethical KVI objec-
tive is treated as the primary objective in this work. Conse-
quently, the original multi-objective problem in Eq.(16) is re-
formulated as a single-objective optimization problem, as fol-
lows:

max
X

V(X), (22)

s.t. Q(X) ≥ ε, (23)
(17), (18), (19), (20), (21). (24)

In constraint (23), the parameter ε defines the bound for the
objective function Q(X). Specifically, ε varies between the
lower and upper bounds of Q(X) over the Pareto-optimal set,
which are determined by computing the so-called Nadir and
ideal points, respectively. Traditionally, the adjustment of ε fol-
lows a uniform partitioning approach, where the interval of ε is
divided into sub-intervals of equal size, and each interval limit
is selected as a candidate value for ε. However, this method
does not guarantee the identification of all non-dominated so-
lutions, as some Pareto-optimal points may be missed due to
the fixed discretization scheme. To ensure the generation of the
complete Pareto front, the exact ε-constraint approach can be
employed, which adaptively refines the selection of ε values.
The detailed procedure of this approach is presented in Algo-
rithm 1.

The goal of Algorithm 1 is to identify the set of Pareto-
optimal solutions X∗, where no solution can be improved in one
objective without compromising the other. Accordingly, the al-
gorithm first determines the range of ε, which serves as the con-
straint bound for one of the objectives. This range is established
by solving two independent single-objective optimization prob-
lems. The first optimization considers only V(X) as the objec-
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Algorithm 1 Exact ε-Constraint Algorithm
Input: R,S
Output: Pareto-optimal solutions X∗

1: Compute the ideal points (VI ,QI) with Algorithm 2.
2: Compute the Nadir points (VN ,QN), by solving problems

25 and 28 with Algorithm 2.
3: Set εmin = QN , εmax = QI , and step size equal to δ.
4: for ε = εmin to εmax with step δ do
5: Solve each problem 22 with Algorithm 2.
6: Return the best-known solution X∗.
7: Store the optimal solution if non-dominated.
8: end for
9: Stop when ε >= εmax.

tive function, solving it without any constraints on Q(X). Sim-
ilarly, the second optimization is performed with Q(X) as the
sole objective, without constraints on V(X). These optimiza-
tions yield the ideal points. The solution obtained for the first
subproblem is denoted as VI , representing the ideal point of the
function V(X). Similarly, the solution to the second problem is
denoted as QI , corresponding to the ideal point of the function
Q(X), defining the best possible outcomes for each objective
when considered independently.

Subsequently, two additional optimization subproblems are
solved to determine the Nadir values of both functions, denoted
as VN and QN , respectively. These values are obtained by opti-
mizing one objective while imposing a constraint that fixes the
other objective at its ideal value. Specifically, VN is computed
by optimizing V(X) under the constraint Q(X) = QI , while QN

is obtained by optimizing Q(X) with the constraint V(X) = VI ,
as formulated below:

max
X

V(X), (25)

s.t. Q(X) = QI , (26)
(17), (18), (19), (20), (21). (27)

max
X

Q(X), (28)

s.t. V(X) = VI , (29)
(17), (18), (19), (20), (21). (30)

Once these optimization problems are solved, the lower
bound of ε is set to the Nadir value of the constrained objective,
while the upper bound is set to its ideal value. To systematically
explore the Pareto front, a predefined step size δ is introduced
to discretize the range of ε. The choice of δ must balance com-
putational efficiency with solution optimality, ensuring that the
algorithm captures non-dominated solutions while minimizing
computational overhead. The algorithm then proceeds through
an iterative process in which ε is incrementally varied from
its lower bound to its upper bound. At each iteration, an op-
timization problem is formulated and solved, maintaining one
objective as the primary function while constraining the second

objective using the current ε value. The resulting solution is
evaluated for dominance, ensuring that no previously identified
solution is strictly superior in all objectives. If the solution is
non-dominated, it is added to the Pareto-optimal set. The algo-
rithm continues this iterative procedure until ε exceeds its upper
bound, indicating that the Pareto front has been fully explored.
Upon termination, the algorithm outputs the Pareto-optimal so-
lutions, which represent the trade-offs between the conflicting
objectives.

