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Abstract—The increasing complexity of telecommunication in-
frastructures demands advanced mechanisms to support service
management. In this context, Digital Twin Networks (DTNs) have
emerged as a paradigm to provide virtual replicas of network
elements, enabling operators to simulate scenarios and optimize
operations without affecting the physical network. However,
orchestrating services across large networks of DTs remains a
challenging task due to the high number of nodes involved. This
paper presents a strategy to reduce orchestration complexity by
introducing social mechanisms inspired by the Social Internet
of Things (SIoT). By establishing social relationships between
Digital Twins, social communities can be established. These
communities allow the orchestrator to restrict the analysis to
relevant subgraphs rather than the entire topology. A simulation
setup over a network of 15,000 nodes demonstrates that the
proposed approach effectively reduces the number of elements
and the connections the orchestrator needs to process.

Index Terms—Digital Twin Network, Social Communities,
Digital Twin Relationships, Network Services Orchestration

I. INTRODUCTION

The advent of fifth (5G) and sixth (6G) generation net-
works has transformed how network applications are conceived
and developed. These technologies have enabled new do-
mains—such as augmented and virtual reality (AR/VR), real-
time communications, and telesurgery—that impose strict re-
quirements on latency, flexibility, and reconfigurability. These
challenges place increasing pressure on network operators to
adopt innovative solutions amid growing service demands and
application diversity [1].

To address this complexity, the Digital Twin Network (DTN)
paradigm has emerged as a solution for advanced network
management. DTNs create virtual replicas of physical compo-
nents, enabling real-time synchronization, analytics, and safe
simulation of new scenarios [2]. This empowers providers to
anticipate disruptions, test configurations, and manage services
proactively without affecting the physical infrastructure [3].

Recent DTN research has increasingly focused on service
orchestration algorithms that use DT data to guide decision-
making [4]. These algorithms address requirements via tradi-
tional Key Performance Indicators (KPIs) and emerging Key
Value Indicators (KVIs), covering aspects like cost, sustain-

ability, and security [5]. Orchestrators rely on this information
to allocate resources using optimization or AI-based methods.

Despite these developments, little attention has been paid to
the computational burden on orchestrators. As DT populations
scale, potentially to tens of thousands, the orchestrator must
process large search spaces and make real-time decisions [6].
This can result in scalability issues, degrading the responsive-
ness and overall efficiency of service delivery, especially in
large and dynamic environments.

To tackle this, we propose a strategy inspired by the Social
Internet of Things (SIoT) paradigm [7] to reduce orches-
tration complexity and provide existing orchestrators with a
mechanism to identify and manage only the most relevant
nodes. We introduce the Social Digital Twin Network (SDTN),
where DTs form autonomous social ties based on shared traits
like proximity or requirements. These relationships serve as
the foundation for building communities of DTs, allowing
orchestrators to operate within smaller, relevant subgraphs
of the full DTN topology. This paper presents the design,
implementation, and evaluation of this social orchestration
approach. The main contributions are as follows:

• We propose a model for embedding social relationships
into DTNs, using multiple criteria to define affinity be-
tween DTs.

• We introduce the concept of social communities, defined
as subnetworks of DTs with strong social ties, which
serve as localised scopes for orchestration.

• We evaluate our approach through simulations on a large
DTN composed of up to 15,000 DTs, showing how the
use of social communities enables reductions in orches-
tration overhead while preserving service quality.

The rest of the paper is organised as follows. Section II
reviews relevant literature on DTN orchestration and social
networking paradigms. Section III presents the scenario and
defines the modelling elements. Section IV details the con-
struction of social communities and their application. Section
V presents our experimental evaluation and, finally, Section VI
concludes the paper and outlines future research directions.



II. STATE OF ART

A. The Digital Twin Network

Historically, networks were considered static infrastructures,
with configurations tailored to specific applications, limiting
adaptability and autonomous reconfiguration. The advent of
Software Defined Networks (SDN) marked a shift, introducing
programmable devices without service interruption [8]. Recent
efforts have focused on incorporating AI into network environ-
ments, mainly in SDN controllers or orchestrators. Yet, these
attempts often face high complexity or data limitations.

