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Abstract—Today, an unprecedented number of researchers and
companies are interested in exploring advanced and optimized
protocols and algorithms making the 5G New Radio technology
(and of course its evolutions) able to support different services un-
der heterogeneous scenarios. In most cases, their studies leverage
computer simulations and simple datasets describing isolated
functionalities of the overall complex mobile communication
system. Accordingly, despite all these valuable and available tools,
there remains a lack of comprehensive, high-quality datasets that
can support in-depth analysis, modeling, and testing of the 5G
New Radio in real-world deployments. To bridge this gap, this
paper presents a 5G dataset for Quality of Experience assessment
in the new RAdio (5G-QoERA). Focusing the attention on a video
streaming use case, the goal of the dataset is to indicate the level of
quality experienced by mobile end users in terms of Mean Opinion
Score, while jointly considering several influencing aspects such as
real user mobility traces, real-world base station deployments and
related radio map environments, variable scheduling decisions,
and application-level details. After detailing the generation process
of the dataset, a preliminary analysis of its features is conducted to
underline the possible research activities that can take advantage
of its usage.

Index Terms—5G, NR, QoE, QoS, Mobility, Multimedia.

I. INTRODUCTION

As mobile networks evolve Beyond 5th Generation (5G)
and 6th Generation (6G), the increasing complexity of wire-
less communication systems and related new services needs
novel approaches to improve performance by facing up the
requirements of end users [1]. Next-generation networks aim
to provide not only greater throughput but also better Quality
of Service (QoS) and quality perceived by end users, which is
defined as Quality of Experience (QoE) [2]. In fact, QoE is
a central concept for measuring end-user satisfaction in using
services and applications over wireless networks, considering
both technical (i.e., objective) and perceptual (i.e., subjective)
factors, or solely technical or perceptual factors [3].

After the introduction of new technologies such as massive
MIMO, beamforming, and millimeter frequencies in 5G,
Beyond 5G and 6G networks promise to further expand network
capabilities, by also considering THz communications, the
integration of Terrestrial and Non-Terrestrial Networks, the
design based on Artificial Intelligence (AI)/Machine Learning
(ML), and Network Digital Twin (NDT) paradigm [4]. In
particular, the integration of AI and NDT are two key concepts

of the new future networks as they allow for a range of useful
information to be available for scheduling, anticipatory allocat-
ing, and redistributing resources, and preventively maintaining
network nodes. Thus, it is possible to ensure the continuous
availability of the networks with an increasingly high QoS and
improvements of QoE.

Over the years, several QoE-oriented solutions have been
proposed to improve the user experience. Such approaches
often integrate AI/ML, edge computing, and network slicing
techniques to dynamically allocate network resources [5]–[7],
considering network conditions and user preferences. However,
there is a shortage of open and public datasets to study the direct
correlation between the physical layer, the application layer, and
perceived QoE. This gap limits the research and development
of more efficient solutions to optimize resource allocation in
current and future wireless communication systems.

To contribute to the existing literature and to support in-
depth analysis, modeling, and testing of the 5G New Radio
(5G NR) in real-world deployments, this paper presents a 5G
dataset for QoE assessment in new RAdio (5G-QoERA). The
purpose of this integrated dataset for evaluating QoE in 5G NR
is to advance the study of QoS and QoE in the new era of 5G
and Beyond networks, by also considering the user mobility
traces from the Taxi/Rome dataset [8], the actual locations of
Base Stations (BSs) [9], also using Radio Environment Maps
(REMs), by varying the Physical Resource Blocks (PRBs), i.e.,
the actual set of subcarriers and time intervals assigned for data
transmission [10]. For the 5G-QoERA dataset, different values
of the number of PRBs are considered to obtain the throughput
values of users. Moreover, application details on Packet Loss
Rate (PLR) and QoE values based on real multimedia videos
are considered to support scheduling decisions and obtain Mean
Opinion Score (MOS) values for objective QoE assessment.