4.2. Branch-and-Cut solutions and Algorithm analysis

Algorithm 2 Branch and Cut Algorithm
Input: Problem 22
Output: Optimal solution.

1: Solve the relaxed version of the problem, without integral-
ity constraints.

2: Set the initial solution space as the relaxed problem’s fea-
sible region.

3: while solution space is not empty do
4: Partition the solution space into subproblems by

branching.
5: For each subproblem, compute a lower bound of the

objective function.
6: if a subproblem has a lower bound greater than or equal

to the best-known solution then
7: Prune the subproblem.
8: end if
9: Apply cutting planes to tighten the feasible region.

10: Solve each remaining subproblem and update the best-
known solution.

11: end while
12: Return the best-known solution.

Each of the aforementioned problems can be solved itera-
tively using algorithmic frameworks such as Branch and Bound,
which can be further enhanced by integrating optimization tech-
niques like pruning and cutting planes [60]. In general, Branch
and Bound is a technique used to solve combinatorial optimiza-
tion problems by systematically exploring the solution space
through a tree structure, where each node represents a subprob-
lem derived from the original problem. The algorithm begins by
solving a relaxed version of the problem, typically by ignoring
integrality constraints to obtain an upper bound for maximiza-
tion problems. If the solution to this relaxation is already feasi-
ble, it is considered optimal. Otherwise, the algorithm branches
by dividing the problem into smaller subproblems with addi-
tional constraints (e.g., fixing a variable to 0 or 1). To reduce
computational effort, pruning is applied to discard subproblems
whose bounds indicate they cannot lead to an optimal solution
[61]. Moreover, the technique is further enhanced by incor-
porating cutting planes, which are additional constraints that
tighten the feasible region without excluding optimal integer so-
lutions. This results in the Branch and Cut method [62]. Lever-
aging this method, if the solution is fractional, additional con-
straints (i.e., cuts) are introduced to eliminate the current frac-
tional solution while preserving all feasible integer solutions.
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If the solution remains fractional, additional cutting planes are
introduced. If these cuts fail to yield an integer solution, the
standard Branch and Bound branching process is applied. This
search process reduces the number of branches explored, en-
hancing computational efficiency. Details on its implementa-
tion are provided in Algorithm 2.

In general, the worst-case time complexity of the pure
Branch and Bound algorithm is exponential. However, by in-
corporating integrality relaxations, pruning, and cutting planes,
the average-case complexity can be reduced to O(nk), where k
is a small positive integer dependent on the specific problem
instance and the effectiveness of the pruning and cutting tech-
niques employed. For commercial solvers such as Gurobi, the
value of k can be as low as 1 or 2. In the case of Algorithm 1,
the time complexity is given by O(4 · (J + N)k + (QI − (QN −

δ)) · (J + N)k) which simplifies to O((QI − (QN − δ)) · (J + N)k).
Here, O((J + N)k) represents the time complexity associated
with computing the ideal and Nadir points, as well as solving
each subproblem for a fixed ε. The term (QI − (QN − δ)) cor-
responds to the number of iterations of the inner for-loop. The
chosen parameter boundaries represent plausible conditions for
distributed orchestration scenarios, wherein each orchestrator
manages service requests over a constrained subset of network
resources, typically limited to a cluster or a defined geographic
area. Preliminary scale-up experiments on instances an order of
magnitude larger suggested solver convergence within accept-
able tolerances. Owing to space limitations and the paper’s em-
phasis on methodological contributions, a comprehensive large-
scale benchmarking campaign is deferred to future work.

5. Numerical Results

This section describes the environmental setup and presents
the results of the simulation campaigns conducted using a
Python script and the Gurobi commercial solver. The evalua-
tion assesses the effectiveness of the proposed service orches-
tration model in optimizing KVI, extending beyond traditional
performance indicators.