The emergence of DTs in networking introduced the DTN
concept, helpful in easing operator tasks and enabling innova-
tive approaches to design and management. DTNs empower
network operators to optimize, troubleshoot, conduct what-
if analyses, and plan upgrades considering projected user
growth [9]. Numerous studies have explored DTNs, leading
to new architectures and capabilities. A notable example is a
four-layer DTN model: physical network, data lake, DT, and
application layers [10]. The data lake collects and processes
data to support knowledge extraction and DT modeling.

Research has also explored monitoring and service integra-
tion. For instance, [11] introduces real-time monitoring and
intelligent service invocation via a DTN orchestrator, with
visualization tools to aid engineers. Increasingly, DTNs are
being paired with AI. Some approaches propose AI-enhanced
DTs that emulate network behavior or represent network
entities. Others envision virtual parallel networks where DTs
of users and devices interact [12]. In next-gen networks, DTs
are gaining traction among telecom leaders like Ericsson and
Huawei [13], initially to assess performance, environmental
impact, and 5G optimization.

As technology advances, DTs are used for simulation too.
In [14], a 5G DT architecture is proposed with physical and
virtual layers and real-time synchronization. It decouples func-
tions like mobility and edge caching from hardware, imple-
menting them via software. In this context, SDN and Network
Function Virtualization (NFV) are key: SDN separates control
and data planes, while NFV enables cost-effective function
deployment using virtual machines. The resulting network
environment will align seamlessly with the slicing capabilities
envisioned for 6G. DT-based 6G systems will combine slicing
with technologies like data decoupling, advanced interfaces,
blockchain, and proactive optimization for intelligent control
[15].

B. The Progress of Social Digital Twins

In parallel, the Social Internet of Things (SIoT) paradigm
has been introduced to extend traditional IoT architectures
by embedding social networking principles. In SIoT, each
physical object is associated with a virtual counterpart, i.e. a
Social DT, capable of forming social relationships with other
entities, like humans do in social networks [16]. These links
are built based on criteria such as co-location, i.e. devices that
operate in the same location, common ownership, common

tasks, or even relationships among respective users. As a
result, the SIoT networks evolve into dynamic social graphs,
where the structure of communication is guided by social ties.
The integration of social principles into the IoT has shown
significant benefits in terms of service discovery, network
scalability, and trust management [17].

As illustrated in the previous section, the concepts of DTs
and SIoT can be extended in the same way to telecom-
munication infrastructures, where DTs represent not users
or sensors, but network elements themselves (e.g., routers,
switches, access points) [18]. In such a vision, with the
association of SIoT, DTs associated with network devices
can interact, collaborate, and establish relationships to form
a social network of networked entities [5]. This approach
enables the creation of logical links, supported by the physical
ones, that reflect shared deployment contexts, vendor origins
or operational roles.

Building on this social vision, the work presented in [19]
proposes an interpretation of SIoT adopted in communica-
tion networks. In this approach, authors introduce social DT
communities, i.e. groups of DTs clustered according to one
or multiple shared social dimensions. These communities are
not static or manually defined but emerge from network
mechanisms, where DTs that meet specific relational criteria
are logically connected via dedicated IP subnets within a
Virtual Application Network (VAN). Each DT, upon joining
a community, is able to navigate and exchange information
within its scope, avoiding global discovery procedures.

In this paper, we build upon these two foundational ideas,
i.e. the concept of social relationships from SIoT and the
notion of social communities, to propose an SDTN approach,
where social DT represents network components. Specifically,
we leverage the relationships defined in SIoT as the basis
for establishing relations between DTs in the telco envi-
ronment. From these links, we dynamically construct social
communities, each grouping together DTs that share specific
relations. The key insight is that these communities can serve
as search domains for the orchestrator: instead of querying
or analyzing the entire DT network, the orchestrator can
restrict its scope to a relevant subset of networks that are
more likely to provide the requested services. This targeted
exploration enables the orchestrator to fulfill SLAs and KPIs
while reducing complexity.