The remainder of the paper is as follows. Section II contains
a state-of-the-art analysis of various QoE-related datasets,
providing a comparative table among them and the 5G-QoERA
dataset. Section III describes the source datasets of 5G-QoERA,
how they were used to generate the new dataset, and the
generation details. Section IV provides an overview of the
5G-QoERA dataset, by presenting its structure, main features,
and usage examples. Finally, Section V concludes the paper
and outlines future research activities on resource management,



TABLE I
COMPARISON AMONG THIS WORK AND THE OTHER DATASETS ON QUALITY OF EXPERIENCE.

References QoE Metrics User Mobility Physical Layer Application Layer
Radio Technology Real BS Positions Variable PRB Variable PLR Variable Bitrate Variable Video Quality

[11] Subjective
[12] Subjective
[6] Objective On bottleneck

[13] Objective Wi-Fi
[14] Objective
[15] Both
[16] Both Wi-Fi

5G-QoERA Objective 5G-NR

which can use the presented dataset and benefit from it.

II. RELATED WORK

Recent research efforts have increasingly focused on devel-
oping methodologies to maximize the QoE perceived by end
users, which remains one of the primary goals of emerging
telecommunications networks. To support these endeavors,
numerous datasets have been made available to the scientific
community, providing real or simulated data on various key
network statistics such as jitter, end-to-end delay, PLR, bitrate,
and more. These datasets serve as critical resources for
understanding and optimizing QoE in different networking
scenarios, by adopting subjective metrics [11], [12], objective
metrics [6], [13], [14] or both types of categories [15], [16].

For subjective QoE evaluations, the contribution presented
in [11] includes 220 video sequences of 5 seconds each, in
four different resolutions (from 360p to 1080p), with variable
bitrate and variable video quality. The dataset is generated by
conducting various tests on more than 30 subjects for several
video sequences. In particular, the evaluation is based on the
Just Noticeable Difference measurement, representing the point
at which a human subject notices a quality difference between
compressed videos. The conducted study in [12] introduces
WebRTC-QoE, a dataset for Web Real-Time Communications
(WebRTC) that focuses on subjective testing under varying
conditions of PLR, delay, and jitter. Users were asked to rate
their experience using the Absolute Category Rating scale,
ranging from 1 (Bad) to 5 (Excellent). The study also uniquely
captured data on facial expressions, offering further dimensions
to analyzing user QoE.

Regarding the objective QoE analysis, the dataset in [6] is
generated by using a specific adaptive multimedia streaming
simulation framework to simulate an HyperText Transfer
Protocol client and a LibDASH server, a library based on
Dynamic Adaptive Streaming over HTTP (DASH). Thus, the
dataset captures data like the number of clients, bandwidth,
resolution, and delay and the adopted QoE metrics are stalling
events and rebuffering ratio. Each entry represents average
statistics with variable PLR on the bottleneck, bitrate, and video
quality, contributing valuable insights into QoE under different
network and client conditions. The dataset in [14] collects real
multimedia traffic statistics from a variety of users, both mobile
and non-mobile. Specifically, the MONROE dataset, which
innovatively contains user mobility information in the context
of QoE evaluations, contains application layer metrics such as

packet loss, packets received, and end-to-end delay, analyzed
across two multimedia streaming protocols, i.e., WebRTC and
DASH. This real-world dataset helps understand QoE, through
the objective metric on stalling events, under diverse network
conditions and protocol implementations. To obtain the dataset
presented in [13], experimental tests are carried out using two
Access Points (APs) while considering different video quality
and network statistics to measure the Peak Signal-to-Noise
Ratio (PSNR), which is then converted to an objective QoE
assessment, i.e., MOS scale. Moreover, the authors adopt this
dataset to build a Deep Reinforcement Learning (DRL) model
to optimize QoE by dynamically adjusting AP configurations,
such as transmission power and channel selection.

Also, joint subjective and objective QoE evaluations are
conducted through the widely adopted Differential Mean
Opinion Score (DMOS) [17], a metric that can help to
determine how much the differences introduced in test videos
degrade subjective picture/video quality. In the work [15], a
dataset based on subjective tests in a laboratory environment is
presented. Specifically, various participants evaluated distorted
video streams with variable bitrate and video quality on mobile
devices. The participants’ feedback was recorded using DMOS.
Similarly, the contribution in [16] provides a dataset containing
distorted videos. The dataset simulated various wireless network
conditions, including video compression and packet loss, with
variable distortions, like frame freezing, over time. Subjective
tests were conducted to collect both final mean scores and
continuous user ratings during video playback, enabling a
detailed analysis of QoE degradation over time.