5.1. Environmental setup
The investigated environment consists of N network re-

sources, varying within the range [50, 800]. Each resource is
characterized by different core availability within [10, 50], with
processing capabilities ranging from [40, 150] megacycles per
second. The MTTF is assumed to be within [8760, 45000]
hours, as reported in [63], while the average number of services
a resource can handle per day varies between [150, 250].

Power consumption, expressed in kilowatts, falls within the
range [0.01, 0.2]. Additionally, carbon credit offsets range
between [4109, 6849.31] gCO2e per day per resource. The
CI varies widely across countries, ranging from as low as
12 gCO2e/kWh in regions powered predominantly by renew-
ables (e.g., Switzerland, Norway) to over 800 gCO2e/kWh in
countries heavily reliant on coal or gas (e.g., Australia, South
Africa). Although marginal CI provides a more accurate esti-
mate for assessing the environmental impact of relocating com-
putations, it is often unavailable. Therefore, the average CI

is commonly used as a practical lower bound and, in the fol-
lowing evaluations, is set to the global average value of 475
gCO2e/kWh. The likelihood of a successful cyber attack, de-
noted as Lrn , varies within [0.25, 1]. Finally, the lower and up-
per bounds of the trustworthiness indicator are set to Lθ = 1500
and Uθ = 5000, respectively, representing the realistic mini-
mum and maximum trust levels that a resource can attain. The
inflection point x0 and the growth parameter B are set to 0.5
and 0.6, respectively, consistent with a normalized confidence
domain, ensuring that trust increases most rapidly around the
midpoint of the security assurance scale. All the aforemen-
tioned parameters are summarized in Table 2.

Table 2: Simulation settings.

Parameter Setting
J [80, 1200]
N [50, 800]
Crn [10, 50]
Ds j [2, 5]
corn [4109, 6849.31] gCOe2 per day
CI [475] gCO2e/kWh
Clkrn [40, 150] Megacycles/s
Prn

c , P
rn
m [0.01, 0.2] kW

MTT Frn [8760, 45000] hours
λrn,s j [150, 250] per day
Bs j [600, 1200] Mb
∆s j [0.25, 1]
Lrn [0.25, 1]
Uθ 5000
Lθ 1500
B 0.6
x0 0.5

The environment also includes an indefinite number of con-
sumers issuing service requests, which are translated into in-
tents. The number of considered service requests varies within
[80, 1200].

To define the intent categories, four classes of 6G services
have been investigated: Immersive Experience, Collaborative
Robots, Physical Awareness, and Trusted Environments, as de-
tailed in [64].

1. Immersive Experience encompasses multimedia and ex-
tended reality applications such as immersive telepres-
ence, education, and gaming, requiring ultra-low latency,
high data rates, and precise positioning. Meanwhile, its
SoS focuses on mitigating the digital divide and reducing
energy consumption by optimizing computing and trans-
mission efficiency.

2. Collaborative Robots involve autonomous robotic sys-
tems operating in industrial and public environments, re-
quiring ultra-reliable, low-latency communication while
prioritizing sustainability by minimizing waste and reduc-
ing environmental impact.

3. Physical Awareness services leverage sensing technolo-
gies for applications such as network-assisted mobility and
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smart environments, demanding high-resolution sensing,
accurate positioning, and high reliability while support-
ing environmental monitoring, energy-efficient connectiv-
ity, and enhanced safety in smart cities.

4. Trusted Environments focus on secure and privacy-
centric applications, including telemedicine and public
safety, necessitating high-end security and extreme relia-
bility, alongside resilient infrastructures that ensure soci-
etal well-being.

To quantify the system model parameters, relevant metrics
have been analyzed, with values determined based on 6G ser-
vice requirements and the characteristics described above. The
service delay, expressed in seconds, varies within [0.002, 50].
The data rate, expressed in bits per second, falls within the
range [70, 250]. The packet loss rate, representing the num-
ber of packets lost per second, is within [20, 50]. The service
demand is defined within [2, 5], while the input size of data
to be processed, denoted by Bs j is sampled from the range
[600, 1200] Mb for each service. Moreover, the impact ∆s j

of an attack on the provisioning of the service ranges within
[0.25, 1]. All specified ranges are defined according to the type
of deployment and the characteristics of the entities involved,
as referenced in [64].