III. SCENARIO

This paper introduces a framework for network orches-
tration that leverages the dynamics of social relationships
among network elements. The considered scenario involves a
large-scale network topology, potentially spanning a national
network infrastructure, where K different network operators
O = {o1, ..., ok, ..., oK} own both the network elements
(such as routers, radio-base stations, etc.) and the connections
between them. Users within the network may issue queries,
characterized by the following parameters:



Fig. 1. An example of how real-world network elements are virtualized within
Digital Twins.

- Key Performance Indicators (KPI): these specify pre-
determined measurable performance targets, such as latency
or throughput;

- Key Value Indicators (KVI): these reflect the user’s
preference for meeting certain criteria, such as sustainability.

To manage network operations and traffic, network elements
are virtualized within a respective DT as shown in Figure 1.
Just like a group of interconnected network devices creates a
network, DTs together create a Digital Twin Network (DTN).
Each DT, representing a network element, is defined by a
profile, directly linked to the real-world object [20].

Let N = {n1, ..., ni, ..., nI} be the set of I network
elements virtualized into DTs, where each generic ni ∈ N
can be described by its profile. Among all the important
information, the parameters useful for the considered scenario,
used to create social relationships, are depicted below:

- Ci represents the network element geographical location,
given in terms of longitude and latitude coordinates;

- Oi denotes the owner of the network element ni and is an
element of the set O of operators;

- P
(max)
i represents the maximum processing capability of

the network element, measured in [cycles/s] [21];
- G

(%)
i represents the percentage of green energy used in

relation to the total energy consumed by the network element;
- S

(%)
i symbolizes the likelihood of attacks against the

security of the network element. It represents the probability
that a threat will exploit a vulnerability, causing damage [21];

- B⃗
(min)
i is a vector containing the minimum guaranteed

values of the available bandwidth from the directly connected
network elements, measured in [Mbps]. Therefore B

(min)
ij is

the minimum guaranteed bandwidth;
- L⃗

(max)
i is a vector containing the maximum expected

values of latency from the ni network element to reach the
set of directly connected network elements, measured in [s].
Therefore L

(max)
ij is the maximum expected latency.

We are considering bandwidth and latency parameters that
are strictly related to the communication links’ physical prop-
erties. Therefore, in this model, it is assumed that these
parameters are symmettric, i.e. B(min)

ij = B
(min)
ji .

All of these parameters are selected according to what
service requests may demand in terms of KPIs and KVIs,
enabling efficient orchestration.

IV. SOCIAL NETWORKS AMONG DTS: HOW TO CREATE
RELATIONS

Building on Section II, this paper envisions a scenario where
DTs of network elements form an SDTN by establishing so-
cial connections. These relationships enable dynamic network
management, supporting tasks like path discovery, service
orchestration, and provider selection [22], while incorporating
broader goals such as sustainability and security [23]. The
decentralized structure of DT connections also lessens depen-
dence on centralized control.

Social links are formed between DTs physically adjacent
in the network, i.e. that are directly connected in the physical
network topology. These are established at deployment, based
on profile-based condition checks. Each link is assigned a
weight (0–1), reflecting potential performance and derived
from relationship parameters. The specific collaborative con-
ditions for establishing these links are detailed below (where
the prefix “Co-” stands for “Collaborative”):

Co-Location relationship is established between two DTs
if their physical distance is below a predefined threshold. The
distance between two generic DTs ni and nj is calculated
using the Haversine formula, which provides an estimation of
the distance between two points on a sphere based on their
latitude and longitude, accounting for the Earth’s curvature
[24]. Then, the distance is computed as:

dij = R · cij (1)

where R represents the mean radius of the Earth. The param-
eter cij is calculated using the following formula:

cij = 2 · atan2
(√

aij ,
√
1− aij

)
(2)

where aij is an auxiliary quantity defined as:

aij = sin2
(
∆ϕij

2

)
+ cos (ϕi) · cos (ϕj) · sin2

(
∆λij

2

)
(3)

Here, ϕi and ϕj represent the latitudes of DTs ni and nj ,
respectively, while λi and λj represent their longitudes. The
terms ∆ϕij = ϕj − ϕi and ∆λij = λj − λi denote the
differences in latitude and longitude. The condition required
to establish the relationship is defined as dij ≤ dth. The
corresponding weight is computed as:

WD = (dth − dij)/dth (4)

where the weight decreases linearly with the distance between
two DTs, reaching its maximum value when dij = 0 and zero
when dij = dth.