These previous studies lack a direct correlation between
effective resource allocation and QoE metrics of mobile users in
a 5G NR environment, particularly when using real BSs. To the
best of the authors’ knowledge, the existing research also falls
short of addressing the impact of real-world mobility on QoE,
as highlighted in Table I. To bridge this gap, the 5G-QoERA
framework introduces a novel approach by incorporating
user mobility traces in 5G NR networks, leveraging real BS
REMs. This dataset captures application-level details alongside
geographical distributions of actual BSs, enabling an in-depth
assessment of QoE across various video quality scenarios. 5 By
integrating resource scheduling decisions with user mobility
data, 5G-QoERA first offers a comprehensive analysis of how
network resource allocation impacts user experience, presenting
a groundbreaking advancement in the field.



III. DATASET GENERATION

The methodology for realizing the 5G-QoERA dataset
is described in the following subsections, with a detailed
explanation of each block shown in Fig. 1. The latter presents
the generation process of the original dataset, which is built
upon existing data sources and enhanced through advanced
modeling and simulation of 5G and Beyond 5G communication
systems. Starting from real user mobility data [8], realistic
BS positions [9], and video bitrate information [18], the 5G
New Radio (NR) REMs are integrated and combined with
application-specific details to obtain throughput values so as
to calculate PLR values and consequently MOS values, by
creating a comprehensive dataset for evaluating user experience
in mobile networks.
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Fig. 1. Generation process of the 5G-QoERA dataset.

A. User Mobility and BS Positions

To consider real user mobility traces (i.e., the top left block
in Fig. 1), the Roma/Taxi dataset [8] is used. This dataset
includes several mobility traces from taxi drivers in Rome,
Italy. Specifically, it provides data on the movements of 320
taxi drivers over 30 days, recorded at approximately 15-second
intervals. For each user, identified by an ID y, the dataset
provides both the timestamp and the position, expressed in
terms of latitude and longitude coordinates.

To obtain verified and accurate BS positions in Rome (i.e.
the second block from the top left in Fig. 1), the LTE Italy
tool [9] is employed. The purpose of this tool is to share the
positions of BSs belonging to various Italian Mobile Network
Operators (MNOs), allowing precise estimates of the coverage
and speeds that specific MNOs can achieve in a given location.
Therefore, by considering the user mobility dataset, the BS
positions of an Italian MNO in Rome have been considered.

B. 5G NR REM and User-BS distances

To simulate the behavior of BSs, MATLAB 5G Toolbox
is used. It provides advanced tools for modeling, simulating,
and analyzing 5G network performance, as demonstrated in
recent studies [19]. In particular, user-BS distances and 5G
NR REM (i.e., the two blocks at the top right in Fig. 1) have

Fig. 2. 5G NR REM on throughput for NPRB = 5 and for each BS.

been taken into account. The 5G NR REM is a spatial repre-
sentation of the radio environment that considers signal power
distribution, interference, and other critical parameters such
as throughput, Signal-to-Interference-plus-Noise Ratio (SINR),
and Modulation and Coding Scheme (MCS) values. Note that
MCS determines the modulation scheme and coding rate (ratio
of information bits to total transmitted bits, affecting throughput
and error correction) based on channel conditions [10]. Using
this kind of maps, it is possible to obtain detailed and accurate
throughput information by varying the number of PRBs per
user, i.e., NPRB. An example of 5G NR REM on throughput
for NPRB=5 and for each BS is reported in Fig. 2. For each
point in the figure, the exact throughput value is provided and
reported in the associated matrix via the indices (a, b)x,NPRB

y,τ

where a and b are the matrix indices, x defines the BS ID,
NPRB defines the number of PRBs assigned, y defines the User
ID, and τ represents the time instant. Thus, in this context,
the term REM refers to the precise use of real-world radio
maps to obtain the 5G-QoERA dataset, generated with actual
BS locations and detailed link-level analysis performed using
MATLAB 5G Toolbox.