The performance of the proposed solution has been evalu-
ated against three baseline approaches, each characterized by
its respective service orchestration method:

• Random Matching (RM): service requests are assigned to
network resources randomly, selecting the first available
provider without considering the KPI and KVI offered by
a given network resource.

• Performance Greedy Matching (PGM): service requests
are assigned to network resources using a greedy strat-
egy, iteratively selecting the most favorable available op-
tion based solely on the provided KPIs.

• Value Greedy Matching (VGM): service requests are as-
signed to network resources using a value-oriented greedy
strategy, which iteratively selects the most favorable avail-
able option based on the provided KVIs.

5.2. Pareto Front Analysis

Figure 2 presents the Pareto fronts representing the solution
to the proposed optimization problem, obtained for different
combinations of J network services and N available resources.

In this representation, the discretization parameter δ is fixed
at 0.1 to ensure consistency and favoring computational effi-
ciency in the generation of the Pareto front. In fact, as ex-
plained in Section 4, this approach enables the identification
of a sufficient number of Pareto-optimal solutions without in-
curring excessive computational costs, which would otherwise
arise with finer discretizations. Considering the presented so-
lution, no single metric was set to dominate the optimization
process; therefore, KPIs and KVIs were assigned equal weight.
Similarly, the three KVIs were given equal importance. Ad-
ditional details regarding the behavior of the approach under
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Figure 2: Pareto fronts considering different service requests (J) and network
resources (N).

varying weight configurations and use cases are presented in
the following sections.

The curves illustrate the trade-off between network quality
performance and social and ethical values, highlighting the in-
fluence of resource distribution and service requests on the set
of optimal solutions. The results indicate that an increase in the
number of available resources and service requests leads to an
expansion of the Pareto front, thereby allowing for improved
trade-offs between the conflicting objectives. For instance, in
smaller-scale scenarios (N = 80, J = 120), the optimal solu-
tions are constrained within the range (0.4 · 106, 105) In con-
trast, in larger-scale settings (N = 800, J = 1200), the Pareto
front exhibits a higher density of solutions, reflecting greater
flexibility in decision-making. Under these conditions, the net-
work achieves a maximum social and ethical value of 3.6 · 106

while attaining a maximum network quality performance value
of 1100. Furthermore, the results underscore the inherent con-
flict between the two objectives, wherein an improvement in
one leads to a corresponding decline in the other.

5.3. Execution times considerations

This subsection analyzes the simulation results obtained us-
ing the commercial optimization solver Gurobi, focusing on
how the construction of the Pareto front varies under different
combinations of services and network resources. The analysis
incorporates variations in parameters that impact both the ε-
constraint method and the previously described system model,
including the discretization value δ and the weights assigned to
the three KVI, namely environmental sustainability, trustwor-
thiness, and inclusiveness.

Figure 3 examines the effect of varying the number of ser-
vices J and the discretization parameter δ on the Pareto front,
while keeping the number of network resources N fixed at 80.
Analyzing the granularity of the solutions, a finer discretization
(δ = 0.01) increases the number of optimal trade-offs from 7
to 164 compared to a coarser discretization (δ = 1), offering
a more detailed and comprehensive representation of the solu-
tion space when J is set to 120. However, this increased so-
lution granularity comes at a significant computational cost, as
evidenced by the results in Table 3. The execution time rises
from 3.45 s (δ = 1, J = 120) to 20.48 s (δ = 0.1, J = 120)
and further to 214.93 s (δ = 0.01, J = 120), demonstrating
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a substantial increase in computation time when transitioning
from δ = 1 to δ = 0.01. The most critical case is observed
for δ = 0.01, J = 110, where the execution time reaches
260.43 s, further confirming the substantial increase in com-
putational complexity for finer resolution settings. In contrast,
a coarser discretization (δ = 1) significantly reduces compu-
tational times, ranging from 3.04 s to 4.08 s. However, this
reduction comes at the cost of identifying fewer optimal solu-
tions, potentially overlooking trade-offs between network qual-
ity performance and social and ethical values. On the other
hand, smaller δ values enhance the optimal solution for the net-
work’s social and ethical value by 12%, allowing for a more
precise optimization of environmental sustainability, trustwor-
thiness, and inclusiveness.