Co-Ownership represents the social relationship between
DTs owned by the same operator. Given two DTs ni and nj ,
a Co-Ownership relationship exists if they belong to the same
owner, i.e. if Oi = Oj . The associated weight is set to 1. As



an extension, agreements between different operators could
be modeled by assigning a lower weight to cross-operator
interactions, reflecting partial trust or collaboration.

Co-Bandwidth is the social relationship established be-
tween two DTs that can guarantee a sufficient minimum
bandwidth when communicating with each other. For this
relationship to be established, the bandwidth parameters of
the two DTs must satisfy the following condition: B(min)

ij =

B
(min)
ji ≥ Bth. Since the available bandwidth can theoretically

grow without bound (i.e., it ranges from Bth to +∞), the
weight is modeled using an exponential function. This ensures
that the weight increases with available bandwidth, while the
rate of increase gradually decreases as the bandwidth grows.
To guarantee that a useful relationship is established even at
the threshold bandwidth, a minimum weight value W

(min)
B

is introduced, representing the minimum utility level of the
relationship. The weight is computed as:

WB = W
(min)
B + (1−W

(min)
B )

(
1− e

Bth−B
(min)
ij

k

)
(5)

where W
(min)
B represents the minimum relationship weight

guaranteed when the available bandwidth is exactly equal
to the threshold Bth, ensuring a non-zero weight for the
relationship.

Co-Latency relationship, similarly to Co-Bandwidth, is es-
tablished between two DTs that can guarantee a lower latency
compared to a certain threshold. Therefore, to be created, the
DTs’ latency parameters must satisfy the following condition:
L
(max)
ij = L

(max)
ji ≤ Lth For latencies, a linear function can be

used to calculate the weight. To ensure the existence of a useful
relationship even at the latency threshold, a minimum weight
value W

(min)
L is introduced, ensuring that the relationship

remains meaningful even when the latency is exactly at the
threshold. The weight is then computed as:

WL = W
(min)
L + (1−W

(min)
L )

(
Lth − L

(max)
ij

Lth

)
(6)

Co-Green relationship is established between two DTs re-
ferring to network elements with a low environmental impact.
Given two generic DTs, this relationship is created only if
the following conditions are satisfied: G

(%)
i ≥ G

(%)
th and

G
(%)
j ≥ G

(%)
th , where G

(%)
th represents the threshold percentage

of green energy usage.
Additional parameters related to total energy consumption

or energy efficiency might also be considered to include DTs
with low energy usage, even if not entirely based on renewable
sources. The weight is calculated using a linear function based
on the average green level of the two DTs. The relationship
weight is then computed as:

WG = W
(min)
G + (1−W

(min)
G )

 G
(%)
i +G

(%)
j

2 −G
(%)
th

100−G
(%)
th

 (7)

where W
(min)
G represents the minimum guaranteed weight.

Co-Security is a social relationship established between two
DTs when the communication between them satisfies specific
conditions that classify it as secure. Similarly to Co-Green, this
relationship is created only if both DTs satisfy the following
conditions: S(%)

i ≥ S
(%)
th and S

(%)
j ≥ S

(%)
th , where S

(%)
th is the

security threshold. The weight is then computed using a linear
function based on the average security level of the two DTs.
To ensure a minimum weight even at the threshold level, a
parameter W (min)

S is introduced. The weight is computed as:

WS = W
(min)
S + (1−W

(min)
S )

 S
(%)
i +S

(%)
j

2 − S
(%)
th

100− S
(%)
th

 (8)

It is important to note that social relationships within the
SDTN serve as a reference for the orchestrator. When making
decisions, the orchestrator will retrieve the real-time perfor-
mance to accurately evaluate the current state of the network
and select the most appropriate links to exploit.