To obtain the distance between the BS x and the specific user
y by knowing their positions, the Great-circle distance [20] is
considered:

Dx,y = R · cos−1
(
sin(ϕx) sin(ϕy) + cos(ϕx) cos(ϕy) cos(λx − λy)

)
(1)

where Dx,y is the distance between the the BS x and the user
y, depending on the latitude ϕx and the longitude λx of the
BS x and the latitude ϕy and the longitude λy of the user y,
and R = 6372.795 km is the Earth radius. Specifically, the
Great-circle distance formula provides an accurate estimate of
the distance between two geographical coordinates using the
latitude and longitude of the points, considering the Earth’s
curvature. Since the approximation of the Earth to a sphere
introduces a negligible error [20], the adoption of (1) is suitable
for the calculations of user-BS distances.

C. Throughput, Target Video Bitrate, PLR, and QoE

In this subsection the blocks at the bottom of Fig. 1
are detailed. Note that the 5G-QoERA dataset is based on
scheduling decisions because it involves the generation of
different QoE levels for end-users, based on the varying
allocation of PRBs by the BS within specific time intervals τ . In
addition, application-level details encompass key performance
metrics such as PLR, bitrate, and video quality information at
the application layer.



After determining the distance of each user from each BS,
the throughput is calculated using Algorithm 1. The throughput
is only computed for SINR values greater than -20, as the noise
level for values below -20 is so high compared to the useful
signal that transmission would become impractical. The evalu-
ation is conducted for NPRB values ranging from 5 to 40 (i.e.,
values in line with 3GPP specifications [10]). By utilizing the
distance information between BSs and users, as well as REMs,
the calculation of SINR, MCS, and Throughput NPRB is
performed based on the specified parameter settings, which
also include power values and matrix size.

Algorithm 1 SINR, MCS, and Throughput Calculation
1: NPRB ← 5
2: while NPRB ≤ 40 do
3: Parameter settings
4: for each point (a, b) in the Grid do
5: Compute distance
6: Compute SINR
7: Determine MCS based on SINR
8: if SINR > -20 then
9: Compute Throughput

10: end if
11: end for
12: Save Throughput NPRB.mat
13: NPRB ← NPRB + 5
14: end while

Then, for PLR and MOS calculation, Algorithm 2 takes as
input the matrices generated by the Algorithm 1, which contains
the throughput values in each matrix cell. For each value of
NPRB, the complete throughput matrix Throughput NPRB and
the related timestamp are saved in mat and τ , respectively. For
each user y, the distance Dx,y from the BS x is calculated. If the
REM limits are not exceeded (see Fig. 2), a mapping between
the distance and the complete throughput matrix is performed
by using the map2table function to extract the specific cell
indices a and b, obtaining the related Throughput value. To
calculate the PLR, analysis on specific Media Presentation
Description (MPD), which are summarized in Table II, have
been conducted. Specifically, authors in [18] developed a
dataset to specify the target bitrate for each resolution level
using DASH, facilitated by the MPD. This target bitrate was
subsequently employed to calculate the PLR for each record.
In fact, for each bitrate value, the PLR is calculated according
to the throughput and the target video bitrate of the various
resolutions (Table II). Note that to calculate how many packets
are transmitted and received based on the various target video
bitrates, the standard Maximum Transmission Unit (MTU)
equal to 1500 bytes has been considered, including IP and
UDP headers.

Consequently, to have an estimation on the QoE, perceived
by users experiencing the specific and identified throughput
value, the MOS metric has been calculated for each PLR value
through:

MOSx,y = e1.576−(4.188×10−4×Delay)−(5.766×10−2×PLR). (2)

The formula in (2) refers to the model adopted in [21] and
inspired by the ITU E-model standard [22], which is particularly

TABLE II
VIDEO RESOLUTIONS AND CORRESPONDING TARGET BITRATE.

Resolution [px] Target Bitrate [kbps]

240p 50, 100, 150
360p 200, 250, 300, 400, 500, 600, 700
720p 900, 1200, 1500, 2000
1080p 2500, 3000, 4000, 5000, 6000, 8000

1

2
3

4

Fig. 3. Selected area of 608707 m2 delimited by the four BSs.

suitable for evaluating QoE in the case of multimedia streaming
over the network. The above formulation considers the delay
and the PLR. As can be seen, by having multiplying factors
that differ by two orders of magnitude (i.e., 10−4 and 10−2

for the delay and PLR, respectively), the PLR has a much
higher impact than the delay on the QoE assessment, causing
it to decrease exponentially proportional to the coefficient. To
this end, for the dataset analysis, a fixed and standard value of
delay has been adopted (0.1 ms).