Table 4 presents the execution times for various scenarios,
accounting for different weight assignments to the KVI. This
analysis provides insight into the computational impact of pri-
oritizing specific social and ethical dimensions within the opti-
mization process.

Table 3: Simulation run times with varying δ.

N J δ Run time (s)
80 90 1 3.27
80 100 1 3.04
80 110 1 4.08
80 120 1 3.45
80 90 0.1 16.59
80 100 0.1 16.75
80 110 0.1 20.89
80 120 0.1 20.48
80 90 0.01 153.36
80 100 0.01 237.82
80 110 0.01 260.43
80 120 0.01 214.93

Table 4: Simulation run times with varying the number of network resources
(N) and the service requests (J).

N J Pref. KVI Run time (s)
80 90 σrn,s j 27.57
80 90 θrn,s j 16.00
80 90 ιrn,s j 53.98
80 100 σrn,s j 29.36
80 100 θrn,s j 16.64
80 100 ιrn,s j 56.25
80 110 σrn,s j 27.63
80 110 θrn,s j 21.24
80 110 ιrn,s j 55.18
80 120 σrn,s j 37.36
80 120 θrn,s j 30.43
80 120 ιrn,s j 32.13

In general, the results indicate that execution times remain
consistent and within a similar range for all KVIs weight as-
signments, with only minor fluctuations arising from the dif-

ferent application scenarios considered. Specifically, when
J = 100 and N = 80, execution times range from 16 s to 57 s,
with the highest value observed for the inclusiveness indicator.
With a slightly higher request load, such as J = 120, execu-
tion times range from 30.43 s to 37.36 s, with the highest value
recorded for the environmental sustainability indicator. There-
fore, execution times are primarily influenced by the request
load and network resources rather than the weights assigned to
the KVIs, as these weights impact the optimization process but
do not significantly alter computational complexity across dif-
ferent scenarios.

5.4. KPI and KVI Trade-Off Analysis
Figures 4 and 5 further examine the trade-offs between net-

work quality performance and social and ethical value under
varying service-network resource combinations while main-
taining a fixed δ parameter, considering a scenario in which nei-
ther quality performance nor social and ethical value is explic-
itly prioritized. The curves provide a comparative analysis of
the proposed optimization-based service orchestration frame-
work against baseline approaches, such as the PGM, VGM,
and the RM strategy. The results are derived from 500 differ-
ent seeds, ensuring robustness by accounting for varying distri-
butions of service request types. In detail, Figure 4 provides
empirical validation of the theoretical framework introduced
in Section 4, demonstrating the system’s capability to identify
and explore Pareto-optimal solutions as resource availability in-
creases. With a fixed number of service requests (J = 100) and
a progressively increasing number of available resources (rang-
ing from 20 to 90), the Pareto front shifts, reflecting improve-
ments in both service quality and social and ethical value. This
confirms that greater resource diversity facilitates the identifi-
cation of a broader set of non-dominated configurations and
enables more favorable trade-offs between conflicting objec-
tives. This behavior aligns with the core principle of the bi-
objective optimization addressed in this work, which jointly
considers service demands and network resources to promote
the use of ethically valuable resources while satisfying user
requirements. In addition, Figures 5a and 5b provide a com-
parative analysis of network quality performance and the cor-
responding social and ethical values for scenarios where net-
work resources N = 80 and service requests J varies within
the range [80, 120]. The proposed approach exhibits behav-
ior consistent with the PGM in terms of network quality per-
formance, maintaining coherence in the trend of the curves as
the number of considered services increases. A substantial im-
provement of 10%, instead, is observed in the total network
social and ethical value, demonstrating the effectiveness of the
proposed framework in integrating social and ethical consider-
ations into service orchestration. Moreover, the approach im-
proves by 13% and 10% over RM in both evaluations, respec-
tively. Furthermore, it maintains a 6% performance gap relative
to the VGM in the first case, while demonstrating a reduction
of up to 5% in the delivered social and ethical value. There-
fore, the proposed strategy outperforms the baseline methods,
demonstrating an enhanced capability to allocate resources ef-
ficiently while balancing network performance with social and
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Figure 3: Pareto fronts with varying service requests J and δ.
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Figure 4: Pareto fronts obtained for varying amounts of network resources, with
the number of service requests fixed at J = 100.