A. Social Communities

Each DT autonomously records its social links, used to iden-
tify suitable service providers and make preliminary decisions
within its neighborhood. In contrast, social communities are
groups of DTs connected by common relationships and are
globally managed by the orchestrator. By tracking these com-
munities, the orchestrator can select optimal paths and service
groups, leveraging overlapping communities to enhance search
efficiency. For example, a low-latency community, based on
Co-Latency links, is ideal for services with stringent latency
KPIs. Community definitions may also include additional DT
profile parameters, such as geographical location, to group
nearby network elements.

Social communities can be defined as groups of DTs that
meet the following criteria:

1) Internal Connectivity: all DTs within the community
must be able to communicate without leaving the com-
munity, requiring a physical topology among them;

2) Shared Social Relationship: at least one social relation-
ship must exist between DTs, defining the community’s
characteristics. For example, if all DTs share a Co-
Bandwidth relationship, the community can be classified
as a “high-bandwidth community”.

Additional details can further refine the definition of social
communities. For instance, a maximum distance between DTs
within the same community could be considered, particularly
relevant for Co-Latency relationships, as latency accumulates
with each traversed DT network element. Other factors such
as the relationship weight or the history of past interactions
between DTs may also be taken into account to restrict
community membership.

An illustrative example is shown in Figure 2. The fig-
ure depicts a DTN where social relationships based on Co-
Location, Co-Ownership, and Co-Bandwidth have been estab-



Fig. 2. Example of DTN, which becomes an SDTN with established social
relationships among the DTs, and creation of social communities.

TABLE I
THRESHOLD LEVELS

Bth [Mbps] Lth [ms] Gth [%] Sth
Low 500 20 40 2
Medium 750 10 60 3
High 1200 1 80 4

lished among the DTs, leading to the formation of distinct
social communities based on shared Relationships.

Communities can be created either on start-up or on-the-
go. In the first case, a DT joins all eligible communities
immediately after its social links are established, enabling
rapid orchestration and allowing immediate use of social
communities. In the second, communities form only after
successful interactions among socially connected DTs. Though
slower, this ensures only effective communities emerge. In
both approaches, communities evolve over time based on
interactions, a DT may leave a group as performance changes.

Effective social community management enables orchestra-
tion at a higher abstraction level. Instead of assessing each
DT individually, communities group DTs by shared traits,
simplifying decisions and reducing interactions. This aggrega-
tion improves scalability and supports lighter, more efficient
orchestration.

V. EXPERIMENTAL EVALUATION

A. Simulation Setup

The simulation setup comprises a large network consisting
of 15,000 nodes interconnected by 400,000 links, generated
according to [21]. Specifically, we used the following param-
eters: minimum link bandwidths up to 1500 Mbps, maximum
link latencies up to 30 milliseconds, green energy utilization
expressed as a percentage, and a security level ranging from 1
to 5. To evaluate the performance of the social approach, three
threshold levels (low, medium, and high) have been defined;
these are summarized in Table I.

These thresholds are applied to construct four types of
social graphs based on different relations: Co-Bandwidth, Co-
Latency, Co-Green, and Co-Security. To illustrate how the
graphs formed by social relationships can significantly reduce
network complexity, Table II compares the original physical

TABLE II
PHYSICAL TOPOLOGY AND SOCIAL GRAPHS COMPARISON

Physical Bandwith Latency Green Security
# Link/Relations 400000 119834 240247 133372 144632
Avg. degree 53.3 15.98 32.03 17.78 19.28
Giant component 100% 100% 100% 58% 60%
Avg. path length 2.81 3.75 3.04 2.93 2.92
Diameter 4 6 4 4 4

Fig. 3. Percentage of nodes and edges provided to the orchestrator across 50
queries.

network topology with the derived social graphs (constructed
using the medium threshold level). While this table provides
a preliminary comparison, the next section will present a
more detailed analysis of how the proposed approach can
substantially reduce the complexity of an orchestrator.

