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Abstract—Semantic communication, particularly Deep Joint
Source-Channel Coding (DJSCC), has emerged as a promising
solution for efficient image transmission in future communication
systems. However, the broadcast nature of wireless communi-
cation and correlation between the compressed and original
data poses significant security risks, particularly in the form
of Model Inversion Eavesdropping Attacks (MIEAs). Existing
defense mechanisms suffer from limitations, such as high com-
putational overhead and information loss due to quantization and
adversarial training. As a result, these methods are unsuitable for
applications that demand fast, secure, and reliable information
transmission. In this paper, we propose a secure, lightweight, and
reversible framework named Key-Assisted Protection for Deep
Joint Source-Channel Coding (KAP-DJSCC), which utilizes a
Diffie-Hellman (DH)-based key exchange to construct a shared
secret transformation matrix. This pluggable process is applied
to obscure the latent representation of the input without altering
its structure or requiring retraining. Additionally, we introduce
a novel MIEA variant, Key-assisted Model Inversion Eavesdrop-
ping Attack (KMIEA), in which the attacker attempts to guess
the key. Simulation results confirm that KAP-DJSCC significantly
degrades the eavesdropper’s reconstruction performance in terms
of Peak Signal-to-Noise Ratio (PSNR), Structural Similarity
Index (SSIM), and Perceptual Image Patch Similarity (LPIPS)
while preserving high fidelity for the legitimate receiver across
varying Signal-to-Noise Ratio (SNR) levels.

Index Terms—Secure DJSCC, wireless eavesdropping, 6G,
secure image transmission, model inversion attacks

I. INTRODUCTION

The sixth generation (6G) wireless communication system
is expected to be inherently Artificial Intelligence (Al)-driven,
supporting a wide range of applications such as intelligent
transportation, virtual and augmented reality, and the industrial
internet [1], [2]. In these applications, visual data plays a
dominant role, with image and video content accounting for
approximately 75% of current IP traffic. To transmit this
massive volume of data, an efficient compression scheme is
essential to avoid network congestion and transmission delays.
To solve this issue, semantic communication has emerged
as a promising paradigm that leverages Al to extract and
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transmit the most relevant semantic information from images
over wireless channels [3].

Previous studies on semantic image transmission proposed
Deep Joint Source-Channel Coding (DJSCC) methods that per-
formed effectively under harsh channel conditions, including
low Signal-to-Noise Ratio (SNR) and limited bandwidth [4].
The DISCC approach presented in [4] maps image pixel values
directly to complex-valued channel input symbols and learns
noise-tolerant compressed representations. This mechanism
helps avoiding the sudden quality degradation at low SNRs
(cliff-effect) which commonly occurs in conventional commu-
nication systems that use separate source and channel coding.
By employing DJSCC, image reconstruction quality degrades
gracefully in the presence of adverse channel conditions.

Since DJSCC integrates characteristics of both traditional
wireless communication and Al, it is susceptible to emerging
attacks: those targeting wireless channels—due to their open
and broadcast nature—and those aimed at Deep Neural Net-
work (DNN) models. For example, attacks like eavesdropping,
spoofing, man-in-the-middle, and their adaptation to DNNs
pose a growing threat to data privacy and reliability of these
networks. Since the DJSCC encoder leverages input redun-
dancies for compression, the resulting channel input signal
remains highly correlated with the original image [5]. While
this correlation enhances robustness in image reconstruction,
especially in poor channel conditions, it also introduces po-
tential privacy leakage risks. An eavesdropper can capture the
wireless signal through its own channel, train a surrogate DNN
decoder, and attempt to reconstruct or interpret the transmitted
content [6], [7]. This class of eavesdropping attacks, known
as Model Inversion Eavesdropping Attacks (MIEAs), has
recently gained increasing attention in the context of semantic
communication security [7], [8].

In the context of protecting DJSCC systems against eaves-
dropping attacks, several studies have proposed data-driven
solutions [5], cryptographic techniques [9], and information-
hiding [10] mechanisms. For instance, [5] employs the concept
of privacy funnel to balance the trade-off between maintaining
high reconstruction quality and preventing the eavesdropper



from inferring sensitive information. The idea of privacy
funnel optimization, as introduced in [11], seeks to minimize
the mutual information between disclosed and private data.
Alternatively, [9] employs encryption during training after
extracting the latent space. The latent vector is quantized and
subsequently handled as plaintext for encryption. Authors in
[10] propose integrating lightweight adversarial modules into
image transmission systems to mislead eavesdroppers. The
method optimizes a weighted combination of privacy leakage,
reconstruction error (Mean Squared Error (MSE)), and attack
power, achieving improved security without significantly com-
promising image quality. These works assume a generic eaves-
dropper and do not address specific eavesdropping scenarios,
particularly MIEAs.