Algorithm 2 PLR and MOS Calculation
1: for NPRB ∈ {5, 10, . . . , 40} do
2: mat← loadmat(Throughput NPRB.mat)
3: τ ← timestamp
4: for each τ in user y do
5: Dx,y←calc distance(ϕx, λx, ϕy , λy)
6: if Dx,y ≤ REM limits then
7: (a, b)← map2table(Dx,y)
8: Throughput← mat[a, b]
9: for bitrate ∈ {50, . . . , 8000} do

10: PLR← calc plr(Throughput, bitrate)
11: MOS← calc mos(PLR)
12: Store PLR and MOS values for each τ
13: end for
14: end if
15: end for
16: end for

IV. DATASET OVERVIEW

To analyze the 5G-QoERA dataset, a preliminary investi-
gation is conducted. The following subsections provide an
overview of the dataset with its main features, structure, and
usage examples. Note that the 5G-QoERA dataset can be
accessed through the GitHub repository reported here1.

1https://github.com/telematics-lab/5G-QoERA



TABLE III
SAMPLE RECORDS OF THE 5G-QOERA DATASET FOR THE BS x = 1 WITH NPRB = 30.

User features PLR [%] QoE Metric

y [#] τ [time] ϕy[°] λy[°] Throughput [Mbps] 240p 360p 720p 1080p MOS [#] for [240p, 1080p]

2 2014-02-01 00:00:10.16 41.9081300 12.5043668 14.344 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0 [4.834, 4.834]
2 2014-02-01 00:00:25.77 41.9086630 12.5066009 4.352 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0 0.0 - 45.60 [4.834, 1.000]

315 2014-02-27 17:28:14.48 41.9071726 12.5012530 2.152 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0 13.92 - 73.10 [4.834, 1.000]
315 2014-02-27 17:28:22.05 41.9073797 12.5014076 3.240 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0 0.0 - 59.50 [4.834, 1.000]

A. Parameter Settings and Main Features

Only four BSs and users within a specified area of 608707m2

are considered, as represented in Fig. 3. The locations of the
four considered BSs, by using (ϕx, λx) for the Global Position-
ing System (GPS) coordinates, are: (41.907008, 12.5048333)
for x=1; (41.9097288, 12.5103417) for x=2; (41.9101547,
12.4978939) for x=3; (41.9172276, 12.5049841) for x=4.

The distance between users and BSs does not exceed 300
m (i.e., REM limits); otherwise, it denotes that the user is not
served by that specific BS. Additionally, the BSs transmits in all
directions under the Line-of-Sight (LoS) conditions, neglecting
the effect of Doppler shifts for the purposes of the contribution.

The throughput range varies depending on the chosen number
of PRBs. For example, when NPRB = 5 is assigned, the
maximum value is 3.968 Mbps, while the minimum value
is 0.0 Mbps. Similarly, for NPRB=20, the maximum value is
15.88 Mbps, and the minimum value remains 0.0 Mbps. To
obtain target bitrate values for different video resolutions, the
information provided in Table II is used.