B. Performance Evaluations

The performance of the proposed setup is evaluated based
on the number of nodes and links provided to the network
orchestrator upon the arrival of queries. By filtering and
consequently reducing the size of the candidate subgraph, the
computational load on the orchestrator is reduced. Figure 3
illustrates the percentage of nodes and links involved in each
query when social relationships are considered with medium
threshold values. Queries have been simulated by randomly
selecting a node as the requester and designating 10% as
the possible providers. If a social community is capable of
satisfying the request, only the community is passed to the
orchestrator, rather than the entire network topology. As shown
in the figures, the proposed approach does not always reduce
the number of nodes or links passed to the orchestrator. In
some queries, the entire network must still be considered to
locate a suitable provider, resulting in no reduction. However,
on average, the approach significantly decreases complexity,
reducing the number of nodes passed to the orchestrator to
approximately 85% and the number of links by nearly 51%.
This leads to a substantial reduction in the amount of data the
orchestrator needs to process to solve queries.

Figure 4 shows how results vary with different threshold lev-
els (Table I), considering an increasing number of requirements
for forming social communities. Unlike earlier tests, based
on a single requirement (e.g., Co-Bandwidth or Co-Latency),
these experiments combine multiple requirements. Commu-
nities now form only when 2 or 3 social relationships are
simultaneously satisfied, resulting in more numerous, smaller,



Fig. 4. Average percentage of nodes and edges over 10,000 queries, grouped
by threshold levels and for different communities’ requirements.

and fragmented communities. As shown in the left graph, for
queries with one or two requirements, higher thresholds lead
to fewer nodes due to larger communities. Conversely, with
three requirements, thresholds cause excessive fragmentation,
making it impossible to resolve queries within a single com-
munity and forcing orchestration across the entire topology. A
similar pattern emerges in the link percentage graph: for 1 or
2 requirements, higher thresholds reduce social links, compli-
cating discovery. Still, for simple queries with 1 requirement,
link reduction doesn’t significantly affect discovery efficiency.

These results underscore the importance of selecting rela-
tionship thresholds not only based on profile similarity, but
also on the complexity of target queries.

VI. CONCLUSIONS

This paper presented a novel approach to reduce orches-
tration complexity in large DTNs by leveraging social mech-
anisms inspired by the SIoT paradigm. By embedding social
relationships among DTs and organizing them into social com-
munities, the proposal demonstrates how orchestrators can op-
erate within smaller subnetworks, thus reducing computational
overhead without compromising service quality. Specifically,
the evaluation on a DTN of up to 15,000 DTs showed that
the proposed social orchestration approach can decrease the
number of nodes and links involved in service management.

ACKNOWLEDGMENT

This work was supported by the European Union under the
Italian National Recovery and Resilience Plan (NRRP), funded
by the NextGenerationEU programme, within the framework
of the partnership on “Telecommunications of the Future”
(project RESTART, PE0000001). Specifically, this work re-
ceived funding from (i) the structural project Coherent, and
(ii) the cascade call project Virtualization and Orchestration
of Liquid multi-Tenant network Architectures (VOLTA, CUP
E63C22002070006).

REFERENCES

[1] M. Adil et al., “5g/6g-enabled metaverse technologies: Taxonomy, appli-
cations, and open security challenges with future research directions,”
Journal of Network and Computer Applications, vol. 223, p. 103828,
2024.

[2] A. Hakiri et al., “A comprehensive survey on digital twin for future
networks and emerging internet of things industry,” Computer Networks,
p. 110350, 2024.

[3] M. Amadeo et al., “Service discovery and provisioning in social digital
twin networks: a name-based approach,” in 2024 20th International
Conference on Wireless and Mobile Computing, Networking and Com-
munications (WiMob). IEEE, 2024, pp. 295–300.

[4] Y. Ma et al., “Adaptive service provisioning for dynamic resource
allocation in network digital twin,” IEEE Network, vol. 38, no. 1, pp.
61–68, 2023.