ethical considerations. This improvement underscores the ef-
fectiveness of the approach in optimizing service orchestra-
tion beyond traditional performance-centric methods. On the
one hand, the greedy approaches achieve optimal results with
respect to their respective target criteria but perform subopti-
mally with regard to the opposing objective. In particular, the
PGM employs a purely performance-driven allocation strategy,
resulting in higher network quality performance compared to
random allocation. However, it fails to integrate social and eth-
ical factors, thereby limiting its improvements to performance-
centric metrics while neglecting broader considerations such as
environmental sustainability and inclusiveness. In contrast, the
VGM attains the highest levels of social and ethical value but
demonstrates substantially lower performance when network
quality serves as the primary evaluation criterion. On the other
hand, the RM demonstrates suboptimal performance due to the
absence of an informed resource selection process, leading to
inefficient resource-service assignments and reduced overall ef-
fectiveness.

Furthermore, Figures 5c and 5d validate the impact of the
proposed optimization strategy on both network quality per-
formance and social and ethical value. In this analysis, the
number of services is fixed at J = 100, while the number of
network resources varies within the range [50, 90]. Similarly
to the previous analysis, the results indicate that the proposed
method maintains a performance level comparable to the PGM
when evaluating total network quality performance across all
resource configurations. However, it achieves up to a 13% im-
provement over the RM and up to 6% over the VGM. At the
same time, the proposed framework surpasses the PGM and
RM baseline approaches when considering only the social and
ethical value. Specifically, it achieves an increase of up to 20%

compared to both the RM and the PGM, resulting in a perfor-
mance decrease of up to 1% compared to the VGM. Once again,
while informed strategies benefit from a larger provider pool by
enhancing service–resource matching, the RM approach fails to
do so due to its uninformed nature. Conversely, under increas-
ing service demand and fixed resource conditions, RM may oc-
casionally satisfy performance requirements by chance, slightly
narrowing the performance gap; however, it consistently re-
mains inferior to informed approaches.

Moreover, Figures 6, 7, and 8 transition the analysis from a
general exploration of the trade-off space to specific scenarios,
each incorporating realistic KVI and KPI prioritizations that re-
flect the requirements of their respective 6G service classes. In
particular, Figure 6 pertains to the Collaborative Robots and
Physical Awareness scenarios, which necessitate prioritization
of the environmental sustainability indicator, given the criti-
cal importance of minimizing waste and energy consumption,
alongside reliability, which demands a minimal packet loss rate.
Figure 7, instead, pertains to the Trusted Environments sce-
nario, which requires a stronger emphasis on the trustworthi-
ness indicator due to the paramount importance of security, re-
silience, and privacy, alongside the need for high data rates and
minimal packet loss. Finally, Figure 8 refers to the Immersive
Experience scenario, which places greater importance on the
inclusiveness indicator, as well as on computation delays and
data rates, given the objective of these services to ensure equi-
table access and bridge the digital divide. In the first scenario,
the results indicate that the proposed method achieves a net-
work quality performance that is up to 4% lower than the PGM,
and up to 9% higher than the VGM across varying numbers
of service requests and network resources. However, it sub-
stantially enhances the social and ethical value, surpassing the
PGM by up to 13%, and the RM by up to 15% under the same
configurations. Notably, the social and ethical value achieved
remains approximately 5% lower than that obtained through a
purely value-oriented approach. This behavior indicates that
resources exhibiting consistently high KPIs or KVIs at the in-
dividual level may not constitute a globally optimal allocation
when jointly maximizing both categories of indicators, thereby
highlighting the existence of locally optimal yet globally sub-
optimal choices. When prioritizing trustworthiness, the pro-
posed orchestration framework maintains competitive network
quality performance, closely aligning with the PGM approach
while surpassing the VGM approach by up to 5% and the RM
by up to 18%. Moreover, it surpasses the performance-oriented
and random baseline strategies in aligning service provision-
ing with the most suitable and responsible network resources.
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(d) Network social and ethical value with fixed service requests J = 100