To counter MIEAs in DJSCC, the early study in [7] utilizes
permutation and substitution techniques applied directly to
the latent representation. While this approach is resilient
to both eavesdropping and channel noise, it requires twice
the resources, as it sends two latent vectors instead of the
original one. In addition, [12] applies steganography to create
a semantically covert protection against MIEA. However,
these mitigation methods mainly focus on data processing and
architectural defense and do not integrate with telecommuni-
cation protocols. This limits their cross-layer adaptability and
robustness in practical systems.

To the best of our knowledge, there are still some gaps in
the literature that have not yet been addressed. Cryptographic
methods [7], [9] can be resource-intensive, highlighting the
need for simpler yet effective alternatives. Additionally, ap-
plying cryptography directly to the original image reduces its
redundancy, which hinders compression using DNNs [9]. On
the other hand, encrypting the latent space [9] also requires
quantization, resulting in information loss. Moreover, data-
driven models [5], [8] trade off full recovery and privacy by
training the autoencoder with a combined loss function. Since
these methods are application-specific and the defense is not
pluggable, the model must be retrained when full information
is needed at the receiver’s side. In addition, existing ap-
proaches in the literature often neglect authentication methods
and focus solely on DNN architecture design against MIEA.
This discussion highlights the need for a fast and lightweight
algorithm that provides security of DJSCC against MIEA by
leveraging existing components in telecommunication proto-
cols.

In this paper, we propose a novel secret key assisted
protection method for DJSCC, named as Key-Assisted Pro-
tection for Deep Joint Source-Channel Coding (KAP-DJSCC)
to protect the semantic communication systems against MIEA.
Our proposed method leverages the Diffie-Hellman (DH) key
exchange protocol to establish a shared secret key known only
to the legitimate transmitter and receiver. Unlike conventional
cryptographic approaches that rely on computationally inten-
sive calculations and require quantization [9], the proposed
scheme uses the shared key to generate a pseudo-random
transformation matrix and applies a lightweight and reli-
able process to conceal the transmitted semantic information.

Since the transform is fully reversible at the receiver side,
the original data remains unaltered. This makes the method
particularly suitable when accurate information recovery is
required. Moreover, a novel MIEA, referred to as Key-assisted
Model Inversion Eavesdropping Attack (KMIEA) has been
proposed. Simulation results demonstrate that KAP-DJSCC
effectively reduces the eavesdropper’s ability to recover the
original content through KMIEA and MIEA by lowering the
similarity between the transmitted and source data.

The remainder of the paper is structured as follows: Sec-
tion II describes the system model for DJISCC and details
the proposed protection mechanism. Section III introduces
a novel variant of the MIEA attack based on random key
guessing. Section IV presents and analyzes the simulation
results. Finally, Section V concludes the paper.

Notation: In this paper, we refer to the transmitter as Alice,
the legitimate receiver as Bob, and the eavesdropper as Eve,
following standard terminology in the literature.

II. SYSTEM MODEL AND PROTECTION
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Fig. 1. Defense model

A. Encoding

In DIJSCC, Alice employs an encoder f : RV — C¢ to
extract semantic features from the input image x and compress
them into a complex-valued latent vector sqx.:

s = f(x;9), 1)

where ¢ and c represent the trainable parameter set of the
encoder and channel bandwidth according to [4], respectively.

B. Key Agreement via Diffie—Hellman Protocol

Initially, Alice and Bob negotiate a shared secret key K
using the DH protocol. They publicly agree on a large prime
p and a generator g. Then, Alice selects a private key a € Z),
and computes A = ¢g* mod p, while Bob selects a private key
b € Z, and computes B = g® mod p. After exchanging A and
B, both compute the identical shared key:

K = B%mod p = A mod p. 2)



C. Key-based Transformation

The shared key K is used as a seed for a PCG64 pseudoran-
dom generator [13]. Then, a random ¢ X ¢ matrix is generated
and orthogonalized via QR decomposition. The orthogonal
matrix Q which is suitable for geometric transformations,
serves as a lightweight encryption tool for the latent vector.
We refer to this process as (k), which takes K and generates
the invertible transformation matrix Q € R¢*¢:

Q = Q(K), 3)

where Q" Q = I. This matrix is then applied to the latent
vector s:

s'=sQ"'. 4)

This reversible procedure preserves overall structure of
the latent space but masks the latent representation from
unauthorized reconstruction.

D. Transmission and Recovery

After the security module, the output s’ is normalized to
satisfy a given average power budget [4]. The normalized
transformed latent vector is transmitted over an Additive White
Gaussian Noise (AWGN) channel. The received signal at
Bob’s side is modeled as:

s=hos, +n, (5)

where h is the channel gain vector, o denotes element-wise
multiplication, s/, shows the latent vector after transformation
and power normalization, and n ~ CA(0,0°I) is complex
Gaussian noise.