[5] F. de Trizio et al., “Optimizing key value indicators in intent-based
networks through digital twins aided service orchestration mechanisms,”
Computer Communications, vol. 228, p. 107977, 2024.

[6] T. Li et al., “Generative ai empowered network digital twins: Architec-
ture, technologies, and applications,” ACM Computing Surveys, vol. 57,
no. 6, pp. 1–43, 2025.

[7] S. Sagar et al., “Understanding the trustworthiness management in the
social internet of things: A survey,” Computer Networks, vol. 251, p.
110611, 2024.

[8] M. Aldaoud et al., “Leveraging icn and sdn for future internet architec-
ture: a survey,” Electronics, vol. 12, no. 7, p. 1723, 2023.

[9] S. M. Raza et al., “Definition of digital twin network data model in
the context of edge-cloud continuum,” in 2023 IEEE 9th International
Conference on Network Softwarization (NetSoft). IEEE, 2023, pp. 402–
407.

[10] Y. Zhu et al., “A knowledge graph based construction method for digital
twin network,” in 2021 IEEE 1st International Conference on Digital
Twins and Parallel Intelligence (DTPI). IEEE, 2021, pp. 362–365.

[11] M. Kherbache et al., “Network digital twin for the industrial internet
of things,” in 2022 IEEE 23rd International Symposium on a World of
Wireless, Mobile and Multimedia Networks (WoWMoM). IEEE, 2022,
pp. 573–578.

[12] A. Lombardo et al., “Design, implementation, and testing of a
microservices-based digital twins framework for network management
and control,” in 2022 IEEE 23rd International Symposium on a World of
Wireless, Mobile and Multimedia Networks (WoWMoM). IEEE, 2022,
pp. 590–595.

[13] M. Kherbache et al., “Network digital twin for the industrial internet
of things,” in 2022 IEEE 23rd International Symposium on a World of
Wireless, Mobile and Multimedia Networks (WoWMoM). IEEE, 2022,
pp. 573–578.

[14] H. X. Nguyen et al., “Digital twin for 5g and beyond,” IEEE Commu-
nications Magazine, vol. 59, no. 2, pp. 10–15, 2021.

[15] L. U. Khan et al., “Digital-twin-enabled 6g: Vision, architectural trends,
and future directions,” IEEE Communications Magazine, vol. 60, no. 1,
pp. 74–80, 2022.

[16] M. Becherer et al., “On trust recommendations in the social internet of
things–a survey,” ACM Computing Surveys, vol. 56, no. 6, pp. 1–35,
2024.

[17] F. Amin et al., “A systematic survey on the recent advancements in the
social internet of things,” IEEE Access, vol. 10, pp. 63 867–63 884, 2022.

[18] D. Wang et al., “A survey on digital twin networks: Use cases and
enabling technologies,” in International Symposium on Intelligent Com-
puting and Networking. Springer, 2024, pp. 415–428.

[19] A. Lombardo et al., “Sociality-as-a-service: A new platform for net-
worked digital twins,” in 2022 61st FITCE International Congress
Future Telecommunications: Infrastructure and Sustainability (FITCE).
IEEE, 2022, pp. 1–5.

[20] L. Hui et al., “Digital twin for networking: A data-driven performance
modeling perspective,” IEEE Network, vol. 37, no. 3, pp. 202–209, 2022.

[21] F. de Trizio et al., “Optimizing key value indicators in intent-based
networks through digital twins aided service orchestration mechanisms,”
Computer Communications, vol. 228, p. 107977, 2024.

[22] B. Farhadi et al., “Friendship selection and management in social
internet of things: A systematic review,” Computer Networks, vol. 201,
p. 108568, 2021.

[23] S. A. Wadood et al., “Social network governance and social
sustainability-related knowledge acquisition: the contingent role of net-
work structure,” International Journal of Operations & Production
Management, vol. 42, no. 6, pp. 745–772, 2022.

[24] J. Velazquez et al., “Modeling mobile applications for proximity-based
promotion delivery to shopping centers using petri nets,” Computers,
vol. 14, no. 2, p. 50, 2025.