Figure 5: Network quality performance and social and ethical value considering neither quality nor social and ethical priritization.
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(d) Network social and ethical value with fixed service requests J = 100

Figure 6: Network quality performance and social and ethical value considering an environmental sustainability focus.

Specifically, in terms of social and ethical value, the proposed
method outperforms both the RM and PGM by approximately
up to 4% when J = 100, all while consistently matching the
VGM, demonstrating its effectiveness in ensuring KVIs adher-
ence within service orchestration, and effectively integrating

trustworthiness into resource allocation without compromising
network performance, as opposed to the VGM baseline.

Furthermore, while prioritizing inclusiveness leads to only
a marginal degradation in network quality performance across
varying numbers of service requests and network resources, the
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(d) Network social and ethical value with fixed service requests J = 100

Figure 7: Network quality performance and social and ethical value considering trustworthiness focus.
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(d) Network social and ethical value with fixed service requests J = 100

Figure 8: Network quality performance and social and ethical value considering inclusiveness focus.

proposed approach yields a substantial improvement in social
and ethical value. Specifically, for J = 100, it achieves an
increase exceeding 70% compared to both the PGM and the
RM, underscoring its effectiveness in integrating social consid-
erations into network management. Moreover, the proposed

approach exhibits a network quality performance gap of up
to 12% relative to the VGM. Nonetheless, both approaches
demonstrate closely aligned outcomes in terms of social and
ethical value under identical conditions, with differences gen-
erally within 10% relative to the same baseline. Overall, the
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proposed approach achieves substantial improvements in the
social and ethical value delivered by the network during ser-
vice orchestration across all evaluated scenarios. This contrasts
with value-oriented resource allocation strategies, which priori-
tize resources with the highest KVIs per request but often fail to
achieve globally optimal trade-offs. The performance degrada-
tion occasionally observed in the proposed approach relative to
the PGM is consistently offset by significant gains in social and
ethical value. These results confirm its effectiveness in manag-
ing complex service-resource allocations while ensuring a bal-
anced trade-off between network performance and key societal
considerations.

6. Conclusions

The proposed work introduced a system design framework
for formalizing and evaluating KVIs alongside KPIs, enabling
the systematic monitoring and assessment of communication
networks’ impact on SDGs. This has been achieved through
a service orchestration solution that optimizes metrics extend-
ing beyond traditional performance indicators. By integrat-
ing the IBN paradigm, the framework embeds a social dimen-
sion directly into the service delivery process. To balance net-
work performance with social and ethical considerations, a bi-
objective optimization problem has been formulated, aligning
service provisioning with the most suitable and responsible net-
work resources. The exact ε-constraint method has been em-
ployed to solve this problem, transforming the multi-objective
formulation into a series of single-objective problems to iden-
tify the set of optimal solutions. Computer simulations demon-
strate up to a 70% increase in the social and ethical value de-
livered by the network in service orchestration compared to a
baseline approach that focuses solely on network performance
parameters. This improvement remains consistent across vari-
ous scenarios involving 6G services with diverse requirements
for sustainability, trustworthiness, and inclusiveness. Future re-
search will investigate the effectiveness of the approach through
experimental testbeds and more complex scenarios involving a
broader range of KPIs and KVIs. Additionally, the intent trans-
lation module, along with a more targeted LLM customization
and alignment with human values and preferences, will be im-
plemented to further enhance the proposed orchestration model.
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