Since Bob also possesses the shared key K and is aware of
Q(k), he reconstructs the orthogonal matrix Q and inverts the
transformation to recover the original latent vector:

s =38Q. (6)

E. Decoding

Bob then applies the decoder f~! : C* — R¥ to reconstruct
the original image from the latent representation:

x =71 (80), (7)

where 1) denotes the decoder’s trainable parameters. The
orthogonal nature of QQ ensures that this transformation intro-
duces no distortion, thereby preserving reconstruction quality.

In contrast, Eve without knowledge of the shared key cannot
guess Q and hence cannot invert the transformation. This
incapability significantly degrades Eve’s ability to recover the
semantic representation s, providing enhanced confidentiality
without altering the autoencoder’s architecture or training
procedure.

E Training

In DJSCC, the encoder and decoder are jointly trained
to minimize the expected reconstruction loss over a training
dataset Dyyip = {xP}M

RM(¢7 ,(/J) = ]EXN'D"ain [[’(Xa )A()] ’ (8)

where L£(-) is a chosen loss function. In this paper we use MSE
loss. Note that the encoder and decoder are trained jointly,
whereas the key exchange and transformation steps are applied
separately to the latent space as non-trainable operations. In
essence, the protection module is designed to be pluggable.
Figure 1 illustrates the DH-aided defense integrated with the
DISCC.

III. KMIEA

In MIEA [6], [7], Eve queries the encoder illegally, receives
the encoded data via its channel, and trains its surrogate
decoder. We propose KMIEA, a surrogate model training
[6] attack which trains its model after guessing K. In this
attack, Eve leverages auxiliary information and illicitly ac-
cesses Alice’s model predictions to train a surrogate model
that approximates Bob’s behavior. Since Eve does not know
the true K, it uses a randomly chosen key K. to simulate
the defense mechanism. It is important to note that while
Eve has no knowledge of Bob’s decoder, it has full access
to the encoder and knows the applied defense process in the
transmitter’s side. Since Eve does not know Bob’s decoder or
the reverse transform, it uses K, to train its surrogate decoder
on a transformed latent vector, enabling it to handle both the
transformation and AWGN noise simultaneously. In fact, the
model learns the mapping introduced by K. More specifically,
KMIEA consists of the following steps:

¢ Query the encoder using an auxiliary training set Dyx;

e Apply K. to the queries using eq. (3) and (4).

o Receive the queries via the eavesdropping AWGN chan-
nel with its specific training noise n.;

o Use transformed noisy queries as inputs, and matching
Daux samples as targets, to form D,q, for inverse network
training;

o Train the surrogate model that utilizes D,q, to approxi-
mate the inverse mapping.

For an image reconstruction attack in KMIEA, both the
quality of Dy« and the design of the surrogate model are crit-
ical. Additionally, Eve’s level of access to information about
the encoder and the defense method significantly impacts the
strength of the attack. All the steps employed in KMIEA and
the training procedure are illustrated in Figure 2.

IV. SIMULATION RESULTS

In our simulations, we evaluated performance using widely
adopted image quality metrics, including pixel-wise measures
such as Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index (SSIM), as well as the perceptual similarity
metric, Perceptual Image Patch Similarity (LPIPS). The legit-
imate DJSCC system is implemented based on the baseline
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Fig. 2. KMIEA training model

architecture proposed in [4], while the architecture of Eve’s
surrogate decoder is presented in Table I. All models are
implemented in Python using the TensorFlow framework, and
trained with a learning rate of 0.0001 for both Bob and Eve.
The CIFAR-10 dataset is used, with 40000 images allocated
for training Bob, 10000 images for training Eve’s surrogate
decoder, and 10000 images for testing. Eve and Bob are both
trained at SNR of 20 dB.

TABLE I
EVE’S DECODER ARCHITECTURE SUMMARY
No. | Layer
1 Conv2DTranspose, 5 X 5, stride 1
2 PReLU
3 Conv2DTranspose, 5 X 5, stride 2
4 PReLU
5 Conv2DTranspose, 5 X 5, stride 2
6 Sigmoid