B. Dataset Structure and Analysis

By considering four BSs, the 5G-QoERA dataset presents 32
Tab-Separated Values (TSV) files, 8 for each BS, whose total
weight is 1.05 GB. Each file has two varied indices: the first
indicates the ID of the BS, i.e., x, while the second shows the
number of the assigned PRBs NPRB. Table III is a simplified
extract of the generated dataset for the BS x=1 with NPRB=30.
Note that within each generated file there are several records
by considering the user-BS distance calculated through (1), the
target bitrate values, and then the PLR based on Table II. As
reported in Table III, each record consists of the user features
and information on PLR and QoE. Specifically, each record
has a user ID, i.e., y, unique for each user, τ representing the
exact timestamp (i.e., date and hours) when the latitude ϕy and
the longitude λy coordinates of the user were detected, and
the Throughput, i.e., the throughput value for the specific user.
Depending on the considered PRBs, the value of Throughput
varies, also changing the values of PLR and consequently
the values of MOS. In particular, by considering 30 PRBs as
in the sample records, different values of PLR, expressed in
percentage, are reported in Table III for different resolutions
(i.e., 20 columns in total by considering the different target
bitrate for the four values of resolutions, as in Table II). Due
to lack of space, QoE information is expressed through the
range of MOS values for the resolution 240p, 360p, 720p, and
1080p (i.e., 20 columns in total of MOS values as PLR varies).
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Fig. 4. (a) Mobility of 6 example users during 430s, served by the BS x=1,
and (b) MOS over time with NPRB=5 for an example 4 Mbps video (1080p).
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Fig. 5. Cumulative MOS values for each BS for an example video segment
(1080p) requiring 6 Mbps for NPRB=5, 10, 15.

To give an insight, Fig. 4 (a) represents the mobility behavior
for six example users served for a certain period (i.e., 430s)
by the BS x=1. Fig. 4 (b) shows the MOS trends in the same
period for three of the sample users for an example 4Mbps
video. It can be seen that MOS values are different and they
vary over time. Furthermore, Fig. 5 highlights the median value
(i.e., the red line), the 25th and the 75th percentile (i.e., the
bottom line and the top line of the blue rectangle), as well as
the minimum and the maximum MOS values (i.e., the edges
of the vertical black line) for each BS for NPRB=5, 10, 15. It
can be noted that the median MOS values for NPRB =5 and
NPRB=10 is generally equal to 1 for most BSs. By increasing
NPRB to 15, the latter raises, by also reaching the maximum
MOS value (i.e., 4.8). Note that for the BS x=3, starting from
NPRB = 10, high values of MOS and some outliers (i.e. the
plus sign in red) are obtained.



C. Usage Examples

The developed dataset, based on real mobile user traces and
enriched with throughput and QoE information via the MOS
values, offers numerous application opportunities in the area
of AI for Beyond 5G and 6G networks. Given its temporal
nature, it is particularly suitable for implementing advanced
predictive models and Deep Learning (DL) techniques, such
as Recurrent Neural Networks (RNNs) or Long Short-Term
Memorys (LSTMs), by predicting future patterns related to
user behaviors and network performance. This approach could
facilitate dynamic optimization of network resources and QoS
management by anticipating changes in throughput and QoE.
In addition, the dataset lends itself to the development of
Reinforcement Learning (RL) and DRL algorithms, which
can be leveraged to create adaptive and intelligent solutions
in complex network scenarios. In particular, such algorithms
could improve resource provisioning, traffic management, and
spectrum resource allocation in real-time, maximizing QoE for
mobile users, in conjunction with the spreading NDT paradigm.

Thus, the use of real and detailed information makes this
dataset a valuable asset for research and deployment of AI-
based and NDT solutions in the networking domain, helping to
innovate the traditional approach to efficiently and proactively
managing Beyond 5G and 6G networks by analyzing, modeling,
and testing the 5G NR in real-world deployments.

V. CONCLUSIONS

This paper introduced a 5G dataset for Quality of Experience
assessment in the new RAdio (5G-QoERA). It is a powerful
instrument to facilitate a comprehensive evaluation of the
Quality of Experience in 5G New Radio. It incorporates
real user mobility traces, actual Base Station deployments
with related Radio Environment Maps, variable scheduling
decisions, and application-level details for accurate objective
Mean Opinion Score calculation in a video streaming use
case. The preliminary analysis of the dataset demonstrates
its potential for advancing research in the field of 5G and
Beyond 5G networks, particularly in resource management and
network optimization. In fact, future work will focus on the
the expansion of the 5G-QoERA by considering more BSs and
user data, other real mobility effects (e.g. Doppler shifts), and
its usage in conjunction with cutting-edge Artificial Intelligence
techniques and the Network Digital Twin paradigm to model
and test dynamic resource provisioning adjustments, such as
selecting the optimal number of Physical Resource Blocks, to
enhance the predictive and adaptive network capabilities for
improving end-user experience and avoiding over-provisioning.
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