Figure 3 illustrates the reconstructed image quality evalu-
ated using the aforementioned metrics across different chan-
nel SNRs. The curve labeled Bob, KAP-DJSCC represents
the reconstruction quality at Bob’s side when the proposed
defense mechanism is applied, while Bob, DISCC shows
the performance of the standard DJSCC system without any
protection. The curves Eve,KMIEA and Eve,MIEA depict
Eve’s reconstruction performance when KAP-DJSCC is ap-
plied under KMIEA and MIEA [7], respectively. Furthermore,
Eve, MIEA (Surrogate) curve provides the comparison with
the benchmark DJSCC under MIEA. The results demonstrate
that the proposed KAP-DJSCC method achieves image re-
construction quality nearly identical to the baseline DJSCC
in all subfigures. This confirms that the defense mechanism
introduces no recognizable information loss or decoding fail-
ure, thanks to utilizing reversible transformation applied to
the transmitted latent space. Moreover, Eve with MIEA can
achieve results closely converging to Bob when KAP-DJSCC
is not implemented. In contrast, the defense substantially
degrades Eve’s reconstruction quality. While key guessing
(K,) and training a surrogate decoder based on it in KMIEA
improves Eve’s ability, her performance remains significantly
inferior to Bob. Since the secret key is exchanged via the DH
protocol, successful guessing is highly improbable, ensuring
robust protection against MIEAs.

In subfigures (a) and (b), the trends of the curves are similar,
as both PSNR and SSIM are pixel-level quality metrics.
Consistent with typical DJSCC schemes [4], the proposed
method and both attack models exhibit saturation at SNRs
higher than the training SNR. In subfigure (a), the maximum
degradation in Eve’s reconstruction quality under KMIEA
occurs at 25 dB, amounting to a 30.1 % reduction relative to
the no-attack case, while under MIEA it amounts to a 51.7
% reduction. A similar trend is observed in subfigure (b),
where decoding failure measured by SSIM peaks at 62.5%
under KMIEA and 92.0% under MIEA. Unlike PSNR and
SSIM, the lower values in LPIPS indicate better perceptual
similarity. The defense method proves highly effective in this
regard, substantially reducing perceptual reconstruction quality
at Eve’s side with maximum differences of 52.7% and 55.3%
under KMIEA and MIEA, respectively. Although only the
maximum differences are reported here, the performance gap
between Bob and Eve remains consistently significant across
all SNRs, demonstrating the robustness and effectiveness of
the proposed KAP-DJSCC scheme.

Figure 4 illustrates qualitative reconstruction results at SNR
levels of 20 dB and O dB for the proposed scheme and
both attack models. At SNR = 20 dB, Bob with KAP-
DJSCC recover the image with high fidelity compared to
DJSCC. The results confirm that the proposed DH-aided latent
space transformation preserves reconstruction quality for Bob,
maintains image texture, and accurately recovers the semantic
content. In contrast, Eve’s reconstructions under both attack
models exhibit severe quality degradation when KAP-DJSCC
is applied. KMIEA achieves relatively better values and reveals
scrambled textures and color regions compared to MIEA, but
the image still remains difficult to interpret. This proves the
advantage of using a secret key exchange. Under MIEA, only
noisy and unrecognizable outputs are obtained. In very low
SNR regime (0 dB), Bob’s reconstructions degrade slightly
when KAP-DJSCC is applied while the semantic content
remains clearly visible. Notably, Eve under MIEA produces
no meaningful reconstruction, confirming that KAP-DJSCC
effectively obscures the latent representations and protects the
semantic contents against eavesdropping.

V. CONCLUSION

This paper introduced KAP-DJSCC, a lightweight and re-
versible defense framework that safeguards semantic image
transmission via DJISCC against MIEA. Using a DH-based key
exchange protocol, the proposed method applies a key-assisted
orthogonal transformation to the transmitted latent space,
which enhances security without altering the original meaning
or requiring retraining. To assess the efficiency, we introduced
a new attack, KMIEA, which performs key guessing and
surrogate model training. The simulations using PSNR, SSIM,
and LPIPS metrics demonstrate that KAP-DJSCC preserves
high reconstruction quality at the legitimate receiver while
significantly degrading the eavesdropper’s performance across
all channel SNRs. Visual results also confirm the effectiveness
of KAP-DJSCC in protecting semantic content. Overall, KAP-
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Fig. 3. PSNR, SSIM, and LPIPS vs. SNR for Bob and Eve under different schemes. The proposed KAP-DJSCC method preserves high reconstruction quality
for Bob while effectively degrading Eve’s performance under both KMIEA and MIEA attacks.
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Fig. 4. Reconstructed images at SNR = 20 dB (top) and 0 dB (bottom).
Shown are outputs from Bob (with/without KAP-DJSCC) and Eve (KMIEA
and MIEA) under KAP-DJSCC.

DIJSCC presents a practical and computationally efficient
solution for security in future 6G semantic communication
systems, bridging the gap between cryptographic key exchange
and semantic security. For future work, a more advanced
DH method such as Elliptic-Curve DH is recommended. The
basic DH, although efficient, remains vulnerable to man-in-
the-middle attacks, which could also serve as an entry point
for multidomain attacks.
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